• No results found

Embedding theorems for spaces with multiweighted derivatives

N/A
N/A
Protected

Academic year: 2021

Share "Embedding theorems for spaces with multiweighted derivatives"

Copied!
97
0
0

Loading.... (view fulltext now)

Full text

(1)

LICENTIATE T H E S I S

Luleå University of Technology Department of Mathematics

2007:53|: 02-757|: -c -- 07⁄53 -- 

2007:53

Embedding Theorems for Spaces

with Multiweighted Derivatives

(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)
(10)
(11)
(12)

1 < p ≤ q < ∞ 1 < q < p < ∞

(13)
(14)
(15)

 |ν|≤l (−1)ν(a υ(x)uν(x))ν = 0, x ∈ G,  G  |ν|=l aν(x)[uν(x)]2dx, ν∈ N0n, G n Rn N0n n |ν| ν G aν(x) G m Rm ρ= ρ(x) x∈ G ∂G G p≥ 1 α∈ R u: G → R up:= uLp(G) up,α:= ραup. w(r)p,α= w(r)p,α(G) u: G → R fk k∈ N0k r G uw(r) p,α :=  |k|=r f(k)p,α<∞. α w(r)p,α w(r)p,α≡ w(r)p,0 wp,α(r) α < r−n−mp ∂G u ∈ w(r)p,α ∂G α u∈ wp,α(r)

(16)

G w(r)p,α Lnp,γ = Lnp,γ(I) f : I → R I = (0, +∞) I n: fLnp,γ := xγf(n)p, γ∈ R 1 ≤ p ≤ ∞ n I= (0, 1) γ <1 −1p x∈ [0, 1] fj(x) j = 0, 1, . . . , n − 1 γ >1 −1p f x= 0 (1, +∞) γ < n− 1p f f(k) k= 1, 2, . . . , n − 1 x→ +∞ γ > n−1p f(n−1)(∞) = lim x→+∞f (n−1)(x) lim x→+∞f (i)(x) = ∞ i = 0, 1, . . . , n − 2 Pn−1= a0+ a1x+ . . . + an−1xn−1 lim x→+∞[f(x) − Pn−1(x)] (k)= 0, k = 0, 1, . . . , n − 1. f ∈ Lnp,γ

(17)

Pn−1 I (ly)(t) = n  i=0 ai(t)y(i)(t) ai(·) i = 0, 1, . . . , n I l a−1n (t) = a1 n(t) ai(t) i= 0, 1, . . . , n − 1 I l l I ly = f ly(x) = 0 n− 1 I ly= 0 t→ ∞ Pn−1 n− 1 ly= f x= 1t df dx= df dt dt dx= −x −2df dt = (−1) 1t2df dt, d2f dx2 = d dx(−t 2df dt) = −t 2 d dx( df dt) = −t 2d dt( df dx) = (−1) 2t2d dtt 2df dt, dnf dxn = (−1) nt2d dtt 2d dt. . . t 2df dt.

(18)

f D0¯αf(t) = tα0f(t), Di¯αf(t) = tαi d dtt αi−1 d dt. . . t α1d dtt α0f(t), i = 1, 2, . . . , n, ¯α = (α0, α1, . . . , αn) αi∈ R i = 0, 1, . . . , n Di¯α ¯α f i i= 0, 1, . . . , n Di¯α i = 0, 1, . . . , n Wp,¯αn = Wp,¯αn (0, 1) 1 < p < ∞ f : (0, 1) → R fWn p,¯α := D n ¯αfp+ n−1  i=0 |Di ¯αf(1)|. Wp,¯αn Lnp,γ x= 0 Wp,¯αn → Wq, ¯mβ,

(19)

1 ≤ p, q < ∞ 0 ≤ m < n ¯β = (β0, β1, . . . , βm) βi ∈ R i = 0, 1, . . . , m 1 < q < p < ∞ 1 ≤ p ≤ q < ∞ Wp,¯αn (0, 1) Wp,¯αn (1, +∞) x= 1t Wp,¯αn (0, 1) Wp,¯αn (1, +∞) (0, 1] [1, +∞) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u0(t) = tα0 u1(t) = tα01 t 1 1 dt1 u2(t) = tα01 t 1 1 1  t1 2 2 dt2dt1 . . . un(t) = tα01 t 1 1 1  t1 2 2 . . . 1  tn−1 tαn n dtndtn−1. . . dt1 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ v0(t) = tβ0 v1(t) = tβ0t 1 1 1 dt1 v2(t) = tβ0t 1 11 t1  1 22dt2dt1 . . . vn(t) = tβ0t 1 11 t1  1 22. . . tn−1 1 tβn n dtndtn−1. . . dt1.

(20)

{ui(·)}n

i=0 {vi(·)}ni=0

(0, 1] [1, +∞) {vi(·)}ni=0 Pn(·) Pn(·) = n i=0ciui(·) {ui(·)}n i=0 Φ[a, b] Φ[a, b] u(·) ∈ Φ[a, b] Pn0(·) u − Pn0 = inf Pn u − Pn u(·) {ui(·)}n i=0 [a, b] {ui(·)}ni=0 {vi(·)}ni=0 (n + 1) lim t→0Diu(t) = Diu(0), i = 0, 1, . . . , n, lim t→+∞Diu(t) = Diu(∞), i = 0, 1, . . . , n,

(21)

D0u(t) =u(t) 0 , Diu(t) = 1 tαi d dtDi−1u(t), i = 1, 2, . . . , n. {ui(·)}ni=0 {vi(·)}ni=0 α β Dn+1u(t) = 0. Lp(I) I = (0, 1) I = (1, +∞) uLp := ⎛ ⎝ I |u(t)|pdt ⎞ ⎠ 1 p , 1 ≤ p < ∞. (a, b) 0 ≤ a < b ≤ +∞ 1 ≤ p ≤ q < ∞ v w ⎛ ⎝ b  a w(x)    x  a f(t)dt    q dx ⎞ ⎠ 1 q ≤ Hl ⎛ ⎝ b  a v(t)|f(t)|pdt ⎞ ⎠ 1 p

(22)

Bl= sup a≤x≤b ⎛ ⎝ b  x w(t)dt ⎞ ⎠ 1 q ⎛ ⎝ x  a v−p(t)dt ⎞ ⎠ 1 p <∞. Hl Bl ≤ Hl (1 + q p) 1 q(1 +p q) 1 pBl 1 ≤ q < p < ∞ 1 r = 1q−1p v w Al= ⎧ ⎪ ⎨ ⎪ ⎩ b  a ⎡ ⎢ ⎣ ⎛ ⎝ b  x w(t)dt ⎞ ⎠ 1 q ⎛ ⎝ x  a v1−p(t)dt ⎞ ⎠ 1 q⎤ ⎥ ⎦ r v1−p(x)dx ⎫ ⎪ ⎬ ⎪ ⎭ 1 r <∞. Hl q1q  pq r 1 q Al Hl≤ q1q(p)q1Al 1 ≤ p ≤ q < ∞ v w ⎛ ⎝ b  a w(x)    b  x f(t)dt    q dx ⎞ ⎠ 1 q ≤ Hr ⎛ ⎝ b  a v(t)|f(t)|pdt ⎞ ⎠ 1 p Br= sup a≤x≤b ⎛ ⎝ x  a w(t)dt ⎞ ⎠ 1 q ⎛ ⎝ b  x v−p(t)dt ⎞ ⎠ 1 p <∞. Hr Br ≤ Hr (1 + q p) 1 q(1 +p q) 1 pBr 1 ≤ q < p < ∞ 1 r = 1q−1p v w Ar= ⎧ ⎪ ⎨ ⎪ ⎩ b  a ⎡ ⎢ ⎣ ⎛ ⎝ x  a w(t)dt ⎞ ⎠ 1 q ⎛ ⎝ b  x v1−p(t)dt ⎞ ⎠ 1 q⎤ ⎥ ⎦ r v1−p(x)dx ⎫ ⎪ ⎬ ⎪ ⎭ 1 r <∞.

