• No results found

Då detaljnivån i fallstudien har begränsats av dess omfång, begränsade tid och distansläget under covid-19 bör de beräkningar som genomförts i fallstudien ses över och göras på en mer detaljerad nivå för att med större säkerhet dra slutsatser kring långsiktiga fördelar med 4GDH och de kundfall som har studerats. Då ett förändrat pumparbete är en faktor som identifierats som betydande vid omställning till 4GDH bör även detta undersökas närmre. Vidare bör Borlänge Energi påbörja ett långsiktigt arbete mot 4GDH baserat på framtagen handlingsplan.

För att kunna dra djupare slutsatser om hur olika fjärrvärmenät lämpar sig för 4GDH bör mer komplexa simuleringar genomföras där nätens storlek och fjärrvärmebehov varieras baserat på faktiska fjärrvärmenät och möjliga framtidsscenarion för dessa. Simuleringarna kan genomföras enligt samma grundmetodik som i detta arbete men där fler indatavariabler tas hänsyn till och känslighetsanalyser genomförs.

Den presenterade metodiken för hur ett arbete mot 4GDH kan initieras i svenska fjärrvärmenät bör prövas på faktiska fall för att sedan utvärderas och revideras baserat på erfarenheter. En tydlig utvecklingsmöjlighet för den framtagna metodiken finns i att inkludera hur 4GDH kan spela en roll för andra system än fjärrvärmesystemet, framförallt i elkraftsystemet. Genom ökad förståelse och erfarenhet kring detta kan elproducenter och elnätsoperatörer komma att ha en betydande roll när ett arbete mot 4GDH initieras.

9 Referenser

Amiri, S. (2013). Economic and Environmental Benefits of CHP-based District Heating Systems in

Sweden.

Askeland, K., Rygg, B. J., & Sperling, K. (2020). The role of 4th generation district heating

(4GDH) in a highly electrified hydropower dominated energy system - The case of Norway.

International Journal of Sustainable Energy Planning and Management, 27(Special Issue),

17–34. https://doi.org/10.5278/ijsepm.3683

Averfalk, H., & Werner, S. (2018). Novel low temperature heat distribution technology. Energy,

145, 526–539. https://doi.org/10.1016/j.energy.2017.12.157

Averfalk, H., & Werner, S. (2017). Essential improvements in future district heating systems.

Energy Procedia, 116, 217–225. https://doi.org/10.1016/j.egypro.2017.05.069

Avfall Sverige. (2016). Svensk avfallshantering.

Bloess, A., Schill, W. P., & Zerrahn, A. (2018). Power-to-heat for renewable energy integration: A

review of technologies, modeling approaches, and flexibility potentials. In Applied Energy

(Vol. 212, pp. 1611–1626). Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2017.12.073

Blomsterberg, Å. (2009). Energi och ByggnadsDesign Institutionen för arkitektur och byggd miljö.

Bolonina, A., Bolonins, G., & Blumberga, D. (2014). Analysis of the impact of decreasing district

heating supply temperature on combined heat and power plant operation. Environmental and

Climate Technologies, 14(1), 41–46. https://doi.org/10.1515/rtuect-2014-0013

Borglund, A.-S. (2020). Framtidens fjärrvärme tar form. Tidningen Energi: El, Värme Och & Kyla.

Borgström, K. M., & Werner, S. (2010). Distribution of heat use in Sweden. 273–276.

Börjesson, P., Hansson, J., & Berndes, G. (2017). Future demand for forest-based biomass for

energy purposes in Sweden. Forest Ecology and Management, 383, 17–26.

https://doi.org/10.1016/j.foreco.2016.09.018

Borlänge Kommun. (2020). Miljöstrategi 2021-2030.

Boverket. (2012). Handbok för energihushållning enligt Boverkets byggregler – utgåva två.

Boverket. (2017a). Legionella i vatten - PBL kunskapsbanken.

Boverket. (2017b). Öppna data - Dimensionerande vinterutetemperatur (DVUT 1981-2010) för 310

orter i Sverige. https://www.boverket.se/sv/om-boverket/publicerat-av-boverket/oppna-

data/dimensionerande-vinterutetemperatur-dvut-1981-2010/

Boverket. (2018). Boverkets byggregler (BBR).

