• No results found

Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

N/A
N/A
Protected

Academic year: 2021

Share "Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Precise

measurement

of

the

top

quark

mass

in

dilepton

decays

using

optimized

neutrino

weighting

D0

Collaboration

V.M. Abazov

af

,

B. Abbott

bp

,

B.S. Acharya

z

,

M. Adams

au

,

T. Adams

as

,

J.P. Agnew

ap

,

G.D. Alexeev

af

,

G. Alkhazov

aj

,

A. Alton

be

,

1

,

A. Askew

as

,

S. Atkins

bc

,

K. Augsten

g

,

C. Avila

e

,

F. Badaud

j

,

L. Bagby

at

,

B. Baldin

at

,

D.V. Bandurin

bv

,

S. Banerjee

z

,

E. Barberis

bd

,

P. Baringer

bb

,

J.F. Bartlett

at

,

U. Bassler

o

,

V. Bazterra

au

,

A. Bean

bb

,

M. Begalli

b

,

L. Bellantoni

at

,

S.B. Beri

x

,

G. Bernardi

n

,

R. Bernhard

t

,

I. Bertram

an

,

M. Besançon

o

,

R. Beuselinck

ao

,

P.C. Bhat

at

,

S. Bhatia

bg

,

V. Bhatnagar

x

,

G. Blazey

av

,

S. Blessing

as

,

K. Bloom

bh

,

A. Boehnlein

at

,

D. Boline

bm

,

E.E. Boos

ah

,

G. Borissov

an

,

M. Borysova

am

,

12

,

A. Brandt

bs

,

O. Brandt

u

,

R. Brock

bf

,

A. Bross

at

,

D. Brown

n

,

X.B. Bu

at

,

M. Buehler

at

,

V. Buescher

v

,

V. Bunichev

ah

,

S. Burdin

an

,

2

,

C.P. Buszello

al

,

E. Camacho-Pérez

ac

,

B.C.K. Casey

at

,

H. Castilla-Valdez

ac

,

S. Caughron

bf

,

S. Chakrabarti

bm

,

K.M. Chan

az

,

A. Chandra

bu

,

E. Chapon

o

,

G. Chen

bb

,

S.W. Cho

ab

,

S. Choi

ab

,

B. Choudhary

y

,

S. Cihangir

at

,

D. Claes

bh

,

J. Clutter

bb

,

M. Cooke

at

,

11

,

W.E. Cooper

at

,

M. Corcoran

bu

,

F. Couderc

o

,

M.-C. Cousinou

l

,

J. Cuth

v

,

D. Cutts

br

,

A. Das

bt

,

G. Davies

ao

,

S.J. de Jong

ad

,

ae

,

E. De La Cruz-Burelo

ac

,

F. Déliot

o

,

R. Demina

bl

,

D. Denisov

at

,

S.P. Denisov

ai

,

S. Desai

at

,

C. Deterre

ap

,

3

,

K. DeVaughan

bh

,

H.T. Diehl

at

,

M. Diesburg

at

,

P.F. Ding

ap

,

A. Dominguez

bh

,

A. Dubey

y

,

L.V. Dudko

ah

,

A. Duperrin

l

,

S. Dutt

x

,

M. Eads

av

,

D. Edmunds

bf

,

J. Ellison

ar

,

V.D. Elvira

at

,

Y. Enari

n

,

H. Evans

ax

,

A. Evdokimov

au

,

V.N. Evdokimov

ai

,

A. Fauré

o

,

L. Feng

av

,

T. Ferbel

bl

,

F. Fiedler

v

,

F. Filthaut

ad

,

ae

,

W. Fisher

bf

,

H.E. Fisk

at

,

M. Fortner

av

,

H. Fox

an

,

S. Fuess

at

,

P.H. Garbincius

at

,

A. Garcia-Bellido

bl

,

J.A. García-González

ac

,

V. Gavrilov

ag

,

W. Geng

l

,

bf

,

C.E. Gerber

au

,

Y. Gershtein

bi

,

G. Ginther

at

,

bl

,

O. Gogota

am

,

G. Golovanov

af

,

P.D. Grannis

bm

,

S. Greder

p

,

H. Greenlee

at

,

G. Grenier

q

,

r

,

Ph. Gris

j

,

J.-F. Grivaz

m

,

A. Grohsjean

o

,

3

,

S. Grünendahl

at

,

M.W. Grünewald

aa

,

T. Guillemin

m

,

G. Gutierrez

at

,

P. Gutierrez

bp

,

J. Haley

bq

,

L. Han

d

,

K. Harder

ap

,

A. Harel

bl

,

J.M. Hauptman

ba

,

J. Hays

ao

,

T. Head

ap

,

T. Hebbeker

s

,

D. Hedin

av

,

H. Hegab

bq

,

A.P. Heinson

ar

,

U. Heintz

br

,

C. Hensel

a

,

I. Heredia-De La Cruz

ac

,

4

,

K. Herner

at

,

G. Hesketh

ap

,

6

,

M.D. Hildreth

az

,

R. Hirosky

bv

,

T. Hoang

as

,

J.D. Hobbs

bm

,

B. Hoeneisen

i

,

J. Hogan

bu

,

M. Hohlfeld

v

,

J.L. Holzbauer

bg

,

I. Howley

bs

,

Z. Hubacek

g

,

o

,

V. Hynek

g

,

I. Iashvili

bk

,

Y. Ilchenko

bt

,

R. Illingworth

at

,

A.S. Ito

at

,

S. Jabeen

at

,

13

,

M. Jaffré

m

,

A. Jayasinghe

bp

,

M.S. Jeong

ab

,

R. Jesik

ao

,

P. Jiang

d

,

K. Johns

aq

,

E. Johnson

bf

,

M. Johnson

at

,

A. Jonckheere

at

,

P. Jonsson

ao

,

J. Joshi

ar

,

A.W. Jung

at

,

A. Juste

ak

,

E. Kajfasz

l

,

D. Karmanov

ah

,

I. Katsanos

bh

,

M. Kaur

x

,

R. Kehoe

bt

,

S. Kermiche

l

,

N. Khalatyan

at

,

A. Khanov

bq

,

A. Kharchilava

bk

,

Y.N. Kharzheev

af

,

I. Kiselevich

ag

,

J.M. Kohli

x

,

A.V. Kozelov

ai

,

J. Kraus

bg

,

A. Kumar

bk

,

A. Kupco

h

,

T. Kurˇca

q

,

r

,

V.A. Kuzmin

ah

,

S. Lammers

ax

,

P. Lebrun

q

,

r

,

H.S. Lee

ab

,

S.W. Lee

ba

,

W.M. Lee

at

,

X. Lei

aq

,

J. Lellouch

n

,

E-mailaddress:kehoe@physics.smu.edu(R. Kehoe).