(23)

Hr q1q  pq r 1 q Ar Hr≤ q1q(p)q1Ar γ <1 −1p 1 ≤ p < +∞ ⎡ ⎣ b  a   xγ−1 x  a f(t)dt    p dx ⎤ ⎦ 1 p 1 1 − 1 p− γ ⎛ ⎝ b  a |tγf(t)|pdt ⎞ ⎠ 1 p . p→ +∞

ess supx∈(a,b)   xγ−1 x  a f(t)dt  

 1 − γ1 ess supx∈(a,b)|xγf(x)| , γ < 1.

p < p = q w1q(x) = xγ−1 v1p(x) = xγ p= +∞ p→ ∞ γ >1 −1p 1 ≤ p < +∞ ⎡ ⎣ b  a   xγ−1 b  x f(t)dt    p dx ⎤ ⎦ 1 p 1 γ− (1 −1p) ⎛ ⎝ b  a |tγf(t)|pdt ⎞ ⎠ 1 p . p→ +∞

ess supx∈(a,b)   xγ−1 b  x f(t)dt  

 γ− 11 ess supx∈(a,b)|x

γf(x)| , γ > 1. w1q(x) = xμ v1p(x) = xγ 1 < p ≤ q < ∞ ⎛ ⎝ 1  0 |tμ[f(t) − f(1)]|qdt ⎞ ⎠ 1 q ≤ H ⎛ ⎝ 1  0  tγdf(t) dt  pdt ⎞ ⎠ 1 p μ >−1q γ≤ 1 −1p+1q + μ

(24)

1 < q < p < ∞ ⎛ ⎝ 1  0 |tμ[f(t) − f(1)]|qdt ⎞ ⎠ 1 q ≤ H ⎛ ⎝ 1  0  tγdf(t) dt  pdt ⎞ ⎠ 1 p μ >−1q γ <1 − 1p+1q + μ i > j j k=i c

(25)
(26)

Lnp,γ(I) Wp,¯αn R n γ∈ R 1 ≤ p ≤ I = (a, b) 0 ≤ a < b ≤ ∞ Lnp,γ = Lnp,γ(I) f : I → R fLnp,γ = ⎛ ⎝ I |tγf(n)(t)|pdt ⎞ ⎠ 1 p , 1 ≤ p < ∞ fLn

+∞,γ = ess supt∈I|tγf(n)(t)|,

p= +∞

Lnp,γ Lp,γ = L0p,γ Lnp = Lnp,0

(27)

f I→ R t0∈ [0, +∞) f1 I → R f lim t→t0f1(t) = f1(t0) f t= t0 f(t0) f f1 lim t→+∞f1(t) f t→ ∞ f(+∞) f(+∞) = lim t→+∞f1(t) f1 f (1, +∞) → R Pn−1(t) =n−1 υ=0aυt υ lim t→+∞[f(t) − Pn−1(t)] (k)= 0, k = 0, 1, . . . , n − 1, f n Pn−1(t) t→ +∞ Lnp,γ(0, 1) Lnp,γ(1, +∞) 1 −1 p < γ < n−1p γ+1p n= 1 L1p,γ(0, 1) ∀n > 1 Lnp,γ(0, 1) γ <1 − 1p − weak degeneration, 1 −1 p < γ < n−1p − mixed case, γ > n−1p − strong degeneration. γ < 1 − 1p n = 1 L1p,γ(0, 1) f ∈ L1p,γ(0, 1) γ < 1 −1p t0∈ [0, 1] f(t0) f(t) = f(t0) + t  t0 f(t)dt 0 ≤ t ≤ 1 |fp− |f(t0)|| ≤ c1(γ, p)fp,γ ||f(t0)| − |f(0)|| ≤ c2(γ, p)fp,γ p= 1 (i) (iv) γ= 0

(28)

f (0, 1) p = 1 γ < 0 tγ≥ 1 0 < t ≤ 1 1  0 |f(t)|dt = 1  0 |t−γtγf(t)|dt ≤ 1  0 |tγf(t)|dt = f 1,γ. 1 < p < +∞ 1  0 |f(t)|dt = 1  0 |t−γtγf(t)|dt ≤ ⎛ ⎝ 1  0 |tγf(t)|pdt ⎞ ⎠ 1 p⎛ ⎝ 1  0 dt tγp ⎞ ⎠ 1 p =  1 1 − γ 1−1 p 1−1 pf p,γ, 1 p+ 1 p = 1. p= +∞ γ <1 1  0 |f(t)|dt ≤ tγf(t) +∞ 1  0 dt = 1 1 − γf+∞,γ. 1  0 |f(t)|dt ≤ c 1(γ, p)fp,γ, 1 ≤ p ≤ +∞, c1(γ, p) =  1 − γ(1 −1 p) −1 1 p−1 . p= 1 γ= 0 f(t0) t0 f(0) f(1) x ∈ (0, 1) y ∈ (0, 1) f(x) = f(y) + x  y f(t)dt

(29)

f y → 0 y → 1 f(0) f(1) y= 0 y= 1 1p= 1 y = t0 p x fp= f(t0) + x  t0 f(t)dtp≤ f(t0)p+  x  t0 f(t)dtp ≤ [since 0 ≤ x ≤ 1] ≤ |f(t0)|1p+ 1  0 |f(t)|dt · 1 p ≤ [by (2.1.6) and (2.1.7)] ≤ |f(t0)| + c1(γ, p)fp,γ. x= t0 p y f(t0) = f(y) + t0  y f(t)dtp≤ fp+ 1  0 |f(t)|dt · 1 p. |f(t0)| ≤ fp+ c1(γ, p)fp,γ. |fp− |f(t0)|| ≤ c1(γ, p)fp,γ, ||f(t0)| − |f(0)|| ≤ |f(t0) − f(0)| =    t0  0 f(t)dt    t0  0 |f(t)|dt 1  0 |f(t)|dt ≤ c 1(γ, p)fp,γ.

(30)

f ∈ Lnp,γ(0, 1) γ < 1 − 1p t0 ∈ [0, 1] f(j)(t0) j = 0, 1, . . . , n − 1 fp≤ c n−1  j=0 |f(j)(t 0)| + f(r)p,γ  . Pn−1(t) =n−1 j=0 f(j)(0) j! tj n− 1 f [f(t) − Pn−1(t)](n−k)p,γ−k≤ cf(n)p,γ, k= 1, 2, . . . , n. f∈ Lnp,γ f(n−1) L1p,γ γ <1 −1p t0 ∈ [0, 1] f(n−1)(t0) f(n−1)p < +∞ f(n−1) ∈ Lp,0 f(n−2) ∈ L1p,0 0 < 1 − 1p 1 < p ≤ +∞ p = 1 α = 0 f(n−2) f(n−2)(t0) f(n−2)p<+∞ f(n−3)(t0) f(n−4)(t0) . . . f(t0) f(j) j = 0, 1, . . . , n − 1 γ= 0 fp≤ c(|f(t0)| + fp) ≤ c1(|f(t0)| + |f(t0)| + fp) ≤ . . . ≤ cn−2 n−2  j=0 |f(j)(t 0)| + f(n−1)p  . γ <1 −1p p f(n−1) f(n−1)p≤ c(|f(n−1)(t 0)| + f(n)p,γ), f(j)(t0) j = 0, 1, . . . , n − 1 t0 = 0 Pn−1(t) f(n−k)(t)−n−1 j=0 f(j)(0) j! (t j)(n−k)p,γ−k ≤ cf(n)p,γ, k= 1, 2, . . . , n.