Brand, L., Calvén, A., Englund, J., Landersjö, H., & Lauenburg, P. (2014). Smart district heating

networks - A simulation study of prosumers’ impact on technical parameters in distribution

networks. Applied Energy, 129, 39–48. https://doi.org/10.1016/j.apenergy.2014.04.079

Brand, M., Thorsen, J. E., & Svendsen, S. (2010). A Direct Heat Exchanger Unit used for Domestic

Hot Water Supply in a Single-family House Supplied by Low Energy District Heating (pp. 60–

68).

Brange, L., Englund, J., & Lauenburg, P. (2016). Prosumers in district heating networks - A

Swedish case study. Applied Energy, 164, 492–500.

https://doi.org/10.1016/j.apenergy.2015.12.020

Brange, L., Englund, J., Sernhed, K., Thern, M., & Lauenburg, P. (2017). Bottlenecks in district

heating systems and how to address them. Energy Procedia, 116, 249–259.

https://doi.org/10.1016/j.egypro.2017.05.072

Broberg, S., Backlund, S., Karlsson, M., & Thollander, P. (2012). Industrial excess heat deliveries

to Swedish district heating networks: Drop it like it’s hot. Energy Policy, 51, 332–339.

https://doi.org/10.1016/j.enpol.2012.08.031

Bühler, F., Petrović, S., Holm, F. M., Karlsson, K., & Elmegaard, B. (2018). Spatiotemporal and

economic analysis of industrial excess heat as a resource for district heating. Energy, 151,

715–728. https://doi.org/10.1016/j.energy.2018.03.059

Bühler, F., Petrović, S., Karlsson, K., & Elmegaard, B. (2017). Industrial excess heat for district

heating in Denmark. Applied Energy, 205, 991–1001.

Bünning, F., Wetter, M., Fuchs, M., & Müller, D. (2018). Bidirectional low temperature district

energy systems with agent-based control: Performance comparison and operation optimization.

Applied Energy, 209, 502–515. https://doi.org/10.1016/j.apenergy.2017.10.072

Burton, I. (1987). Report on reports: Our common future. Environment, 29(5), 25–29.

https://doi.org/10.1080/00139157.1987.9928891

Cabeza, L. F., & Oró, E. (2016). Thermal Energy Storage for Renewable Heating and Cooling

Systems. In Renewable Heating and Cooling: Technologies and Applications (pp. 139–179).

Elsevier Inc. https://doi.org/10.1016/B978-1-78242-213-6.00007-2

Cenian, A., Dzierzgowski, M., & Pietrzykowski, B. (2019). On the road to low temperature district

heating. Journal of Physics: Conference Series, 1398(1). https://doi.org/10.1088/1742-

6596/1398/1/012002

Collins Jr, J. F. (1959). The history of district heating.

Connolly, D. ;, Lund, H. ;, Mathiesen, B. V, Østergaard, P. A., Möller, B. ;, Nielsen, S. ;, Ridjan, I. ;,

Hvelplund, F. ;, Sperling, K. ;, Karnøe, P. ;, Carlson, A. M., Kwon, P. S., Bryant, S. M., &

Sorknaes, P. (2013). Smart Energy Systems Holistic and Integrated Energy Systems for the era

of 100% Renewable Energy.

Coppieters, T., & Blondeau, J. (2019). Techno-Economic Design of Flue Gas Condensers for

Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature

Variations. Energies, 12(12), 2337. https://doi.org/10.3390/en12122337

Dalgren, J. (2021). Lågtempererad fjärrvärme.

Davidson, J. (2009). An integrated climate and energy policy.

Davies, G. F., Maidment, G. G., & Tozer, R. M. (2016). Using data centres for combined heating

and cooling: An investigation for London. Applied Thermal Engineering, 94, 296–304.

https://doi.org/10.1016/j.applthermaleng.2015.09.111

Di Lucia, L., & Ericsson, K. (2014). Low-carbon district heating in Sweden - Examining a

successful energy transition. Energy Research and Social Science, 4(C), 10–20.

https://doi.org/10.1016/j.erss.2014.08.005

Direktoratet for byggkvalitet. (2017). Byggteknisk forskrift (TEK17).

Djuric Ilic, D., Dotzauer, E., Trygg, L., & Broman, G. (2014). Introduction of large-scale biofuel

production in a district heating system - An opportunity for reduction of global greenhouse gas

emissions. Journal of Cleaner Production, 64, 552–561.

https://doi.org/10.1016/j.jclepro.2013.08.029

Djuric Ilic, D., & Ödlund, L. (2018). Method for allocation of carbon dioxide emissions from waste

incineration which includes energy recovery. Energy Procedia, 149, 400–409.

https://doi.org/10.1016/j.egypro.2018.08.204

Dotzauer, E. (2020). Akutellt om stytmedel. Stockholm Exergi.