http://dx.doi.org/10.1016/j.physletb.2015.10.086

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

D. Li

n

,

H. Li

bv

,

L. Li

ar

,

Q.Z. Li

at

,

J.K. Lim

ab

,

D. Lincoln

at

,

J. Linnemann

bf

,

V.V. Lipaev

ai

,

R. Lipton

at

,

H. Liu

bt

,

Y. Liu

d

,

A. Lobodenko

aj

,

M. Lokajicek

h

,

R. Lopes de Sa

at

,

R. Luna-Garcia

ac

,

7

,

A.L. Lyon

at

,

A.K.A. Maciel

a

,

R. Madar

t

,

R. Magaña-Villalba

ac

,

S. Malik

bh

,

V.L. Malyshev

af

,

J. Mansour

u

,

J. Martínez-Ortega

ac

,

R. McCarthy

bm

,

C.L. McGivern

ap

,

M.M. Meijer

ad

,

ae

,

A. Melnitchouk

at

,

D. Menezes

av

,

P.G. Mercadante

c

,

M. Merkin

ah

,

A. Meyer

s

,

J. Meyer

u

,

9

,

F. Miconi

p

,

N.K. Mondal

z

,

M. Mulhearn

bv

,

E. Nagy

l

,

M. Narain

br

,

R. Nayyar

aq

,

H.A. Neal

be

,

J.P. Negret

e

,

P. Neustroev

aj

,

H.T. Nguyen

bv

,

T. Nunnemann

w

,

J. Orduna

bu

,

N. Osman

l

,

J. Osta

az

,

A. Pal

bs

,

N. Parashar

ay

,

V. Parihar

br

,

S.K. Park

ab

,

R. Partridge

br

,

5

,

N. Parua

ax

,

A. Patwa

bn

,

10

,

B. Penning

ao

,

M. Perfilov

ah

,

Y. Peters

ap

,

K. Petridis

ap

,

G. Petrillo

bl

,

P. Pétroff

m

,

M.-A. Pleier

bn

,

V.M. Podstavkov

at

,

A.V. Popov

ai

,

M. Prewitt

bu

,

D. Price

ap

,

N. Prokopenko

ai

,

J. Qian

be

,

A. Quadt

u

,

B. Quinn

bg

,

P.N. Ratoff

an

,

I. Razumov

ai

,

I. Ripp-Baudot

p

,

F. Rizatdinova

bq

,

M. Rominsky

at

,

A. Ross

an

,

C. Royon

o

,

P. Rubinov

at

,

R. Ruchti

az

,

G. Sajot

k

,

A. Sánchez-Hernández

ac

,

M.P. Sanders

w

,

A.S. Santos

a

,

8

,

G. Savage

at

,

M. Savitskyi

am

,

L. Sawyer

bc

,

T. Scanlon

ao

,

R.D. Schamberger

bm

,

Y. Scheglov

aj

,

H. Schellman

aw

,

M. Schott

v

,

C. Schwanenberger

ap

,

R. Schwienhorst

bf

,

J. Sekaric

bb

,

H. Severini

bp

,

E. Shabalina

u

,

V. Shary

o

,

S. Shaw

ap

,

A.A. Shchukin

ai

,

V. Simak

g

,

P. Skubic

bp

,

P. Slattery

bl

,

D. Smirnov

az

,

G.R. Snow

bh

,

J. Snow

bo

,

S. Snyder

bn

,

S. Söldner-Rembold

ap

,

L. Sonnenschein

s

,

K. Soustruznik

f

,

J. Stark

k

,

D.A. Stoyanova

ai

,

M. Strauss

bp

,

L. Suter

ap

,

P. Svoisky

bp

,

M. Titov

o

,

V.V. Tokmenin

af

,

Y.-T. Tsai

bl

,

D. Tsybychev

bm

,

B. Tuchming

o

,

C. Tully

bj

,

L. Uvarov

aj

,

S. Uvarov

aj

,

S. Uzunyan

av

,

R. Van Kooten

ax

,

W.M. van Leeuwen

ad

,

N. Varelas

au

,

E.W. Varnes

aq

,

I.A. Vasilyev

ai

,

A.Y. Verkheev

af

,

L.S. Vertogradov

af

,

M. Verzocchi

at

,

M. Vesterinen

ap

,

D. Vilanova

o

,

P. Vokac

g

,

H.D. Wahl

as

,

M.H.L.S. Wang

at

,

J. Warchol

az

,

G. Watts

bw

,

M. Wayne

az

,

J. Weichert

v

,

L. Welty-Rieger

aw

,

M.R.J. Williams

ax

,

14

,

G.W. Wilson

bb

,

M. Wobisch

bc

,

D.R. Wood

bd

,

T.R. Wyatt

ap

,

Y. Xie

at

,

R. Yamada

at

,

S. Yang

d

,

T. Yasuda

at

,

Y.A. Yatsunenko

af

,

W. Ye

bm

,

Z. Ye

at

,

H. Yin

at

,

K. Yip

bn

,

S.W. Youn

at

,

J.M. Yu

be

,

J. Zennamo

bk

,

T.G. Zhao

ap

,

B. Zhou

be

,

J. Zhu

be

,

M. Zielinski

bl

,

D. Zieminska

ax

,

L. Zivkovic

n

aLAFEX,CentroBrasileirodePesquisasFísicas,RiodeJaneiro,Brazil bUniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil cUniversidadeFederaldoABC,SantoAndré,Brazil

dUniversityofScienceandTechnologyofChina,Hefei,People’sRepublicofChina eUniversidaddelosAndes,Bogotá,Colombia

fCharlesUniversity,FacultyofMathematicsandPhysics,CenterforParticlePhysics,Prague,CzechRepublic gCzechTechnicalUniversityinPrague,Prague,CzechRepublic

hInstituteofPhysics,AcademyofSciencesoftheCzechRepublic,Prague,CzechRepublic iUniversidadSanFranciscodeQuito,Quito,Ecuador

jLPC,UniversitéBlaisePascal,CNRS/IN2P3,Clermont,France

kLPSC,UniversitéJosephFourierGrenoble1,CNRS/IN2P3,InstitutNationalPolytechniquedeGrenoble,Grenoble,France lCPPM,Aix-MarseilleUniversité,CNRS/IN2P3,Marseille,France

mLAL,UniversitéParis-Sud,CNRS/IN2P3,Orsay,France nLPNHE,UniversitésParisVIandVII,CNRS/IN2P3,Paris,France oCEA,Irfu,SPP,Saclay,France

pIPHC,UniversitédeStrasbourg,CNRS/IN2P3,Strasbourg,France qIPNL,UniversitéLyon1,CNRS/IN2P3,Villeurbanne,France rUniversitédeLyon,Lyon,France

sIII.PhysikalischesInstitutA,RWTHAachenUniversity,Aachen,Germany tPhysikalischesInstitut,UniversitätFreiburg,Freiburg,Germany

uII.PhysikalischesInstitut,Georg-August-UniversitätGöttingen,Göttingen,Germany vInstitutfürPhysik,UniversitätMainz,Mainz,Germany

wLudwig-Maximilians-UniversitätMünchen,München,Germany xPanjabUniversity,Chandigarh,India

yDelhiUniversity,Delhi,India

zTataInstituteofFundamentalResearch,Mumbai,India aaUniversityCollegeDublin,Dublin,Ireland

abKoreaDetectorLaboratory,KoreaUniversity,Seoul,RepublicofKorea acCINVESTAV,MexicoCity,Mexico

adNikhef,SciencePark,Amsterdam,TheNetherlands aeRadboudUniversityNijmegen,Nijmegen,TheNetherlands afJointInstituteforNuclearResearch,Dubna,Russia

agInstituteforTheoreticalandExperimentalPhysics,Moscow,Russia ahMoscowStateUniversity,Moscow,Russia

aiInstituteforHighEnergyPhysics,Protvino,Russia ajPetersburgNuclearPhysicsInstitute,St.Petersburg,Russia