(31)

(tj)(n−k)= j · (j − 1) · · · (j − n + k + 1)tj−n+k υ= j − n + k f(n−k)(t) −k−1 υ=0 f(n−k+υ)(0) υ! t υp,γ−k ≤ cf(n)p,γ, k= 1, 2, . . . , n. k = 1 f(n−1)(t) − f(n−1)(0) p,γ−1= tγ−1 t  0 f(n)(x)dxp 1 1 −1 p− γ f(n)p,γ. k < n k+ 1 F(t) = f(n−k−1)(t) − k  υ=1 1 υ!f (n−k−1+υ)(0)tυ. F(0) = f(n−k−1)(0) f(n−k−1)(t) − f(n−k−1)(0) − k  υ=1 1 υ!f (n−k−1+υ)(0)tυ = F (t) − F (0), f(n−k−1)(t) − k  υ=0 1 υ!f (n−k−1+υ)(0)tυ= F (t) − F (0), F(t) = f(n−k)(t) − k  υ=1 1 (υ − 1)!f(n−k−1+υ)(0)tυ−1= (we replace μ = υ − 1) = f(n−k)(t) −k−1 μ=0 1 μ!f (n−k+μ)(0)tμ. f(n−k−1)(t) −k υ=0 1 υ!f (n−k−1+υ)(0)tυ p,γ−k−1 = tγ−k−1[fn−k−1(t) −k υ=0 f(n−k+υ−1)(0) υ! t υ] p= tγ−k−1[F (t) − F (0)]p

(32)

= tγ−k−1 t  0 F(x)dxp≤ [by (1.4.3) and (1.4.4)] 1 1 −1 p− γ + k tγ−kF(t) p=1 − 1 1 p− γ + k tγ−k[f(n−k)(t)− k−1  μ=0 1 μ!f (n−k+μ)(0)tμ]

p≤ [by our induction assumption]

c 1 −1 p− γ + k f(n)p,γ. γ > n− 1p f ∈ Lnp,γ γ > n− 1p f t= 0 f∈ L1p,γ γ >1 −1p |fp,γ−1− c|f(1)|| ≤ γ− 1 + 1/p1 fp,γ, c= tγ−1p γ >1 −1p c= tγ−1p= ⎛ ⎝ 1  0 t(γ−1)pdt ⎞ ⎠ 1 p <+∞. fp,γ−1= tγ−1[f(1) − 1  t f(x)dx]p≤ |f(1)|tγ−1p +tγ−1 1  t f(x)dxp≤ c|f(1)| + 1 γ− 1 + 1/pf p,γ.

(33)

f(1) = f(t) + 1  t f(x)dx tγ−1 p: |f(1)|tγ−1p≤ fp,γ−1+tγ−1 1  t f(x)dxp≤ fp,γ−1+ 1 γ− 1 + 1/pf p,γ. f ∈ Lnp,γ γ > n−1p f(n−k) p,γ−k≤ c  k  j=1 |f(n−j)(1)| + f(n) p,γ  , k= 1, 2, . . . , n. f ∈ Lnp,γ f(n−1) ∈ L1p,γ k= 1 f(n−1)p,γ−1≤ c |f(n−1)(1)| + f(n)p,γ!. s < n s+ 1 f(n−(s+1))p,γ−(s+1)≤ c 1 |f(n−s−1)(1)| + f(n−s)p,γ−s! ≤ c  |f(n−s−1)(1)| +s j=1 |f(n−j)(1)| + f(n) p,γ  . 1 −1 p < γ < n− 1 p, n≥ 2, Lnp,γ(0, 1) "γ −1 p ≤ γ < "γ + 1 − 1 p.

(34)

1 ≤ "γ ≤ n − 1 "γ ≤ γ +1 p <"γ + 1 "γ = [γ +1 p] γ+ 1p γ "γ = ⎧ ⎨ ⎩ [γ + 1 p], if γ > 1 −1p, 0, if γ <1 −1p. γ∈ R γ = 1 −1p γ− "γ < 1 − 1 p γ >−1p γ+1p γ− "γ + 1 > 1 −1 p. γ >1 −1p γ <1 −1p "γ = 0 1 p < γ <1 −1p "γ = 0 γ >1 −1p γ+1p "γ = [γ +1 p] < γ + 1 p. γj = ⎧ ⎨ ⎩ γ− n + j, if γ = n − "γ, n − "γ + 1, . . . , n − 1, 0, if γ= 0, 1, . . . , n − "γ − 1. γ+1p 1 −1p < γ < n−1p f ∈ Lnp,γ f(0), f(0), f(n−"γ−1)(0) f(j)p,γ j <+∞, j = 0, 1, . . . , n − 1.

(35)

f∈ Lnp,γ 1−1p < γ < n−1p f(n−"γ) < +∞ f(n−"γ)∈ L"γp,γ γ >"γ −1p f(n−k)p,γ−k ≤ c  f(n)p,γ+k j=1 |f(n−j)(1)|  , k= 1, 2, . . . , "γ. k= 1, 2, . . . , "γ − 1 γ− k > γ − "γ + 1 > 1 −1p f(n) f(n−1) . . . f(n−"γ+1) t= 0 k= "γ fLn−"γ p,γ−"γ = f (n−"γ)p,γ−"γ <∞, γ− "γ < 1 −1p f(j)(0) j = 0, 1, . . . , n − "γ − 1 f(j)p<+∞, j = 0, 1, . . . , n − "γ − 1. γj f ∈ Lnp,γ f ∈ Lnp,γ γ+1p 1 −1p < γ < n− 1p f(n−"γ) f(n−"γ+1) . . . f(n) t= 0 f(t) = tβ β= n − "γ + η − ε ε = γ − "γ + 1p 0 < η < ε < 1 f∈ Lnp,γ(0, 1) fLnp,γ = ⎛ ⎝ 1  0 |tγf(n)(t)|pdt ⎞ ⎠ 1 p = c ⎛ ⎝ 1  0 t(n+η−1p)pdt ⎞ ⎠ 1 p <+∞. η < γ− "γ +1p lim t→0f (n−"γ)(t) = c lim t→0t β−n+"γ = c lim t→0t η−γ+"γ−1 p = +∞. I = (1, +∞) Lnp,γ = Lnp,γ(1, +∞) I= (1, +∞)

(36)

γ <1 −1p γ >1 − 1p γ < 1 − 1p f ∈ L1p,γ γ < 1 −1p f t→ +∞ γ < 1 − 1p f(t) = ln t +∞ 1 t(γ−1)pdt < +∞ f(t) = 1t ∈ Lp,γ f ∈ L1p,γ lim t→+∞f(t) = limt→+∞ln t = +∞ γ < 1 − 1p f ∈ Lnp,γ n ≥ 1 f f(k) k = 1, 2, . . . , n − 1 t→ +∞ f(t) = tβ γ= 1 − 1p− ε ε > 0 β 0 ≤ n − 1 < β < n − 1 + ε. +∞  1 |tγf(n)(t)|pdt <+∞ (n − γ − β)p > 1 β < n− γ −1 p = n − 1 + ε. β f(t) = tβ ∈ Lnp,γ f(k)(t) = (tβ)(k) = β(β − 1) · · · (β − k + 1)tβ−k k = 0, 1, . . . , n − 1 β− k > 0 f(k)(∞) = c lim t→+∞t β−k= +∞ γ > 1 − 1p f∈ L1p,γ γ >1 − 1p lim t→+∞f(t) = f(+∞) < ∞, ||f(+∞)| − |f(1)|| ≤ cf p,γ,