E.ON. (2020). 2022: en game-changer för uppvärmning, baserad på geotermisk energi.

E.ON. (2021a). E.ON ectogrid - Shared energy for a sustainable city.

E.ON. (2021b). Medicon Village - E.ON ectogrid.

E.ON. (2021c). The technology - E.ON ectogrid.

Elforsk. (2008). Miljövärdering av el – med fokus på utsläpp av koldioxid.

Energiföretagen. (2020a). Fjärrvärmens lokala miljövärden 2019.

Energiföretagen. (2020b). ÖVERENSKOMMELSE I VÄRMEMARKNADSKOMMITTÉN 2020.

Energimarknadsinspektionen. (2020). Levererad värme per prisområde.

Energimyndigheten. (2015). Värmepumparnas Roll På Uppvärmningsmarknaden [The role of heat

pumps on the heating market]. 79.

Energimyndigheten. (2019a). Energy in Sweden - Facts and Figures 2019.

Energimyndigheten. (2019b). Sveriges energi- och klimatmål.

Energimyndigheten. (2020). Energistatistik för småhus, flerbostadshus och lokaler 2014. 1–41.

Energimyndigheten. (2021). Energiläget i siffror 2021.

Ericsson, K., & Nilsson, L. J. (2004). International biofuel trade - A study of the Swedish import.

Ericsson, K., & Nilsson, L. J. (2006). Assessment of the potential biomass supply in Europe using a

resource-focused approach. Biomass and Bioenergy, 30(1), 1–15.

https://doi.org/10.1016/j.biombioe.2005.09.001

Ericsson, K., & Werner, S. (2016). The introduction and expansion of biomass use in Swedish

district heating systems. Biomass and Bioenergy, 94, 57–65.

https://doi.org/10.1016/j.biombioe.2016.08.011

Eriksson, M., & Vamling, L. (2007). Future use of heat pumps in Swedish district heating systems:

Short- and long-term impact of policy instruments and planned investments. Applied Energy,

84(12), 1240–1257. https://doi.org/10.1016/j.apenergy.2007.02.009

Eriksson, O., Finnveden, G., Ekvall, T., & Björklund, A. (2007). Life cycle assessment of fuels for

district heating: A comparison of waste incineration, biomass- and natural gas combustion.

Energy Policy, 35(2), 1346–1362. https://doi.org/10.1016/j.enpol.2006.04.005

Erlström, M., Mellqvist, C., Schwarz, G., Gustafsson, M., & Dahlqvist, P. (2016). Geologisk

information för geoenergianläggningar-en översikt.

European Union. (2010). DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF

THE COUNCIL of 19 May 2010 ON THE ENERGY PERFORMANCE OF BUILDINGS.

Europeiska kommisionen. (2021). Hållbar finansiering och EU : s taxonomi EU-kommissionen

vidtar nya åtgärder för att styra investeringar mot hållbara verksamheter. april.

Fastighetsägarna. (2021). Så kallt får det vara i lägenheten - Fastighetsägarna.

https://www.fastighetsagarna.se/aktuellt/nyheter/sa-kallt-far-det-vara-i-lagenheten/

Finansdepartementet. (2019). Skatt på avfallsförbränning införs under 2020.

Flores, J. C., Corre, O. Le, Lacarrière, B., & Martin, V. (2014). Study of a District Heating

Substation Using the Return Water of the Main System To Service a Low-Temperature

Secondary Network.

Franzén, I., Nedar, L., & Andersson, M. (2019). Environmental Comparison of Energy Solutions

for Heating and Cooling. Sustainability (Switzerland), 11(24).

https://doi.org/10.3390/su11247051

Frederiksen, S., & Werner, S. (2013). District heating and cooling. Studentlitteratur AB.

https://doi.org/10.1016/b978-0-12-409548-9.01094-0

Furtenback, Ö. (2009). Demand for waste as fuel in the swedish district heating sector: A

production function approach. Waste Management, 29(1), 285–292.

https://doi.org/10.1016/j.wasman.2008.02.027

Gadd, H., & Werner, S. (2013). Daily heat load variations in Swedish district heating systems.