(3)

alUppsalaUniversity,Uppsala,Sweden

amTarasShevchenkoNationalUniversityofKyiv,Kiev,Ukraine anLancasterUniversity,LancasterLA14YB,UnitedKingdom aoImperialCollegeLondon,LondonSW72AZ,UnitedKingdom apTheUniversityofManchester,ManchesterM139PL,UnitedKingdom aqUniversityofArizona,Tucson,AZ 85721,USA

arUniversityofCaliforniaRiverside,Riverside,CA 92521,USA asFloridaStateUniversity,Tallahassee,FL 32306,USA atFermiNationalAcceleratorLaboratory,Batavia,IL 60510,USA auUniversityofIllinoisatChicago,Chicago,IL 60607,USA avNorthernIllinoisUniversity,DeKalb,IL 60115,USA awNorthwesternUniversity,Evanston,IL 60208,USA axIndianaUniversity,Bloomington,IN 47405,USA ayPurdueUniversityCalumet,Hammond,IN 46323,USA azUniversityofNotreDame,NotreDame,IN 46556,USA baIowaStateUniversity,Ames,IA 50011,USA bbUniversityofKansas,Lawrence,KS 66045,USA bcLouisianaTechUniversity,Ruston,LA 71272,USA bdNortheasternUniversity,Boston,MA 02115,USA be

UniversityofMichigan,AnnArbor,MI 48109,USA bfMichiganStateUniversity,EastLansing,MI 48824,USA bgUniversityofMississippi,University,MS 38677,USA bhUniversityofNebraska,Lincoln,NE 68588,USA biRutgersUniversity,Piscataway,NJ 08855,USA bjPrincetonUniversity,Princeton,NJ 08544,USA bkStateUniversityofNewYork,Buffalo,NY 14260,USA blUniversityofRochester,Rochester,NY 14627,USA bmStateUniversityofNewYork,StonyBrook,NY 11794,USA bnBrookhavenNationalLaboratory,Upton,NY 11973,USA boLangstonUniversity,Langston,OK 73050,USA bpUniversityofOklahoma,Norman,OK 73019,USA bqOklahomaStateUniversity,Stillwater,OK 74078,USA brBrownUniversity,Providence,RI 02912,USA bsUniversityofTexas,Arlington,TX 76019,USA btSouthernMethodistUniversity,Dallas,TX 75275,USA buRiceUniversity,Houston,TX 77005,USA

bvUniversityofVirginia,Charlottesville,VA 22904,USA bwUniversityofWashington,Seattle,WA 98195,USA

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received13August2015

Receivedinrevisedform19October2015 Accepted31October2015

Availableonline11November2015 Editor:H.Weerts

Wemeasure thetopquarkmassindileptonfinalstatesoft¯t eventsinpp collisions¯ at√s=1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb−1 at the Fermilab Tevatron Collider. Theanalysisfeaturesacomprehensiveoptimizationoftheneutrinoweightingmethodtominimizethe statisticaluncertainties.Wealsoimprovethecalibrationofjetenergiesusingthecalibrationdetermined intt¯→lepton+jets events, whichreduces theotherwiselimitingsystematicuncertaintyfromthejet energyscale.Themeasuredtopquarkmassismt=173.32±1.36(stat)±0.85(syst)GeV.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1 VisitorfromAugustanaCollege,SiouxFalls,SD,USA. 2 VisitorfromTheUniversityofLiverpool,Liverpool,UK. 3 VisitorfromDESY,Hamburg,Germany.

4 VisitorfromCONACyT,MexicoCity,Mexico. 5 VisitorfromSLAC,MenloPark,CA,USA.

6 VisitorfromUniversityCollegeLondon,London,UK.

7 VisitorfromCentrodeInvestigacionenComputacionIPN,MexicoCity,Mexico. 8 VisitorfromUniversidadeEstadualPaulista,SãoPaulo,Brazil.

9 Visitorfrom KarlsruherInstitut fürTechnologie (KIT)Steinbuch Centrefor Computing(SCC),D-76128Karlsruhe,Germany.

10 Visitor from Office ofScience, U.S. Departmentof Energy, Washington, D.C. 20585,USA.

11 VisitorfromAmericanAssociationfortheAdvancementofScience,Washington, D.C.20005,USA.

12 VisitorfromKievInstituteforNuclearResearch,Kiev,Ukraine. 13 VisitorfromUniversityofMaryland,CollegePark,Maryland20742,USA. 14 Visitor from European Organization for Nuclear Research (CERN), Geneva, Switzerland.

1. Introduction

The discovery of the top quark in 1995 [1,2] completed the three quark families of thestandard model (SM).Since then, the topquarkhasbeenoneofthefocalpointsoftheFermilabTevatron andoftheCERNLHCprograms.Thetopquark standsoutbecause ofitslargemass,mt,whichisafundamentalparameterintheSM. ItsYukawacouplingtotheHiggsboson,Yt

=

2mt

/

v,wherev is thevacuumexpectationvalueoftheHiggsfield,isclosetounity, implyingthatthetopquarkmayplayaspecialroleinelectroweak symmetry breaking.Inaddition,mt islinkedto theW andHiggs bosonmasses,MW andMH,throughradiativecorrections[3]. Fol-lowingtheHiggsbosondiscovery [4,5],aprecisemeasurementof

mt provides atestoftheelectroweaksector oftheSMand infor-mation onwhetherouruniverseresidesinastableormetastable region of that theory [6–8]. The short lifetime of the top quark preventsitsconfinementinthestrongcolorfield,sincetopquarks decaybefore hadronizing.Thisallows a particularlyprecisestudy of pure quantumchromodynamic (QCD) effects.A comparisonof the measured mt and the mt extracted from cross section

(4)

mea-surements [9–12] may provide a probe of higher order andsoft QCDcorrectionstotheobservedmass[13].