(37)

δ >0 |fp,−1 p−δ− (δp) 1 p|f(1)|| ≤ δf p,γ. f ∈ L1p,γ γ >1 −1p f∈ Lp,γ 1 < p < +∞ 1 p+p1 = 1 +∞  1 |f(t)|dt ≤ ⎛ ⎝ +∞  1 |tγf(t)|pdt ⎞ ⎠ 1 p⎛ ⎝ +∞  1 dt tγp ⎞ ⎠ 1 p = cfp,γ <+∞, γp>1 p= 1 γ >0 >1 t >1 +∞  1 |f(t)|dt < +∞  1 |tγf(t)|dt = f 1,γ <+∞. p= +∞ γ >1 +∞  1 |f(t)|dt ≤ tγf(t) +∞· +∞  1 dt = 1 γ− 1f  +∞,γ. f (1, +∞) f(t) = f(1) + t  1 f(x)dx lim t→+∞f(t) = f(+∞) ||f(+∞)| − |f(1)|| ≤ |f(+∞) − f(1)| ≤ | +∞  1 f(t)dt| ≤ +∞  1 |f(t)|dt f (1, +∞) ||f(+∞)| − |f(1)|| ≤ cf p,γ. f(t) = f(1) + t  1 f(x)dx (∗)

(38)

t−1p−δ δ > 0 p fp,−1 p−δ = t 1 p−δf(t)p≤ |f(1)|t−p1−δp+ t−1p−δ t  1 f(x)dxp. t−1p−δp= ⎛ ⎝ +∞  1 t(−1p−δ)pdt ⎞ ⎠ 1 p = (δp)−p1, lim p→+∞(δp) 1 p = 1. fp,−1 p−δ ≤ (δp) 1 p|f(1)| + δt1−1p−δf(t)p. γ >1 −1p >1 −1p− δ t1−p1−δ < tγ t >1 fp,−1 p−δ ≤ (δp) 1 p|f(1)| + δfp,γ. (∗) −f(1) = −f(t)+t 1 f(x)dx (δp)−1p|f(1)| ≤ f p,−1 p−δ+ δf p,γ. γ > n− 1p f ∈ Lnp,γ f(n−1)(+∞) t→ +∞ f f(t) = tn−1 ∈ Lnp,γ fLn p,γ = 0 f(n−1)(+∞) = c < +∞ f(j)(+∞) = +∞ j = 0, 1, . . . , n − 2

(39)

f ∈ Lnp,γ γ > m−1p 1 ≤ m ≤ n a0 a1 . . . am−1 s= 1, 2, . . . , m lim t→+∞[f (n−s)(t) −s−1 μ=1 am−s+μ μ! t μ] = a m−s, f(n−s)(t) −s−1 μ=0 am−s+μ μ! t μp,γ−s≤ cf(n)p,γ. γ > 1 − 1p lim t→+∞f (n−1)(t) = a m−1 s= 1 s= 1 f(n−1)(t) − a m−1p,γ−1= tγ−1[f(n−1)(t) − f(n−1)(+∞)]p = tγ−1 +∞  t f(n)(x)dxp= [by (1.4.5) and (1.4.6)] ≤ c1f(n)p,γ. am−1 am−2 . . . am−s s < m s+ 1 s g(t) = f(n−s−1)(t) − s−1  μ=0 am−s+μ (μ + 1)!tμ+1. gp,γ−s= tγ−s[f(n−s)(t) −s−1 μ=0 am−s+μ μ! t μ] p≤ cf(n)p,γ. s≤ m − 1 γ− s ≥ γ − m + 1 > m −1 p− m + 1 = 1 − 1 p, lim t→+∞g(t) = am−s−1

(40)

s s+ 1 f(n−s−1)(t) −s μ=0 am−s−1+μ μ! t μ p,γ−s−1 = [f(n−s−1)(t) −s μ=1 am−s−1+μ μ! t μ] − am−s−1p,γ−s−1 = [f(n−s−1)(t) −s−1 μ=0 am−s+μ (μ + 1)!tμ+1] − am−s−1p,γ−s−1. lim t→+∞g(t) = am−s−1 f(n−s−1)(t) −s μ=0 am−s−1+μ μ! t μ p,γ−s−1= g(t) − g(+∞)p,γ−s−1 = tγ−s−1 +∞  t g(x)dxp. γ−s > 1−1p f(n−s−1)(t) −s μ=0 am−s−1+μ μ! t μp,γ−s−1= c 1gp,γ−s≤ c2f(n)p,γ. f ∈ Lnp,γ γ > m−1p 1 ≤ m ≤ n bν = ν!, ν = 0, 1, . . . , m − 1, Pm−1(t) = m−1  ν=0 bνtν, f∈ Lnp,γ lim t→+∞[f (n−m)(t) − P m−1(t)](k)= 0, k = 0, 1, . . . , m − 1, c >0 [f(n−m)(t) − P m−1](k)p,γ−m+k≤ cf(n)p,γ, k= 0, 1, . . . , m − 1, aν

(41)

Pm−1 μ= ν − k Pm−1(k) (t) = m−k−1 μ=0 (k + μ)(k + μ − 1) · · · (μ + 1)bk+μtμ, k= 0, 1, . . . , m − 1. s= m − k [f(n−m)(t) − P m−1(t)](k)= [f(n−m)(t) − Pm−1(t)](m−s) = f(n−s)(t)−s−1 μ=0 (m−s+μ)(m−s+μ−1) · · · (μ+1)bm−s+μtμ= [see (2.1.35)] = f(n−s)(t) −s−1 μ=0 (m − s + μ)(m − s + μ − 1) · · · (μ + 1) (m − s + μ)! am−s+μtμ = f(m−s)(t) −s−1 μ=0 am−s+μ μ! t μ, s= 1, 2, . . . , m. [f(n−m)(t) − P m−1(t)](k)= f(m−s)(t) − s−1  μ=0 am−s+μ μ! t μ, s= 1, 2, . . . , m, I = (0, 1) ¯α = (α0, α1, . . . , αn) αi ∈ R i = 0, 1, . . . , n n |¯α| = n i=0αi 1 < p < ∞ f I→ R D0¯αf(t) = tα0f(t), Di¯αf(t) = tαi d dtt αi−1d dt. . . t α1 d dtt α0f(t), i = 1, 2, . . . , n,

(42)

Di¯αf(t) α f i i= 0, 1, . . . , n αj j = 0, 1, . . . , 2k k D2k¯αf(t) Btkf(t) Bt1f(t) =  d2 dt2+ 2ν + 1 t d dt  f(t), Btkf(t) = Bt[Btk−1f(t)], k = 1, 2, . . . . k= 1 D2¯αf(t) = tα2 d dtt α1d dtt α0f(t) = tα210  d2 dt2+ α1+ 2α0 t d dt +α01+ α0− 1) t2  f(t). D2¯αf(t) = B1tf(t) α0= 0 α1= 2ν +1 α2= −2ν −1 α0= 2ν α1= 1 − 2ν α2= −1 k= 2 D4¯αf(t) = tα4d dtt α3d dtt α2 d dtt α1d dtt α0f(t) = tα4d dtt α3 d dtt α1 222d dtt α1d dtt α0f(t) = tα4d dtt α3 d dtt α1 2B1 tf(t) = tα4312  d2 dt2+ α3+ 2α12 t d dt+ α123+ α21− 1) t2  Bt1f(t) = Bt2f(t), α2= α12+ α22 αi i= 1, 2, 3, 4 α0= 0 α1= 2ν + 1 α2= −2ν − 1 α3= 2ν + 1 α4= −2ν − 1 α0= 0 α1= 2ν + 1 α2= −1 α3= 1 − 2ν α4= −1 α0= 2ν α1= 1 − 2ν α2= −1 α3= 2ν + 1 α4= −2ν − 1 α0= 2ν α1= 1 − 2ν α2= 2ν − 1 α3= 1 − 2ν α4= −1 Wp,¯αn = Wp,¯αn (I) f I → R α n fWn p,¯α = Dn¯αfp+ n−1  i=0 |Di ¯αf(1)|,