Applied Energy, 106, 47–55. https://doi.org/10.1016/j.apenergy.2013.01.030

Gadd, H., & Werner, S. (2014). Achieving low return temperatures from district heating

substations. Applied Energy, 136, 59–67. https://doi.org/10.1016/j.apenergy.2014.09.022

Gadd, H., & Werner, S. (2015). Fault detection in district heating substations. Applied Energy, 157,

51–59. https://doi.org/10.1016/j.apenergy.2015.07.061

Gerhardy, K. (2012). Das DVGW-Arbeitsblatt W 551 und die 3-Liter-Regel.

Giurca, A., & Späth, P. (2017). A forest-based bioeconomy for Germany? Strengths, weaknesses

and policy options for lignocellulosic biorefineries. Journal of Cleaner Production, 153, 51–

62. https://doi.org/10.1016/j.jclepro.2017.03.156

Gong, M., & Werner, S. (2015). Exergy analysis of network temperature levels in Swedish and

Danish district heating systems. Renewable Energy, 84, 106–113.

https://doi.org/10.1016/j.renene.2015.06.001

Grönkvist, S., Sjödin, J., & Westermark, M. (2003). Models for assessing net CO2 emissions

applied on district heating technologies. International Journal of Energy Research, 27(6),

601–613. https://doi.org/10.1002/er.898

Gustavsson, L., & Karlsson, Å. (2003). Heating detached houses in urban areas. Energy, 28(8),

851–875. https://doi.org/10.1016/S0360-5442(02)00165-2

Hagberg, M., Gode, J., Lätt, A., Ekvall, T., Adolfsson, I., & Martinsson, F. (2282). Miljövärdering

Halmstad Energi och Miljö. (2020). A modern and efficient district heating network for a new

residential area in Sweden -. LowTEMP.

Hansen, C. H., Gudmundsson, O., & Detlefsen, N. (2019). Cost efficiency of district heating for

low energy buildings of the future. Energy, 177, 77–86.

https://doi.org/10.1016/j.energy.2019.04.046

Hawkey, D., Webb, J., & Winskel, M. (2013). Organisation and governance of urban energy

systems: District heating and cooling in the UK. Journal of Cleaner Production, 50, 22–31.

https://doi.org/10.1016/j.jclepro.2012.11.018

Hvelplund, F., & Djørup, S. (2017). Multilevel policies for radical transition: Governance for a

100% renewable energy system. Environment and Planning C: Politics and Space, 35(7),

1218–1241. https://doi.org/10.1177/2399654417710024

Ianakiev, A. I., Cui, J. M., Garbett, S., & Filer, A. (2017). Innovative system for delivery of low

temperature district heating. International Journal of Sustainable Energy Planning and

Management, 12, 19–28. https://doi.org/10.5278/ijsepm.2017.12.3

IEA. (2020). Global CO2 emissions by sector, 2018 – Charts – Data & Statistics - IEA.

IVL. (2011). Energy Scenario for Sweden 2050. Scenario, December 2015, 100.

Kaiserfeld, T. (1999). Ett lokalt energisystem mellan vattenkraft och kärnkraft: Uppbyggnaden av

kraftvärme i Karlstad mellan 1948 och 1956. Public Technology Procurement and Innovation,

121–141.

Kelly, S., & Pollitt, M. (2010). An assessment of the present and future opportunities for combined

heat and power with district heating (CHP-DH) in the United Kingdom. Energy Policy, 38(11),

6936–6945. https://doi.org/10.1016/j.enpol.2010.07.010

Köfinger, M., Basciotti, D., & Schmidt, R. R. (2017). Reduction of return temperatures in urban

district heating systems by the implementation of energy-cascades. Energy Procedia, 116,

438–451. https://doi.org/10.1016/j.egypro.2017.05.091

Köfinger, M., Basciotti, D., Schmidt, R. R., Meissner, E., Doczekal, C., & Giovannini, A. (2016).

Low temperature district heating in Austria: Energetic, ecologic and economic comparison of

four case studies. Energy, 110, 95–104. https://doi.org/10.1016/j.energy.2015.12.103

Köfinger, M., Schmidt, R. R., Basciotti, D., Terreros, O., Baldvinsson, I., Mayrhofer, J., Moser, S.,

Tichler, R., & Pauli, H. (2018). Simulation based evaluation of large scale waste heat

utilization in urban district heating networks: Optimized integration and operation of a

seasonal storage. Energy, 159, 1161–1174. https://doi.org/10.1016/j.energy.2018.06.192

Kraftringen. (2018). COOL DH - Framtiden | Kraftringen.