Assuming the SM branching ratio of t

W b

100%, tt de-

¯

cays yield distinct final state categoriesaccording tothe number ofchargedleptonswithhightransversemomentum(pT)fromW boson decays. Dilepton (2,



=

e or

μ

) events, such asee, e

μ

, and

μμ

,withneutrinosfromtwo W

→ 

ν

decays,are relatively rarebuthavelow background.We presenta measurementofmt using pp collider

¯

datacollected withthe D0 detectoratthe Fer-milabTevatroncollider,correspondingtoanintegratedluminosity of9.7 fb−1,ineventswithtwohigh-pT electronsormuonsof op-posite electric charge. Two high-pT jets must also be observed, one of which must be identified as being consistent with orig-inating from a b quark. This analysis is based on our previous dilepton measurement [14], but with increased integrated lumi-nosityandmultipleoptimizationstoimprovetheprecision ofmt. Wereducethedominantstatisticalcontributiontotheuncertainty onmt throughan optimization ofthe methodsfor kinematic re-constructionandstatisticalanalysis.Lackingadijetsignaturefrom

W

qq

¯

,whichispresentint

¯

t

lepton

+

jets (

+

jets)events andwas used to improve the precision of jet energy calibration witha W massconstraint[15],previousdilepton analysesatthe Tevatronhavereacheda sensitivitylimitimposed bystandard jet calibrationmethods[16,17].Progressincalibratingjetenergiesin the dilepton channel [14] provides improved cross-checks across different channels and a more significant contribution from the dilepton channel to the world average mt [18]. For comparison, themostrecentmeasurementsofmt inthedileptonchannelfrom CDF, ATLAS, and CMS are, respectively, mt

=

171.5

±

1.9(stat)

±

2.5(syst)GeV[19],mt

=

173.79

±

0.54(stat)

±

1.30(syst)GeV[20], andmt

=

172.50

±

0.43(stat)

±

1.46(syst)GeV[21].Inthis analy-sis,wesubstantiallyreducetheotherwisedominantuncertaintyin thejetenergyscalebyapplyingthemethodsofRef.[14].

2. Detectoranddatasample

2.1.Detector

The D0 detector [22,23] has a central-tracking system, con-sisting ofa siliconmicrostrip tracker anda central fibertracker, both located within a 1.9 T superconducting solenoidal magnet, withdesigns optimizedfor identificationof the p

¯

p collision ver-tex and track reconstruction at pseudorapidities [24] of

|

η

|

<

3 and

|

η

|

<

2.5, respectively. The liquid-argon/uranium calorimeter has a central section covering

|

η

|

1.1, and two end sections that extend coverage to

|

η

|

4.2, with all three housed in sep-aratecryostats. An outer muon system, covering

|

η

|

<

2, consists ofalayeroftrackingdetectorsandscintillationtriggercountersin frontof1.8 Tirontoroids,followedbytwosimilarlayersafterthe toroids.

2.2.Objectreconstruction

Werequireelectronstosatisfyanidentificationcriterionbased onboosteddecisiontrees [25] usingcalorimeterandtracking in-formation. Muons must satisfy requirements that match hits in themuon system toa track inthe central trackingdetector that is required to have a small distance of closest approach to the beam axis [26]. We require hits in the muon layers inside and outsidethetoroid.Muonsandchargedhadronmomentaare mea-suredinthe centraltrackingdetector,whileelectron,photon(

γ

), jet, and charged hadron energies are measured in the calorime-ters. Muons must be isolated from jets and from nearby tracks. Electronsandmuonsmusthavetheir extrapolatedtrack trajecto-riesisolated fromcalorimeterenergydepositionsgreater than an energythreshold. Electrons andmuons must have pT

>

15 GeV,

and

|

η

|

<

2.5 and

<

2.0,respectively.Wereconstructjetsusingan iterative, midpoint-seededcone algorithmwitha cone parameter of

R

cone

=

0.5 [27]. Jets with embedded muons from the decay

ofb-hadrons requirean additionalcorrectionto jetenergyto ac-countfortheassociatedneutrino.Amultivariatediscriminant[28]

isusedtoidentifyjetsthatcontainab-hadron(i.e.,b jets)froma vertexdisplacedfromtheinteractionpoint.Wedefinethemissing transverse momentum (/ET) attributed to the escaping neutrinos asthenegative ofthevector sumofalltransversecomponentsof calorimeter cell energies, corrected for the measured muon mo-menta andthe response ofthe calorimeterto electrons. We also correct

/

ET fordetector response inthe jet energy calibration,as described below. Details of objectreconstruction are provided in Ref.[29].

2.3. Standardjetenergycalibration

Wecalibratetheenergyofjetstobetheenergyoftheparticle jetsreconstructed using themidpoint algorithm [27].We correct fortheeffectsofthecalorimeterresponsetoparticleconstituents ofjets,energyleakingintotheconefromparticlesdirectedoutside it,aswellasenergydepositsoutsidetheconefromparticlesinside it[30].Chargedhadronshaveanenergy-dependentresponsethat is lower than that of electrons and photons. We therefore apply correctionsobtainedfrom

γ

+

jet eventstoaccountfortheenergy dependenceofthejet responseinthecentral

|

η

|

region.We also applyarelative

η

-dependentcorrectionobtainedfrom

γ

+

jet and dijetevents.Weemploythesamemethodstocalibratejetenergies independentlyintheMonteCarlo(MC)simulationandindata.The MCisusedtohelpstudypotentialbiasesinthedata.We incorpo-rateacorrectionforjetsintheMCsimulationthataccountsforthe difference in single-particle response betweendataand MC. This procedure ensuresthat theflavor dependenceofthejet response in data is replicated in MC. In the MC we account for multiple

pp interactions

¯

bycorrectingthejetenergytotheparticlelevelof onlythoseparticlesthataredirectedwithinthejetconeatparticle level.The typicalsystematicuncertaintyinthe energycalibration ofeach jetin thedileptonsample is2%. Thisprecision islimited bysystematicuncertaintiesofthe

γ

+

jet methodinthe pT range ofjetsint

¯

t events. Detailsaboutthis“standard jetenergyscale” calibration can be found in Ref. [30]. We require that jets have

pT

>

20 GeV and

|

η

|

<

2.5 after calibration,but before applying additionalcorrectionsfromtheW

qq

¯

 constraintinthe



+

jets channeldiscussedbelow.

3. Absolutejetcalibrationfroma

W

qq

¯

constraint

AsinRef.[14],weapplyamultiplicativecorrectionfactortothe energyofjetsindatabasedonananalysisoft

¯

t

→ 

+

jets events usingtheW

qq

¯

decaysasaconstraint.Application ofthis fac-tor, 1.0250

±

0.0046

(stat)

[15],improvesthe agreementbetween MCanddataandallowsustouseitsuncertaintytoreducethe un-certainty onthe absoluteenergyscaleby a factorof

4 relative tothestandard jetenergyscale,whileretainingits

η

and pT de-pendence.Toapply thisscale,whichcomesfromlight-quarkjets, tothedileptonsample,whichhasb jets,itisimportanttoensure that the variation in the ratio of data over MC jet response be-tweendifferentflavorsbeplacedonanequalfooting.Thestandard jet energy scale [30] achieves this on a jet-by-jetbasis by using single particlesinMCjetstocorrectthesimulationsothat ithas the samekinematic andflavor-dependentjet response as that in data.Thisensuresthattheenergiesofb jetsindileptonsimulated samplesagreewiththoseofb jetsinthedileptondatasample at the same level aslight-quark jets. Aside fromfragmentation dif-ferences between data and MC which are discussed below, this

(5)

approach justifiesthe use ofthe



+

jets constraint inthe dilep-tonchannel.