(43)

 · p Lp(I) 1 ≤ p < ∞ n >1 γnα= 1, γn−1α = αn, γiα= αn+ n−1  k=i+1 (αk− 1), i = 0, 1, . . . , n − 1, γimax= max i≤j≤n−1γj, γ min i = mini≤j≤n−1γj, i= 0, 1, . . . , n − 1. αi= γi−1α − γαi + 1, i = 1, 2, . . . , n − 1. Wp,¯αn γi i= 0, 1, . . . , n − 1 γmaxα = max 0≤j≤n−1γ α j <1 −1p γminα = min 0≤j≤n−1γ α j >1 −1p γminα <1 −1p< γαmax j = 1, 2, . . . , n − 1 w0(t, x) ≡ 1, wj(t, x) = t−α0 x  t t−α1 1 x  t1 t−α2 2 . . . x  tj−1 t−αj jdtjdtj−1. . . dt1 ¯ w0(x, t) ≡ 1, ¯wj(x, t) = t−α0 t  x t−α1 1 t1  x t−α2 2 . . . tj−1  x t−αj jdtjdtj−1. . . dt1. {wj(t, x)}n−1 j=0 { ¯wj(x, t)}n−1j=0 x ∈ R Dn¯αw(t) = 0 (x, +∞) (0, x) x > 0 t= 0

(44)

γmaxα <1 − 1 p. ∀f ∈ Wn p,¯α {wj(t, 1) = wj(t)}n−1j=0 Pn(t; f) = n−1  j=0 aj(f)wj(t), an−1(f) = (−1)n−1lim t→0D n−1 ¯α f(t), ai(f) = (−1)ilim t→0D i ¯α # f(t) − n−1  j=i+1 aj(f)wj(t) $ , i= 0, 1, . . . , n − 2, x∈ (0, 1] Di ¯α(f − Pn)p,γα i−1,(0,x)≤ cD n ¯αfp,(0,x), i= 0, 1, . . . , n − 1, sup 0≤t≤x|t −(1−1/p−γα i)Di ¯α[f(t) − Pn(t; f)]| ≤ c1Dn¯αfp,(0,x), i= 0, 1, . . . , n − 1. i= 0, 1, . . . , n − 1 Di¯αf(t) = n−1  j=i aj(f)Di¯αwj(t) + t  0 s−αnDn ¯αf(s) · Di¯αw¯n−1(s, t)ds. Dn−1¯α f∈ Wp,α1 n, αn= γαn−1<1 −1p lim t→0D n−1 ¯α f(t) = ˜an−1= (−1)n−1an−1 Dn−1¯α f(t) = (−1)n−1an−1+ t  0 Dn¯αf(s)s−αnds,

(45)

Dn−1 ¯α f− (−1)n−1an−1p,γα n−1−1,(0,x)≤ cD n ¯αfp,(0,x), sup 0≤t≤x t−(1−1/p−γn−1α )[Dn−1 ¯α f(t) − (−1)n−1an−1] ≤c1Dn¯αfp,(0,x). Dn−1¯α wn−1(t) = (−1)n−1, Dn−1¯α wj(t) = 0, j = 0, 1, . . . , n − 2, Dn−1 ¯α (f − Pn)p,γα n−1−1,(0,x)≤ cD n ¯αfp,(0,x), sup 0≤t≤x t−(1−1/p−γn−1α )Dn−1 ¯α [f(t) − Pn(t)] ≤c1Dn¯αfp,(0,x). i= n − 1 i= n − 1, n − 2, . . . , m > 0 i = m − 1 i= m ∀x ∈ (0, 1] d dtD m−1 ¯α # f− n−1  j=m ajwj $ p,γα m−1,(0,x) = D m ¯α # f− n−1  j=m ajwj $ p,γmα−1,(0,x) = Dm ¯α [f − Pn] p,γmα−1,(0,x)≤ c1Dn¯αfp,(0,x). Dm−1¯α # f− n−1  j=m ajwj $ ∈ W1 p,γα m−1. γm−1α <1 −1p lim t→0D m−1 ¯α # f(t) − n−1  j=m ajwj(t) $ = ˜am−1= (−1)m−1am−1 Dm−1 ¯α # f− n−1  j=m ajwj $ − (−1)m−1am−1p,γα m−1−1,(0,x)

(46)

≤ cd dtD m−1 ¯α # f− n−1  j=m ajwj $ p,γα m−1,(0,x) sup 0≤t≤x   t−(1−1/p−γ α m−1) % Dm−1¯α # f(t) − n−1  j=m ajwj(t) $ − (−1)m−1a m−1 &   ≤ c1d dtD m−1 ¯α # f− n−1  j=m ajwj $ p,γα m−1,(0,x). Dm−1¯α wm−1(t) = (−1)m−1, Dm−1¯α wj(t) = 0, j = 0, 1, . . . , n − 2, i = m − 1 Dm−1¯α # f(t) − n−1  j=m ajwj(t) $ = (−1)m−1a m−1+ + t  0 d dsD m−1 ¯α # f(s) − n−1  j=m ajwj(s) $ ds Dm−1¯α f(t) = n−1  j=m−1 ajDm−1¯α wj(t) + t  0 s−αm # Dm¯αf(s) − n−1  j=m ajDm¯αwj(s) $ ds. i= m Dm¯αf(s) − n−1  j=m ajDm¯αwj(t) = s  0 Dn¯αf(τ)τ−αnDm ¯αw¯n−1(τ, s)dτ. Dm−1¯α f(t) = n−1  j=m−1 ajDm−1¯α wj(t) + t  0 Dn¯αf(τ)τ−αn t  τ s−αmDm ¯αw¯n−1(τ, s)dsdτ

(47)

= n−1 j=m−1 ajDm−1¯α wj(t) + t  0 Dn¯αf(τ)τ−αnDm−1 ¯α w¯n−1(τ, t)dτ. i= m − 1 Wp,¯αn γmaxα < 1 − 1p δ δ >1 −1p− γαmin f(1)Wn p,¯α = D n ¯αfp+ n−1  i=0 Di ¯αfp,γiα−1+δ Wp,¯αn γmaxα <1 − 1p δ >1 − 1p− γminα  Di−1 ¯α fp,γα i−1−1+δ− ci|D i−1 ¯α f(1)| ≤ ¯ciDi¯αfp,γα i−1+δ, i= 1, 2, . . . , n, ci ¯ci f i= n Dn−1¯α f(t) = Dn−1¯α f(1) − 1  t s−αnDn ¯αf(s)ds tαn−1+δ = tγαn−1−1+δ p Dn−1 ¯α fp,γn−1α −1+δ≤ tγ α n−1−1+δp|Dn−1 ¯α f(1)|+tγ α n−1−1+δ 1  t s−αnDn ¯αf(s)dsp.