Larsson, S., Svenska Kraftnät Niklas Dahlbäck, fd, & Johan Linnarsson, V. (2014). Reglering av

ett framtida svenskt kraftsystem.

Lauenburg, P. (2018). Teknik och forskningsöversikt över fjärde generationens fjärrvärmeteknik.

Li, Haoran, & Nord, N. (2018). Transition to the 4th generation district heating - Possibilities,

bottlenecks, and challenges. Energy Procedia, 149, 483–498.

https://doi.org/10.1016/j.egypro.2018.08.213

Li, Hongwei, & Wang, S. J. (2015). Load Management in District Heating Operation. Energy

Procedia, 75, 1202–1207. https://doi.org/10.1016/j.egypro.2015.07.155

Lund, H. (2014). Renewable Energy Systems.

Lund, H., Østergaard, P. A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., Thorsen, J. E.,

Hvelplund, F., Mortensen, B. O. G., Mathiesen, B. V., Bojesen, C., Duic, N., Zhang, X., &

Möller, B. (2018). The status of 4th generation district heating: Research and results. In Energy

(Vol. 164, pp. 147–159). Elsevier Ltd. https://doi.org/10.1016/j.energy.2018.08.206

Lund, H., Østergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart energy and smart

energy systems. In Energy (Vol. 137, pp. 556–565). Elsevier Ltd.

https://doi.org/10.1016/j.energy.2017.05.123

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V.

(2014). 4th Generation District Heating (4GDH). Integrating smart thermal grids into future

sustainable energy systems. In Energy (Vol. 68, pp. 1–11). Elsevier Ltd.

https://doi.org/10.1016/j.energy.2014.02.089

Lund, R., Ilic, D. D., & Trygg, L. (2016). Socioeconomic potential for introducing large-scale heat

pumps in district heating in Denmark. Journal of Cleaner Production, 139, 219–229.

https://doi.org/10.1016/j.jclepro.2016.07.135

Lygnerud, K., & Werner, S. (2018). Risk assessment of industrial excess heat recovery in district

heating systems. Energy, 151, 430–441. https://doi.org/10.1016/j.energy.2018.03.047

Markides, C. N. (2013). The role of pumped and waste heat technologies in a high-efficiency

sustainable energy future for the UK. Applied Thermal Engineering, 53(2), 197–209.

https://doi.org/10.1016/j.applthermaleng.2012.02.037

Mathiesen, B. V., & Lund, H. (2009). Comparative analyses of seven technologies to facilitate the

integration of fluctuating renewable energy sources. IET Renewable Power Generation, 3(2),

190. https://doi.org/10.1049/iet-rpg:20080049

Mathiesen, B. V., Lund, H., & Connolly, D. (2012). Limiting biomass consumption for heating in

100% renewable energy systems. Energy, 48(1), 160–168.

https://doi.org/10.1016/j.energy.2012.07.063

Mertoglu, O., Bakir, N., & Kaya, T. (2003). Geothermal applications in Turkey. Geothermics,

32(4), 419–428. https://doi.org/10.1016/S0375-6505(03)00055-5

Metrotherm. (2021). Tillhandahållen data.

Nord, N., Ingebretsen, M. E., & Tryggestad, I. S. (2016). Possibilities for Transition of Existing

Residential Buildings to Low Temperature District Heating System in Norway.

Nord Pool. (2021). Market Data | Nord Pool.

Nuytten, T., Claessens, B., Paredis, K., Van Bael, J., & Six, D. (2013). Flexibility of a combined

heat and power system with thermal energy storage for district heating. Applied Energy, 104,

583–591. https://doi.org/10.1016/j.apenergy.2012.11.029

Oktay, Z., & Aslan, A. (2007). Geothermal district heating in Turkey: The Gonen case study.

Geothermics, 36(2), 167–182. https://doi.org/10.1016/j.geothermics.2006.09.001

Olin, L. (2020). Brunnshög tar tillvara restvärmen från forskningen. Tidningen Energi: El, Värme

Och & Kyla.