4. Eventselection

The tt candidate

¯

events in the ee and

μμ

channels are re-quired to pass single-lepton triggers. The full suite of triggers is usedfor selectinge

μ

events.The dileptoneventselection before optimizationis described inRef. [29]. We optimizethe selection based on MC events to provide the smallest expected statistical uncertaintyinmt.We requiretwo isolatedleptons withopposite electric charge. We require at least two jets, where at least one of the two jets with highest pT must be identified as a b jet. Forthe e

μ

channel, ourselectionshave an efficiencyfor tagging

b jets of 72%, and a light-quark mistag rate of 12% in the cen-tralregionin

η

.Thesame-flavor channelsemployslightlytighter

b tagging requirements and thus have a few percent lower

effi-ciency, and30% lower mistag rate. Werequire eventsin the

μμ

channeltohave

/

ET

>

40 GeV.This

/

ET selection isalsoappliedto

ee eventswhen thedielectron invariantmass isbetween70 and

100 GeV,toreduce the Z

ee backgroundcontribution. We de-finea

/

ET significancevariable,

S

,which measures thelikelihood fortheobserved

/

ET tobeafluctuation from

/

ET

=

0 GeV.We re-quire

S >

3.5 (4) forthe ee (

μμ

) channel.Werequiree

μ

events tohave HT

>

100 GeV,where HT isthescalarsumofthe pT of thetwohighest-pT jetsandoftheleptonwithhighestpT.TheHT,

b tagging,and

/

ET-basedrequirementsareoptimized tominimize theexpectedstatisticaluncertaintyonmt ineachchannel.The ex-pectedsignal-to-background(S/B)ratiois

7forthesechannels. Theserequirementsyielda3%improvementinstatisticalprecision inmt relativetotheselectionsinRef.[14].Afterimplementingall theseselections,weobtain340,115,and110eventsinthee

μ

,ee

and

μμ

channels,respectively.

5. Modelingsignalandbackground

The t

¯

t events are simulated at 15 mass points over the

range 130

mMCt

200 GeV using the tree level generator alp-gen 2.11 [31] with up to 2 additional light partons and pythia

6.409 [32] with modified underlying event Tune A for parton

showeringandhadronization.Here,mMC

t refers totheinputmass in alpgen. An additional, larger sample is generated at mMCt

=

172.5 GeV to study systematic uncertainties. We normalize the

tt production

¯

crosssection to

σ

tt¯

=

7.24

±

0.23 pb [33],which is calculatedatnext-to-next-to-leadingorderwitha next-to-next-to-leadinglogarithmsoftgluonresummation.Themainbackgrounds arise from three sources: Z

/

γ

→ 

+



, diboson (W W , W Z ,

and Z Z )processes,andinstrumentaleffects.Wemodelthe Z

/

γ

∗ backgroundusing alpgen withupto2lightpartonsand pythia for showeringandhadronization. We employ pythia forthe diboson background. The instrumental background arises from W

+

jets, multijet, or



+

jets tt events

¯

where one or two jets are either mis-identified aselectrons, orthey contain a hadron decayingto a non-isolated lepton that passesour selection. Thisbackground is estimated from data as in Ref. [29]. We apply a full detector simulationbasedon geant 3.14[34] forall simulatedevents.The objects reconstructed in simulation are smeared to ensure that their resolutionsreflect thoseindata.Scale factorsin object effi-cienciesareappliedtoimproveagreementbetweendataandMC.

6. Kinematicreconstruction

6.1. Neutrinoweighting

Thepresenceoftwoneutrinosinthet

¯

t decaymakesit impossi-bletofullyconstrainthekinematicsandthusextracta uniquemt

measurement from each event. Given the measured momenta of

leptons, jetsand

/

ET, theavailable constraintsfrom MW, andthe condition mt

=

mt¯,we are missingone constraintto provide full

t

¯

t reconstructionin dileptonevents.We integrate overthe phase spaceofneutrinorapidities forchosen valuesofhypothesizedmt (mh

t)[35],andcompare

/

EcalcT ,thevectorsumofneutrino momen-tumsolutionsateachchosenpointofphasespace,totheobserved

/

EobsT todetermine a“weight”

ω

characterizing thelevelof agree-ment:

ω

=

1 N N



i=1



j=x,y exp



(

/

E calc j,i

/

Eobsj

)

2 2

σ

2 / ET



,

(1)

where i runsoverallneutrinosolutions foranytwo possible jet-leptonassignmentsinthet

¯

t finalstate(upto N

=

8), j standsfor thetwo orthogonalcoordinatesinthetransverseplane(x and y), and

σ

/ET isaparameterrepresentingtheRMSofthedifference

be-tweenthetransversecomponentsofthemeasured

/

ET andthesum ofthesolvedneutrinotransversemomenta.Theparameter

σ

/ET is

takentobethesameinbothx and y directions. Weperformthis calculation over a range of mht, integrating

ω

over the neutrino phasespace,toyieldadistributionof

ω

(

mt

)

versusmht.Prior stud-ies [36] haveshownthat thefirst twomoments (

μ

ω

,

σ

ω )ofthis

distributionextractmostoftheinformationaboutmt.Theanalysis ofRef.[14]usedtherangeofmh

t valuesbetween80and330 GeV in1 GeVstepsanda

σ

/ET of7 GeVintheweightcalculation.The

newoptimizeddetermination oftheseparametersisbriefly sum-marizedbelow.

6.2. Optimizationofweightcalculationparameters

After applying the methods described above to improve the

jet energycalibration,thestatisticalcontribution isthedominant source ofmeasurement uncertainty on mt in the dilepton chan-nel.We thereforeexamine theparametersusedforthekinematic reconstruction oftt events

¯

andforthemaximumlikelihoodfitto reducetheexpectedstatisticaluncertainty.Ateachstep,weverify through MC simulations that the optimization does not increase thesystematicuncertainty.

All neutrinosolutions and jetassignments yieldmass estima-torssuchas

μ

ω thatarecorrelatedwithmt.However,the correla-tion issubstantiallygreater, and

μ

ω valuesarelessbiased, when

the correct jet assignments and solutions of neutrino momenta are chosen. Since now mt has been measured with high preci-sion[18],wecanoptimizetherangeofmht basedonknownvalues of mt. Consideringa wide range inmth causes incorrect configu-rationstooverwhelmthecorrectconfiguration,therebyworsening the mass resolution. Likewise, scanning over too narrow a range biasesthe backgroundandworsensthemass sensitivityby caus-ing t

¯

t andbackgrounddistributions tobe similar. Examinationof a two-dimensional grid of upper and lower limits of the mass rangeyields theoptimalrangeofmht

=

115 to220 GeVin1 GeV steps. The value of

σ

/ET also has a noticeable impact on the

ex-pectedprecisionoftheanalysis.ThiswasnotthecaseinRef.[14],

mainly because the final top quark mass measurement was less

precise. InRef. [14],the value of7 GeV for

σ

/ET was obtainedas

theunclustered

/

ET resolutioninanearlierdataset[36],wherethe unclustered

/

ET is themagnitudeof thevector sumofall energy depositions inthe calorimeterthat are not included inlepton or jet reconstruction. However, accounting only for the unclustered energyresolutionastheoriginofthedifference betweenthe cal-culatedandmeasured

/

ET ignorestheeffectofassumptionsthatgo into thekinematicreconstruction. Forinstance,thefinitebinning oftheneutrinorapiditiesdiscretizesthesolvedneutrinomomenta andthereforethesolved