(48)

γminα ≤ γn−1α ≤ γmaxα <1 − 1p 1 −1p− γn−1α ≤ 1 −1p− γminα < δ γn−1α + δ > 1 −1p Dn−1 ¯α fp,γn−1α −1+δ≤ cn|D n−1 ¯α f(1)| + 1 γn−1α + δ − 1 + 1/p ⎧ ⎨ ⎩ 1  0 |sγα n−1+δs−αnDn ¯αf(s)|pds ⎫ ⎬ ⎭ 1 p , cn= tγαn−1−1+δp<+∞  Dn−1 ¯α fp,γα n−1−1+δ− cn|Dn−1¯α f(1)|   ≤ ¯cnDn¯αfp,γα n−1+δ, γn−1α = αn γnα ≡ 1 Dn−1 ¯α fp,γα n−1−1+δ<+∞. i= k +1, k +2, . . . , n Dk ¯αfp,γα k−1+δ<+∞. i= k Dk−1¯α f(1) − Dk−1¯α f(t) = 1  t sγkα−γk−1α −1Dk ¯αf(s)ds tγαk−1−1+δ p |tγα k−1−1+δp|Dk−1 ¯α f(1)| − Dk−1¯α fp,γα k−1−1+δ| ≤ ≤ tγα k−1−1+δ 1  t sγkα−γαk−1−1Dk ¯αf(s)dsp. |Dk−1 ¯α fp,γk−1α −1+δ− ck|D k−1 ¯α f(1)|| ≤γα 1 k−1+ δ − 1 + 1/pD k ¯αfp,γαk−1+δ,

(49)

i= k Di ¯αfp,γα i−1+δ≤ ¯ci ' |Di ¯αf(1)| + Di+1¯α fp,γα i+1−1+δ ( , i= 0, 1, . . . , n − 1, ¯ci= ci+1· ¯ci+1 i= 0, 1, . . . , n − 1 γnα≡ 1 δ > 0 Di ¯αfp,γiα−1+δ≤ ¯cn #n−1  j=i |Dj ¯αf(1)| + Dn¯αfp $ , i= 0, 1, . . . , n − 1. n−1  i=0 Di ¯αfp,γα i−1+δ+ D n ¯αfp≤ ¯c #n−1  i=0 n−1  j=i |Dj¯αf(1)| + Dn¯αfp $ , f(1)Wn p,¯α ≤ ¯cfWp,¯nα. i= 0, 1, . . . , n − 1 |Di ¯αf(1)| ≤ ci ' Di+1 ¯α fp,γα i+1−1+δ+ D i ¯αfp,γα i−1+δ ( , ci= ¯ci+1 ci+1 i= 0, 1, . . . , n − 1 n−1  i=0 |Di ¯αf(1)| ≤ cn n−1  i=0 Di ¯αfp,γiα−1+δ, fWn p,¯α ≤ cf (1) Wn p,¯α. Wp,¯αn γminα > 1 −1p f(2)Wn p,¯α = n−1  i=0 Di ¯αfp,γαi−1+ D n ¯αfp

(50)

i= 0, 1, . . . , n − 1 Di ¯αfp,γiα−1≤ ci #n−1  j=i |Dj ¯αf(1)| + Dn¯αfp $ n−1  j=i |Dj ¯αf(1)| ≤ ¯ci #n−1  j=i |Dj ¯αfp,γα j−1+ D n ¯αfp $ . i = n − 1 Dn−1¯α f ∈ L1p,αn αn = γn−1α ≥ γminα >1 −p1 Dn−1 ¯α fp,γαn−1−1≤ cn−1 ' |Dn−1 ¯α f(1)| + (Dn−1¯α f)p,γn−1α ( = cn−1  |Dn−1 ¯α f(1)| + tαn d dtD n−1 ¯α fp  = cn−1)|Dn−1¯α f(1)| + Dn¯αfp * , |Dn−1 ¯α f(1)| ≤ ¯cn−1 ' Dn−1 ¯α fp,γα n−1−1+ (D n−1 ¯α f)p,γα n−1 ( = ¯cn−1 ' Dn−1 ¯α fp,γn−1α −1+ D n ¯αfp ( . i= k, k + 1, . . . , n − 1 i = k − 1 i = k Dk−1¯α f∈ Lp,γα k−1 γ α k + αk− 1 = γk−1α Dk−1 ¯α f1Lp,γαk−1= (D k−1 ¯α f)p,γα k+αk−1 = tαk d dtD k−1 ¯α fp,γα k−1−1 = Dk ¯αfp,γkα−1<+∞, γk−1α ≥ γαmin>1 −1p Dk−1 ¯α fp,γα k−1−1≤ ck−1 ' |Dk−1 ¯α f(1)| + (Dk−1¯α f)p,γα k−1 ( = ck−1)|Dk−1¯α f(1)| + Dk¯αfp,γαk−1 * , |Dk−1 ¯α f(1)| ≤ ¯ck−1 ' Dk−1 ¯α fp,γk−1α −1+ D k ¯αfp,γαk−1 ( .

(51)

i= k Dk−1 ¯α fp,γα k−1−1≤ ck # |Dk−1 ¯α f(1)| + n−1  j=k |Dj ¯αf(1)| + Dn¯αfp $ = ck # n−1  j=k−1 |Dj¯αf(1)| + Dn¯αfp $ , i= k − 1 i = k i= k − 1 n−1  i=0 Di ¯αfp,γα i−1+ D n ¯αfp≤ c1 #n−1  i=0 n−1  j=i |Dj¯αf(1)| + Dn¯αfp $ ≤ c2 #n−1  j=0 |Dj ¯αf(1)| + Dn¯αfp $ . i= 0 n−1  j=0 |Dj¯αf(1)| + Dn¯αfp≤ ¯c1 #n−1  i=0 Di ¯αfp,γi−1α + D n ¯αfp $ . Wp,¯αn γminα <1 −1p f(3)Wn p,¯α = n−1  i=n1 Di ¯αfp,γα i−1+ n1−1 i=0 Di ¯αfp,γα i−1+δ+ D n ¯αfp, n1= max{i = i + 1 : 0 ≤ i ≤ n − 1, γαi <1 −1p} δ > 1 −1p− γminα n1 γiα>1−1p i= n1, n1+1, . . . , n−1 m = n − n1 ¯α(1) = (α0(1), α(1)1 , . . . , α(1)m) α(1)i = αn1+i i = 0, 1, . . . , m γjα(1) = α(1)m+ m−1 k=j+1 k(1)−1) = αn+ n−1  k=n1+j+1 (αk−1) = γαn1+j, j= 0, 1, . . . , m−1,

(52)

min 0≤j≤m−1γ α(1) j >1 −1p f ∈ Wp,¯αn f1= Dn¯α1f f1Wm p,¯α(1) = D m ¯α(1)f1p+ m−1 i=0 |Di ¯α(1)f1(1)| = Dm ¯α(1)Dn¯α1fp+ m−1  i=0 |Di ¯α(1)Dn¯α1f(1)| = Dn¯αfp+ n−1  i=n1 |Di ¯αf(1)| < +∞, f1∈ Wp,¯αm(1) γα (1) min >1−1p Dm ¯α(1)f1p+ m−1 i=0 |Di ¯α(1)f1(1)| Dm ¯α(1)f1p+ m−1 i=0 Di ¯α(1)f1p,γα(1) i −1 Wp,¯αn Dn ¯αfp+ n−1 i=n1 |Di ¯αf(1)|, Dn ¯αfp+ n−1 i=n1 Di ¯αfp,γαi−1. ¯α(2)= (α(2) 0 , α(2)1 , . . . , α(2)n1) α(2)n1 = γnα1− 1 + αn1 = γnα1−1, α(2)i = αi, i= 0, 1, . . . , n1− 1. Dn1 ¯α(2)fp= tγ α n1−1+αn1 d dtD n1−1 ¯α fp= Dn¯α1fp,γα n1−1<∞, f ∈ Wp,¯αn f ∈ Wn1 p,¯α(2) γα (2) i < 1 − 1p i = 0, 1, . . . , n1−1 Wp,¯αn1(2) max 0≤i≤n1−1γ α(2) i < 1 −1 p Dn1 ¯α(2)fp+ n1−1 i=0 |Di ¯α(2)f(1)|

(53)

Dn1 ¯α(2)fp+ n1−1 i=0 Di ¯α(2)fp,γα(2) i −1+δ γiα(2)− 1 + δ = γnα1−1+ n1−1 k=i+1 (αk− 1) − 1 + δ = γiα− 1 + δ, i = 0, 1, . . . , n − 1, Wp,¯αn Dn1 ¯α fp,γα n1−1+ n 1−1 i=0 |D i ¯αf(1)|, Dn1 ¯α fp,γα n1−1+ n 1−1 i=0 D i ¯αfp,γα i−1+δ.