Olsen, P. K., Lambertsen, H., Hummelshøj, R., Bøhm, B., Christiansen, C. H., Svendsen, S.,

Larsen, C. T., & Worm, J. (2008). A New Low-Temperature District Heating System for Low-

Energy Buildings.

Paulsen, O. ;, Fan, J. ;, Furbo, S. ;, & Thorsen, J. E. (2017). Consumer Unit for Low Energy District

Heating Net. APA.

Pauschinger, T. (2015). Solar thermal energy for district heating. In Advanced District Heating and

Cooling (DHC) Systems (pp. 99–120). Elsevier Inc. https://doi.org/10.1016/B978-1-78242-

374-4.00005-7

Persson, U., & Münster, M. (2016). Current and future prospects for heat recovery from waste in

European district heating systems: A literature and data review. Energy, 110, 116–128.

https://doi.org/10.1016/j.energy.2015.12.074

Regeringskansliet. (2021). Agenda 2030 och globala målen.

Renström, S. (2016). Inviting interaction - Explorations of the district heating interface for people.

Ridjan, I., Mathiesen, B. V., Connolly, D., & Duić, N. (2013). The feasibility of synthetic fuels in

renewable energy systems. Energy, 57, 76–84. https://doi.org/10.1016/j.energy.2013.01.046

Riksdagen. (2011). Plan- och byggförordning (2011:338) Svensk författningssamling

2011:2011:338 t.o.m. SFS 2020:708 -.

Riksdagen. (2020). Svensk författningssamling Förordning om ändring i plan-och

byggförordningen (2011:338).

Rønneseth, Ø., Sandberg, N. H., & Sartori, I. (2019). Is it possible to supply Norwegian apartment

blocks with 4th generation district heating? Energies, 12(5), 941.

https://doi.org/10.3390/en12050941

Rowley, J., & Slack, F. (2004). Conducting a literature review. In Management Research News

(Vol. 27, Issue 6, pp. 31–39). Emerald Group Publishing Limited.

https://doi.org/10.1108/01409170410784185

SCB. (2018). El-, gas- och fjärrvärmeförsörjningen 2018. Sveriges Officiella Statistik, november.

SCB. (2019). El-, gas- och fjärrvärmeförsörjningen 2019.

Schmidt, D., Kallert, A., Blesl, M., Svendsen, S., Hongwei, L., Nord, N., & Sipilä, K. (2017). Low

Temperature District Heating for Future Energy Systems. Energy Procedia, 1–27.

Schweiger, G., Kuttin, F., & Posch, A. (2019). District heating systems: An analysis of strengths,

weaknesses, opportunities, and threats of the 4GDH. Energies, 12(24), 4748.

https://doi.org/10.3390/en12244748

Self, S. J., Reddy, B. V., & Rosen, M. A. (2013). Geothermal heat pump systems: Status review and

comparison with other heating options. Applied Energy, 101, 341–348.

https://doi.org/10.1016/j.apenergy.2012.01.048

Selinder, P., & Walletun, H. (2018). Fastighetsanpassning för 4GDH CILLA DAHLBERG

LARSSON.

Sernhed, K., Lygnerud, K., & Werner, S. (2018). Synthesis of recent Swedish district heating

research. Energy, 151, 126–132. https://doi.org/10.1016/j.energy.2018.03.028

SGU. (2021). Geotermi.

Sibbitt, B., McClenahan, D., Djebbar, R., Thornton, J., Wong, B., Carriere, J., & Kokko, J. (2012).

The performance of a high solar fraction seasonal storage district heating system - Five years

of operation. Energy Procedia, 30, 856–865. https://doi.org/10.1016/j.egypro.2012.11.097

Sneum, D. M., & Sandberg, E. (2018). Economic incentives for flexible district heating in the

nordic countries. International Journal of Sustainable Energy Planning and Management, 16,

27–44. https://doi.org/10.5278/ijsepm.2018.16.3

Söder, L. (2014). På väg mot en elförsörjning baserad på enbart förnybar el i Sverige - En studie

om behovet av reglerkraft. 57. http://kth.diva-

portal.org/smash/get/diva2:609917/FULLTEXT01.pdf

Sorknæs, P., Lund, H., & Andersen, A. N. (2015). Future power market and sustainable energy

solutions - The treatment of uncertainties in the daily operation of combined heat and power

plants. Applied Energy, 144, 129–138. https://doi.org/10.1016/j.apenergy.2015.02.041

Sorknæs, P., Østergaard, P. A., Thellufsen, J. Z., Lund, H., Nielsen, S., Djørup, S., & Sperling, K.