/

ET.Also,thesolved

/

ET doesnotinclude

(6)

Fig. 1. Thedistributioninthemassestimator,μw,forthecombinationoftheee, eμ, andμμchannelsfor(a)thepreselectedsampleand(b)thefinaleventsample.The MCeventsarenormalizedseparatelytothenumberofobservedeventsindatain eachchannel.Theratiosshowthetotalnumberofobservedeventsdividedbythe numberofexpectedeventsinagivenbinofμw formtMC=172.5 GeV.Theband ofsystematicuncertaintyisshownas theshaded areainthe ratioplots,which includescontributionsfromthedominantsources:jetenergyscale,lepton identifi-cation,leptonmomentumscale,luminosity,b quarkmodeling,initialandfinalstate radiation,colorreconnection,aswellashadronizationandhigher-orderQCDeffects fortt events.¯

additional jets, reconstructed or not, since only the two leading jetsareconsidered in thekinematic reconstruction.Due to these additionalcontributions,ascaninawiderangefrom7to100 GeV isperformedandwefindtheoptimalvaluefor

σ

/ET tobe25 GeV,

whichislarger thanthe 7 GeVofRef. [14]. Combined,these op-timizationsimprovetheexpectedcombinedstatisticaluncertainty onmt by11%comparedtotheparametersinRef.[14].

6.3.Efficiencyofkinematicreconstructionandeventyields

Eventsusedintheanalysismusthaveatleastonepairof neu-trino solutions for at least one mht value. The efficiency for this kinematic reconstruction is over 99% for tt events,

¯

and 91% to 98% forthe background.In the final sample, a total of336, 113, and109eventsinthee

μ

,ee,and

μμ

channels,respectively,pass the kinematic reconstruction. The expected sum of tt and

¯

back-groundyieldsandtheircorrespondingasymmetrictotal uncertain-ties(stat

syst)are298.1+2227..12,106.5+1110..46,and103.5+79..41 events forthee

μ

,ee,and

μμ

channels,respectively.Thedistributionsof themassestimator

μ

ω ina preselectedsample,omitting

require-ments on b tagging,

/

ET,

/

ET significance, and HT, are shown in

Fig. 1(a).Thet

¯

t componentisevidentinthepreselecteddata.The massdependence ofthe

μ

ω distribution is giveninFig. 1(b) for

threemMC

t masspointswithallselectionsapplied.

7. Extractingthetopquarkmass

7.1. Maximumlikelihood

We perform a binned maximum likelihood fit to the

ex-tracted moment distributions

[

μ

ω

,

σ

ω

]

in data. Expected

proba-bility densities are calculated using the MC samples for each of the 16 mt points, yielding a two-dimensional probability den-sityhS

(

μ

ω

,

σ

ω

|

mMCt

)

distributionparametrizedbymt.Background samples are used to construct a background template for each channel, hB

(

μ

ω

,

σ

ω

),

with each background contributing

accord-ing toits expectedyield.Bins insignal templateswithno events are given a weighted value corresponding to a single signal MC eventtoensurethatthelogoflikelihoodisnotinfinite.The likeli-hoodisgivenby:

L

(

μ

ω{1..N}

,

σ

ω{1..N}

,

N

|

nS

,

nB

,

mt

)

=

N



i=1 nS

·

hS

(

μ

ωi

,

σ

ωi

|

mt)

+

nB

·

hB

(

μ

ωi

,

σ

ωi) nS

+

nB

,

(2)

where N isthenumber ofobservedeventsindata,nS is the

ex-pected number oft

¯

t events (for mt

=

172.5 GeV), andnB is the

expectedtotalnumberofbackgroundevents.Wefit(

ln

L

)versus

mMCt to a parabola in a window of mMCt that is iteratively

var-ied until a stable minimum is found. We take the minimum of

thefinalparabolatobethefittedtopquarkmass,mfit

t .The uncer-taintyonthefittedmassisobtainedbyconsideringthemMCt range overwhichthefitfunctionincreasesby0.5unitsin(

ln

L

)above this minimum.Using pseudo-experiments, we optimizethe tem-platebinningofeachchannelseparatelyinatwo-dimensionalgrid thatlets

μ

ω and

σ

ω binsizesvaryindependently.Finerbinningin

μ

ω and

σ

ω ,especiallyforthee

μ

channel,improvestheexpected

statisticalprecision inmfitt by 5%. The fittedmass windowis op-timizedto

±

15 GeV forall channels.Taking alltheoptimizations together, including eventselection, weight calculation, and max-imum likelihood fitting, the statistical sensitivity of this analysis isimproved relativeto Ref.[14] by 20%beyondthe 35%gain ex-pectedfromincreasedintegratedluminosity.

7.2. Ensembletestinganddataresults

Weobtain alinearrelationshipbetweenmfit

t andmtMC by

per-forming randomized pseudo-experiments using all signal mass

points. The numbers of signal and background events in the

pseudo-experimentsare allowed tofluctuatewithin their Poisson uncertaintiesaroundtheirexpectedvalues.Werequirethatthe to-talnumberofeventsmatchesthatobserved indata.Tominimize the effect of statistical fluctuations on our systematic uncertain-ties, we optimizethe numberof pseudo-experimentsby dividing theMC sampleintofivesubsamples,andmeasuresystematic un-certaintieswitheachsubsample.WecalculatetheRMSofthefive uncertainties,averageoverallsystematiceffects,anddivideby

5 to estimate the statisticalcomponentof systematicuncertainties. The averageRMS decreases untilwe oversample, orreuse, thet

¯

t

MC eventsbyroughly afactorofthree.Thiscorresponds to3000 pseudo-experiments.Weperformalinearfitofmfit

t versusmMCt to obtain a calibration slope andoffsetformfitt using3000 pseudo-experiments:

mfitt

=

Slope

· (

mMCt

170)

+

Offset

+

170. (3) We account for oversamplingby increasing the statistical uncer-taintiesateachmasspointbytheappropriateoversamplingfactor. Likewise, we compute the pull, or the ratio of mfitt

mMCt over theaverage estimateduncertaintyateachmasspoint. Theslopes

(7)

Table 1

Slopes,offsets,andpullwidthsofthemt calibrationandtheexpectedstatistical uncertaintiesinthemass(σmt)fortheee,eμ,andμμchannels,andtheir combi-nation.

Slope Offset [GeV] Pull width σmt [GeV]

ee 0.984±0.004 0.671±0.043 0.994 2.98 0.986±0.006 0.548±0.065 0.998 1.72

μμ 0.989±0.010 0.717±0.103 1.004 3.31

2 0.988±0.006 0.617±0.063 0.995 1.35

Table 2

Systematic uncertainties on mt for the combined dilepton measurement using 9.7 fb−1 ofintegratedluminosity. For symmetrizeduncertainties,the ± sym-bolindicatesthatthe corresponding systematicparametersinMCarepositively correlatedwithmt indata,andthe “∓”symbolindicatesananticorrelation.The uncertaintiesshownas+or−onlyarecomputedbycomparingastandardchoice withanalternate,butaresymmetrizedincalculatingthetotaluncertainty.