(54)

Wp,¯αn → Wq, ¯mβ 1 ≤ p, q < ∞ 0 ≤ m < n X Y X → Y X ⊂ Y c > 0 x∈ X xY ≤ cxX. c >0 f (0, 1) → R n Dβk¯f(t) = k  i=0 ck,i0β−γα00−α0+γαi−γβkDi ¯αf(t), k = 0, 1, . . . , m,

(55)

ck,k = 1 k = 0, 1, . . . , m 0 ≤ m ≤ n ck,i i =

0, 1, . . . , k − 1 k = 0, 1, . . . , m

ck,0= ck−1,00β− γk−1β + β0− α0),

ck,i= ck−1,i−1+ck−1,i0β−γ0α+β0−α0iα−γk−1β ), i = 1, 2, . . . , k−1. k= 0 D0β¯f(t) = tβif(t) = tβ0−α0(tα0f(t)) = tβ0−α0D0 ¯αf(t) = c0,0tβ0−α0D0¯αf(t), c0,0= 1 k= 1 D1β¯f(t) = tβ1d dt(t β0f(t)) = tβ1 d dt(t β0−α0· tα0f(t)) = tβ10−α0−α1(tα1 d dtD 0 ¯αf(t)) + (β0− α0)tβ10−α0−1D0¯αf(t) = tγβ 0−γ1β+β0−α0−γ0α+γα1D1 ¯αf(t) + c1,0tγ β 0−γβ10−α0D0 ¯αf(t) = c1,1tγ β 0−γα00−α0+γα1−γβ1D1 ¯αf(t) + c1,0tγ β 0−γ1β+β0−α0D0 ¯αf(t), c1,1= 1 c1,0= β0− α0= γ0β− γ1β+ β0− α0 k= 0, 1, . . . , i − 1 ≤ m − 1 i≤ m Diβ¯f(t) = tβi d dtD i−1 ¯ β f(t) = tβi d dt i−1  j=0 ci−1,j0β−γ0α+β0−α0+γαj−γi−1β Dj ¯αf(t)  = i−1  j=0 ci−1,jtβi+γ0β−γ0α+β0−α0+γαj−γi−1β d dtD j ¯αf(t)+ + i−1  j=0

ci−1,j0β− γ0α+ β0− α0+ γjα− γi−1β )tγ0β−γα00−α0+γjα−γβi−1−1Dj

¯αf(t) = i−1  j=0 ci−1,j0β−γα00−α0+γj+1α −γiβDj+1 ¯α f(t)+

(56)

+ i−1  j=0 ci−1,j0β− γ0α+ β0− α0+ γjα− γi−1β )tγ0β−γα00−α0+γjα−γβiDj ¯αf(t) = i  j=1 ci−1,j−10β−γ0α+β0−α0+γjα−γiβDj ¯αf(t)+ + i−1  j=0 ci−1,j0β− γ0α+ β0− α0+ γjα− γi−1β )tγ0β−γα00−α0+γjα−γβiDj ¯αf(t) = tγ0β−γα00−α0+γiα−γβiDi ¯αf(t)+ i−1  j=1

[ci−1,j−1+ci−1,j(γ0β−γ0α+β0−α0+γjα−γi−1β )] ×tγ0β−γα00−α0+γαj−γβiDj ¯αf(t) + ci−1,0(γβ0− γi−1β + β0− α0)tγ β 0−γiβ+β0−α0D0 ¯αf(t) =i j=0 ci,jtγβ0−γ0α+β0−α0+γjα−γiβDj ¯αf(t),

ci,i= 1, ci,j= ci−1,j−1+ci−1,j(γβ0−γ0α+β0−α0jα−γi−1β ), j = 1, 2, . . . , i−1, ci,0= ci−1,00β− γi−1β + β0− α0).

i≤ m

1 < p ≤ q < ∞

γαmin>1 − 1p 1 < p ≤ q < ∞ 0 ≤ m < n γα min >1 −1p Wp,¯αn → Wq, ¯mβ γ0β− γα0 + β0− α0 1 p− 1 q. Wq, ¯mβ fWm q, ¯β = D m ¯ βfq+ m−1 i=0 |Di ¯ βf(1)|,

(57)

Wp,¯αn → Wq, ¯mβ c >0 f ∈ Wp,¯αn fWm q, ¯β ≤ cfWp,¯nα. Dm ¯ βfq≤ c1fWn p,¯α, ∀f ∈ Wp,¯αn m−1  i=0 |Di ¯ βf(1)| ≤ c2fWn p,¯α, ∀f ∈ Wp,¯αn , c1, c2>0 f k= m γmβ = 1 Dβm¯f(t) = m  i=0 cm,i(α, β)tγ0β−γα00−α0+γiα−1Di ¯αf(t). q Dm ¯ βfq≤ c3 m  i=0 ⎛ ⎝ 1  0 |tγβ 0−γ0α+β0−α0+γiα−1Di ¯αf(t)|qdt ⎞ ⎠ 1 q ≤ c3 ⎡ ⎢ ⎣ m  i=0 ⎛ ⎝ 1  0 |tγ0β−γα00−α0+γαi−1[Di ¯αf(t) − Di¯αf(1)]|qdt ⎞ ⎠ 1 q + + m  i=0 ⎛ ⎝ 1  0 |tγβ0−γ0α+β0−α0+γiα−1Di ¯αf(1)|qdt ⎞ ⎠ 1 q⎤ ⎥ ⎦ , c3= max 0≤i≤m|cm,i| γiα− 1 + γ0β− γ0α+ β0− α0 1 p− 1 q+ γ α i − 1,

(58)

γminα >1 −1p γ0β− γ0α+ β0− α0+ γαi − 1 > −1 q, i= 0, 1, . . . , n − 1. 1  0 |tγβ 0−γα00−α0+γiα−1|qdt≤ c∗ 3, i= 0, 1, . . . , n − 1, c∗3= 1 0β−γ0α+β0−α0+γiα−1)q+1 Dm ¯ βfq≤ c3 ⎡ ⎢ ⎣ m  i=0 ⎛ ⎝ 1  0 |tγ0β−γα00−α0+γαi−1(Di ¯αf(t) − Di¯αf(1))|qdt ⎞ ⎠ 1 q + +m i=0 |Di ¯αf(1)| $ , c3= max{c3, c∗3} γiα = αi+1+ γi+1α − 1 γi+1α − 1 + αi+1≤ 1 −1 p+ 1 q+ γ β 0− γα0+ β0− α0+ γiα− 1, i = 0, 1, . . . , n − 1. Dm ¯ βfq≤ c3 ⎡ ⎢ ⎣ m  i=0 Hi ⎛ ⎝ 1  0 |tγα i+1+αi+1−1d dtD i ¯αf(t)|pdt ⎞ ⎠ 1 p +m i=0 |Di ¯αf(1)| ⎤ ⎥ ⎦ ≤ c4 ⎡ ⎢ ⎣ m  i=0 ⎛ ⎝ 1  0 |tγα i+1−1Di+1 ¯α f(t)|pdt ⎞ ⎠ 1 p + m  i=0 |Di ¯αf(1)| ⎤ ⎥ ⎦ , c4= c3max{1, Hi, i= 0, 1, . . . , m} n > m≥ 0 Dm ¯ βfq ≤ c4 # n  i=1 Di ¯αfp,γα i−1+ m  i=0 |Di ¯αf(1)| $ .