(2020). The benefits of 4th generation district heating in a 100% renewable energy system.

Energy, 213, 119030. https://doi.org/10.1016/j.energy.2020.119030

SSB. (2020). Boliger, etter bygningstype og byggeår (K) 2006 - 2020.

Stockholm Stad. (2020). Sorterande avloppssystem till Värtahamnen och Loudden.

Strandell, R. (2021). Intervju - Projektledare Halmstad Miljö och Energi AB.

SvD. (2021). Stora Enso stänger – “hård smäll för Borlänge” | SvD.

https://www.svd.se/nedskarningar-hos-stora-enso

Svensk Fjärrvärme AB. (2014). F:101 Fjärrvärmecentralen - Utförande och installation.

Sveriges regering. (2017). Sveriges fjärde nationella handlingsplan för energieffektivisering.

Thorsen, J. E., Christiansen, C. H., Brand, M., Olesen, P. K., & Larsen, C. T. (2011). Expieriences

On Low-Temperature District Heating In Lystrup – Denmark.

Tschopp, D., Tian, Z., Berberich, M., Fan, J., Perers, B., & Furbo, S. (2020). Large-scale solar

thermal systems in leading countries: A review and comparative study of Denmark, China,

Germany and Austria. In Applied Energy (Vol. 270, p. 114997). Elsevier Ltd.

https://doi.org/10.1016/j.apenergy.2020.114997

Volkova, A., Krupenski, I., Ledvanov, A., Hlebnikov, A., Lepiksaar, K., Latõšov, E., & Mašatin, V.

(2020). Energy cascade connection of a low-temperature district heating network to the return

line of a high-temperature district heating network. Energy, 198, 117304.

https://doi.org/10.1016/j.energy.2020.117304

Volkova, A., Mašatin, V., & Siirde, A. (2018). Methodology for evaluating the transition process

dynamics towards 4th generation district heating networks. Energy, 150, 253–261.

https://doi.org/10.1016/j.energy.2018.02.123

Wahlroos, M., Pärssinen, M., Manner, J., & Syri, S. (2017). Utilizing data center waste heat in

district heating – Impacts on energy efficiency and prospects for low-temperature district

heating networks. Energy, 140, 1228–1238. https://doi.org/10.1016/j.energy.2017.08.078

Wahlroos, M., Pärssinen, M., Rinne, S., Syri, S., & Manner, J. (2018). Future views on waste heat

utilization – Case of data centers in Northern Europe. Renewable and Sustainable Energy

Reviews, 82, 1749–1764. https://doi.org/10.1016/j.rser.2017.10.058

Werner, S. (1984). HEAT LOAD IN DISTRICT HEATING SYSTEMS. Chalmers Tekniska

Hogskola, Doktorsavhandlingar, 496.

Werner, S. (2012). Fjärde generationens fjärrvärme i ett Europa-perspektiv.

Werner, S. (2017a). District heating and cooling in Sweden. In Energy (Vol. 126, pp. 419–429).

Elsevier Ltd. https://doi.org/10.1016/j.energy.2017.03.052

Werner, S. (2017b). International review of district heating and cooling. In Energy (Vol. 137, pp.

617–631). Elsevier Ltd. https://doi.org/10.1016/j.energy.2017.04.045

Werner, S., & Winberg, A. (1987). Avkylning av fjärrvärmevatten i befintliga abonnentcentraler.

Wicktröm, J. (2020). Pilotprojekt med solvärme. Tidningen Energi: El, Värme Och & Kyla.

Wiltshire, R. (2012). Part of the BRE Trust Low Temperature District Heating.

Wiltshire, R. (2013). International Energy Agency (IEA) research on district heating.

Winterscheid, C., Dalenbäck, J. O., & Holler, S. (2017). Integration of solar thermal systems in

existing district heating systems. Energy, 137, 579–585.

https://doi.org/10.1016/j.energy.2017.04.159

Wu, R. (2009). Energy Efficiency Technologies – Air Source Heat Pump vs. Ground Source Heat

Pump. Journal of Sustainable Development, 2(2). https://doi.org/10.5539/jsd.v2n2p14

Yin, R. K. (2014). Case Study Research: Design and Methods (5th ed.). SAGE Publications Ltd.

10 Appendix