Source σmt [GeV]

Jet energy calibration

Absolute scale ∓0.47 Flavor dependence ∓0.27 Residual scale +0.36 −0.35 b quark fragmentation +0.10 Object reconstruction Trigger −0.06 Electron pTresolution ±0.01 Muon pTresolution ∓0.03

Electron energy scale ±0.01

Muon pTscale ±0.01 Jet resolution ∓0.12 Jet identification +0.03 b tagging ∓0.19 Signal modeling Higher-order effects −0.33 ISR/FSR ±0.15 pT(t¯t) −0.07 Hadronization −0.11 Color reconnection −0.22 Multiple pp interactions¯ −0.06 PDF uncertainty ±0.08 Background modeling Signal fraction ±0.01

Heavy-flavor scale factor ±0.04

Method

Template statistics ±0.18

Calibration ±0.07

Total systematic uncertainty ±0.85

of mfitt versus mtMC are close to 1, and pull widths are consis-tent with unity, as shown in Table 1. We calculate the final mt by correcting mfitt from a given measurement by the slope and offset. We correctthe statistical uncertainty using the slope and thepullwidth.Theexpectedcorrectedstatisticaluncertainties for each channel are given in Table 1. In data, we obtain corrected, fittedmt values ofmt

=

171.86

±

1.71(stat), 173.99

±

3.04(stat), and 178.58

±

3.56(stat) GeV for the e

μ

, ee, and

μμ

channels respectively, andmt

=

173.32

±

1.36(stat) GeV for the combined channels.

8. Systematicuncertainties

Systematicuncertainties summarizedinTable 2arise fromjet energycalibration,objectreconstruction,modelingoft

¯

t and back-groundevents, and the mass-extractionmethod. The energies of jetsare shifted up anddown by theuncertainty onthe absolute energy scale, which is taken from



+

jets events, thereby pro-viding shifts in mt. This scale is appropriate forlight-quark jets, which, after correcting for jet flavors to improve the agreement

betweendataandMC,havedifferentkinematicdistributions than

b jets fromt

¯

t decays. Wecalculate a residualuncertainty dueto the kinematicdifferencesbetweenthe



+

jets calibrationsample anddileptonsampleofb jets.Weuseseparateupanddown esti-mates toextract theenergy- and

η

-dependentshifts inmt based on uncertainties inthe standardjet energyscale relative totheir average value in the



+

jets calibration sample. We cross-check thiswithanalternativemethodthatappliesshiftedlight-quarkjet energyscalestob jetsinthe



+

jets channel[15].Thesemethods agree, andthereby validate the useof the



+

jets scaleas a jet calibration.Wealsocross-checkusingajet-energy-dependent lin-earparameterizationoftheresidualjetenergyscaleasinRef.[15], obtaining resultsthatdonotexceedourestimate ofuncertainties fromthejetenergyscale.Toestimatetheuncertainty correspond-ing to possible differences in the flavor dependence of the MC scale relative todata,we changethe single-particle responsesup and down by their uncertainties and obtain the shift in mt. To estimate the possible dependence on the b quark fragmentation inthe MC,we replacethe pythia b quarkfragmentationfunction with the Bowler scheme [37], andcompare mt with the Bowler free parameters tuned toLEP (ALEPH, OPAL, andDELPHI) orSLD data[38].

The systematicuncertainty dueto the triggerefficiency is es-timated by applying the ratio of single lepton trigger efficiency parameterization in data divided by the MC parameterization to

the ee and

μμ

channels. The uncertainties in the modeling of

the energy and momentum resolutions ofelectrons, muons, and jetsareapplied independentlyofeachother,andtheshiftsinmt areextractedasuncertaintiesonmt.Leptonenergyormomentum scalesandtheiruncertaintiesareextractedfromZ

2eventsin data. An additional uncertainty is estimatedfor jet identification byshiftingthejetidentificationefficiencywithinitsuncertaintyin MC samples toestimate their effecton mt.The uncertaintyfrom modeling b tagging is evaluated by changing within their uncer-tainties the corrections that account for the agreement between dataandMCinb taggingefficiency.

Higher-order virtual corrections to mt are absent in the alp-genusedtogenerateourstandardt

¯

t samples.Wetherefore com-pare an ensembleof pseudo-experimentsusing mc@nlo 3.4 [39] t

¯

t eventswithone using alpgen events,wherebothemploy her-wig 6.510 [40] for modeling of hadronization. To evaluate the uncertaintyassociatedwiththemodelingofinitialandfinal-state radiation(ISR/FSR),wecompare alpgen+pythia withthe renormal-ization andfactorization scale changedup anddown by a factor of 1.5[15].The



+

jets analysisexhibitsadiscrepancyintheshape ofthepT distributionofthet

¯

t system,which,althoughthe dilep-ton statistics arelimited, maybe presentin thedileptonsample. We evaluate theuncertainty inthe modelingof thet

¯

t pT distri-bution by reweighting MC events to makethem match thedata. The observed shift in mt is taken as the uncertainty. Since the hadronization inour standardtt sample

¯

ismodeled with pythia, we estimate a hadronization uncertainty on mt by performing pseudo-experimentsusingan alpgen+herwig sample.Weevaluate the effect of color reconnection by comparing mt measurements in alpgen+pythia sampleswithtwo pythia tunes:thePerugia2011 tune thatincorporates anexplicitcolor-reconnectionscheme,and thePerugia2011NOCRtunethatdoesnot[41].Data andMCmay havedifferentdistributionsininstantaneousluminosityafterevent selection.Thisuncertaintyduetomultiple pp interactions

¯

is esti-matedbyreweightingthedistributionofinstantaneousluminosity tomakeMCagreewiththedataforrespectivedata-takingepochs, and then take the shift in mt withrespect to the default value. The uncertaintyduetothe protonstructure isobtainedfromthe 20setsofCTEQ6L1partondistributionfunctions(PDF)reweighted

(8)

toCTEQ6M,wherethedeviationsinmtforthe20eigenvectorssets areaddedinquadrature[42].

Weestimatetheeffectoftheuncertaintyonthefractionof sig-nalor backgroundby changingthe expected tt event

¯

yields (nS)

upanddownandtheexpectedbackgroundyields (nB)down and

up within their total uncertainties. The heavy-flavor scale factor, whichisappliedtothe Z

2crosssectiontocorrectthe heavy-flavorcontent,isalsochangedupanddownwithinitsuncertainty toestimateitssystematiceffectonmt.

OurtemplatesareconstructedfromMCsamplesfort

¯

t,Z

2, anddibosonbackgrounds,aswellasdatasamplesforinstrumental background,yieldingstatisticaluncertaintiesontheirbincontents. Weuse Poissondistributionsto modify bincontents withintheir statisticaluncertaintiestoobtain1000newtemplates.Wemeasure

mt indatausingthesetemplates,andtheRMSofthemeasuredtop quarkmass istakenasits uncertainty.Ourmethodofmt extrac-tionreliesonthecorrectionofthefittedmt totheinputMCmass. Theuncertainties fromthiscalibrationare appliedto providethe uncertainty inmt. The uncertainty is reduced substantially from Ref.[14] dueprimarily tothe reduction inthe uncertaintyin jet energycalibrationandtheoptimizationsforimprovementsin sta-tisticaluncertainty.LargerMCsamplesalsocontributebylowering statisticalfluctuationsonsystematicuncertainties,orreducing sta-tisticallylimitedsystematicuncertainties.