(59)

Dm ¯ βfq≤ c4 # fWn p,¯α+ m  i=0 |Di ¯αf(1)| + Dn¯αfp $ = 2c4fWn p,¯α = c1fWp,¯nα, c1= 2c4 Dβk¯f(1) = k  i=0 Di¯αf(1), k = 0, 1, . . . , m. m  k=0 |Dk ¯ βf(1)| ≤ m  k=0 k  i=0 |ck,i||Di ¯αf(1)| = m  i=0 m  k=i |ck,i||Di ¯αf(1)| =m i=0 |Di ¯αf(1)| m  k=i |ck,i|. n > m≥ 0 m  k=0 |Dk ¯ βf(1)| ≤ c5 n−1  i=0 |Di ¯αf(1)| ≤ c2fWn p,¯α, c2= max 0≤i≤m m k=i|ck,i| Wp,¯αn → Wq, ¯mβ f0(t) = t−γ0α−α0+p1 ε > 0 1 p+p1 = 1 Di¯αf0(t) = tαi d dtt αi−1d dt. . . t α2 d dtt α1d dt(t α0−γα0−α0+p1) = (−γα 0 +p1 + ε)tαi d dtt αi−1d dt. . . t α2 d dtt α1−γ0α+p1+ε−1 = (−γα 0 +p1+ ε)(−γ1α+p1 + ε)tαi d dtt αi−1d dt. . . d dtt α2−γα1+p1+ε−1= . . . = i−2 + j=0 (−γα j +p1+ ε)tαi d dtt αi−1−γi−2α +p1+ε−1= i−1 + j=0 (−γα j +p1+ ε)tαi−γ α i−1+p1+ε−1

(60)

= i−1 + j=0 (−γα j +p1 + ε)t−γ α i+p1, αi− γαi−1− 1 = −γiα i= 1, 2, . . . , n − 1 i= 1, 2, . . . , n − 1 (−γjα+p1+ ε) f0∈ Wp,¯αn i Dn¯αf0(t) = n−1  j=0 (−γα j +p1 + ε)t−1+ 1 p+ε. (−1 + 1 p + ε)p + 1 = εp > 0 1  0 t(−1+p1+ε)pdt <∞, f0 ∈ Wp,¯αn βi = γi−1β − γiβ + 1 γmβ = 1 β f0(t) Dmβ¯f0(t) = tβmd dtt βm−1. . . d dtt β2d dtt β1 d dtt β0−γ0α−α0+p1 = (β0− γα0 − α0+p1 + ε)tβmdtdtβm−1. . .dtdtβ2dtdtβ10−γ α 0−α0+p1+ε−1 = (β0− γα0 − α0+p1 + ε)(γ0β− γ0α+ β0− α0− γβ1+p1+ ε)tβm d dtt βm−1. . . . . . d dtt β20β−γα00−α0−γβ1+p1+ε−1= . . . = m−1+ i=0 (γβ 0 − γ0α+ β0− α0− γβi +p1+ ε)tβm+γ β 0−γ0α+β0−α0−γβm−1+p1+ε−1 = m−1+ i=0 0β− γα 0 + β0− α0− γiβ+p1+ ε)tγ β 0−γ0α+β0−α0−1+p1. ε0 > 0 ε∈ (0, ε0) m−1+ i=0 0β− γ0α+ β0− α0− γiβ+p1 + ε) = 0.

(61)

f0∈ Wq, ¯mβ 1  0 t(γβ0−γ0α+β0−α0−1+p1+ε)qdt <∞, (γβ 0− γ0α+ β0− α0− 1 +p1 + ε)q + 1 > 0. ε∈ (0, ε0) γ0β−γ0α+β0−α0 1p1q 1 < p < ∞ n ≥ 1 γminα >1 −p1 Wp,¯αn → Wp, ¯nβ γ0β− γ0α+ β0− α0≥ 0 p= q m < n k= n Dβn¯f(t) = n  i=0 cn,i(α, β)tγ0β−γα00−α0+γiα−1Di ¯αf(t). p Dn ¯ βfp≤ c3 ⎡ ⎢ ⎣ ⎛ ⎝ 1  0 |tγβ0−γ0α+β0−α0Dn ¯αf(t)|pdt ⎞ ⎠ 1 p + n−1  i=0 ⎛ ⎝ 1  0 |tγβ 0−γ0α+β0−α0Di ¯αf(t)|pdt ⎞ ⎠ 1 p⎤ ⎥ ⎦ , c3= max 0≤i≤n|cn,i| γβ0− γ0α+ β0− α0≥ 0 γminα >1 −1p γβ0− γ0α+ β0− α0+ γiα>1 −1 p, i= 0, 1, . . . , n.

(62)

1  0 |tγβ 0−γα00−α0+γαi−1|pdt≤ c∗ 3, i= 0, 1, . . . , n − 1, c∗3= 1 (γβ 0−γ0α+β0−α0+γiα−1)p+1 Dn ¯ βfp≤ c3 ⎡ ⎢ ⎣ ⎛ ⎝ 1  0 |tγ0β−γ0α+β0−α0Dn ¯αf(t)|pdt ⎞ ⎠ 1 p + + n−1  i=0 ⎛ ⎝ 1  0 |tγβ 0−γ0α+β0−α0+γαi−1(Di ¯αf(t) − Di¯αf(1))|pdt ⎞ ⎠ 1 p + n−1  i=0 |Di ¯αf(1)| ⎤ ⎥ ⎦ , c3= max{c3, c∗3} p= q |tγ0β−γα00−α0| ≤ 1 γ0β− γ0α+ β0− α0 ≥ 0 0 < t < ∞ Dn ¯ βfp≤ c4 # Dn ¯αfp+ n−1  i=0 Di+1 ¯α fp,γi+1α −1+ n−1  i=0 |Di ¯αf(1)| $ ≤ c4 # fWn p,¯α+ n  i=0 Di ¯αfp,γiα−1 $ , c4 = c3max{1, Hi, i = 0, 1, . . . , n − 1} Dn ¯ βfp≤ c1fWp,¯nα, m = n Wp,¯αn → Wp, ¯nβ 1 < p < ∞ γα min>1 − 1p γminβ >1 − 1p Wp,¯αn Wp, ¯nβ |¯α| = | ¯β|.

References

Related documents

Fyra av artiklarna jämförde prestandan mellan olika plattformar [12], [16], [17], [20]. Para- dowski et al. [20] jämför OpenStack och CloudStack med olika metoder och kommer fram

In the context of the on-going search for biomarkers re flecting chronic pain patho- physiology in humans [20] , one may therefore hypothesize that a putative general propensity

Möjligtvis skulle det också kunna argumenteras för att även utfästelser kan bygga på förutsättningar och att det därför inte är nödvändigt

The main entities in the system are: i) Clients (peers) who want to watch the live stream and are normally behind home or corporate NAT gateways, ii) Streaming source connected to

We study also some basic properties (in particular the approximation properties) of special weak type spaces that play an important role in the construction of mixed norm spaces and

Hagelin (2001) found evidence from the Swedish market that companies use currency derivatives to hedge transaction exposure in order to reduce the indirect costs of financial

The routine for uploading content did not require any specific adjustment as it did not differ much from the previous process where ‘The Sign group’ was uploading content to the fixed

A central concern is to explore new dimensions of and qualities in linguistic interaction and production when digital media are applied in schools. The approach