9. Conclusions

Wehavemeasuredthetopquarkmassinthecombined dilep-tonchannels(e

μ

,ee,

μμ

):

mt

=

173.32

±

1.36(stat)

±

0.85(syst)GeV

=

173.32

±

1.60 GeV.

This measurement is consistent with the current world average value of mt [18]. Our measurement is the mostprecise dilepton resultfromtheTevatron,andiscompetitive withthemostrecent LHCdilepton measurements. The systematicuncertainty of0.49% isthesmallestofalldileptonmeasurements.

Wethankthe staffsatFermilab andcollaborating institutions, andacknowledgesupportfromtheDepartmentofEnergyand Na-tionalScience Foundation (United Statesof America); French Al-ternative Energies and Atomic Energy Commission and National CenterforScientificResearch/NationalInstituteofNuclearand Par-ticle Physics (France); Ministry of Education and Science of the RussianFederation, NationalResearchCenter“KurchatovInstitute” of the Russian Federation, and Russian Foundation for Basic Re-search (Russia);National Council forthe Developmentof Science andTechnology and CarlosChagas Filho Foundation forResearch Support in the State of Rio de Janeiro (Brazil); Department of

Atomic Energy and Department of Science and Technology

(In-dia); Administrative Department of Science, Technology and In-novation (Colombia);National Council ofScience andTechnology (Mexico); National Research Foundation of Korea (Korea); Foun-dation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (UnitedKingdom);MinistryofEducation,YouthandSports(Czech Republic);Bundesministeriumfür BildungundForschung(Federal Ministry of Education and Research) and Deutsche Forschungs-gemeinschaft (German Research Foundation) (Germany); Science FoundationIreland(Ireland);SwedishResearchCouncil (Sweden); ChinaAcademy ofSciences andNationalNaturalScience Founda-tion of China (China); and Ministry of Education and Science of Ukraine(Ukraine).

References

[1]S.Abachi,etal.,D0Collaboration,Observationofthetopquark,Phys.Rev.Lett. 74(1995)2632.

[2]F.Abe,etal.,CDFCollaboration,Observationoftopquarkproductioninpp col-¯

lisionswiththeColliderDetectoratFermilab,Phys.Rev.Lett.74(1995)2626. [3] TheGfitterGroup,Resultsfortheglobalelectroweakstandardmodelfit,http://

project-gfitter.web.cern.ch/project-gfitter/Standard_Model/.

[4]G.Aad,etal.,ATLASCollaboration,Observationofanewparticleinthesearch forthestandardmodelHiggsboson,Phys.Lett.B716(2012)1.

[5]S.Chatrchyan,etal.,CMSCollaboration,Observationofanewbosonatamass of125GeVwiththeCMSexperimentattheLHC,Phys.Lett.B716(2012)30. [6]G.Degrassi,etal.,Higgsmassandvacuumstabilityinthestandardmodelat

NNLO,J.HighEnergyPhys.08(2012)098.

[7]A.DeSimone,etal.,Runninginflationinthestandardmodel,Phys.Lett.B678 (2009)1.

[8]F.Bezrukov,etal.,ThestandardmodelHiggsbosonastheinflaton,Phys.Lett. B 659(2008)703.

[9]V.M.Abazov,etal.,D0Collaboration,DeterminationofthepoleandM S masses

ofthetopquarkfromthet¯t crosssection,Phys.Lett.B703(2011)422. [10]T.Aaltonen,etal.,CDFCollaboration,Cross-section-constrainedtop-quarkmass

measurementfromdileptoneventsatthetevatron,Phys.Rev.Lett.100(2008) 062005.

[11]S.Chatrchyan,etal.,CMSCollaboration,Determinationofthetop-quarkpole massandstrongcouplingconstantfromthet¯t productioncrosssectioninpp

collisionsat√s=7 TeV,Phys.Lett.B728(2014)496.

[12]G.Aad,etal.,ATLASCollaboration,Measurementofthet¯t production cross-sectionusingeventswithb-taggedjetsinpp collisionsat√s=7 and8 TeV withtheATLASdetector,Eur.Phys.J.C74(2014)3109.

[13]F.Jegerlehner,M.Kalmykov,B.Kniehl,Onthedifferencebetweenthepoleand themassesofthetopquarkattheelectroweakscale,Phys.Lett.B722(2013) 123.

[14]V.M.Abazov,etal.,D0Collaboration,Measurementofthetopquarkmassin

p¯p collisionsusingeventswithtwoleptons,Phys.Rev.D86(2012)051103(R). [15]V.M.Abazov,etal.,D0Collaboration,Precisionmeasurementofthetopquark

massinlepton+jetsfinalstates,Phys.Rev.Lett.113(2014)032002; V.M.Abazov,etal.,D0Collaboration,Precisionmeasurementofthetop-quark massinlepton+jetsfinalstates,Phys.Rev.D91(2015)112003.

[16]V.M.Abazov,etal., D0Collaboration,Precisemeasurementofthetopquark massinthedileptonchannelatD0,Phys.Rev.Lett.107(2011)082004. [17]T.Aaltonen,etal.,CDFCollaboration,Topquarkmassmeasurementusingthe

templatemethodatCDF,Phys.Rev.D83(2011)111101.

[18]ATLAS,CDF,CMS,andD0Collaborations,FirstcombinationoftevatronandLHC measurementsofthetop-quarkmass,arXiv:1403.4427.

[19]T.Aaltonen,etal.,CDFCollaboration,Measurementofthetop-quarkmassin thet¯t dileptonchannelusingthefullCDFrunIIdataset,arXiv:1505.00500. [20]G.Aad,etal.,ATLASCollaboration,Measurementofthetopquarkmassinthe

t¯tlepton+jets andtt¯→dilepton channelsusing√s=7 TeV ATLASdata, arXiv:1503.05427.

[21]S.Chatrchyan,etal.,CMSCollaboration,Measurementofthetop-quarkmassin

t¯t eventswithdileptonfinalstatesinppcollisionsat√s=7 TeV,Eur.Phys. J. C 72(2012)2202.

[22]V.M.Abazov,etal.,D0Collaboration,TheupgradedD0detector,Nucl.Instrum. MethodsA565(2006)463.

[23]R. Angstadt,etal.,The layer0innersilicondetector oftheD0 experiment, Nucl.Instrum.MethodsA622(2010)298.

[24] Thepseudorapidityisdefinedasη= −ln[tan(θ/2)]whereθisthepolarangle relativetotheprotonbeamdirection

[25]V.M.Abazov,etal.,D0Collaboration,Electronandphotonidentificationinthe D0experiment,Nucl.Instrum.MethodsA750(2014)78.

[26]V.M.Abazov,etal.,D0Collaboration,Muonreconstructionandidentification withtherunIID0detector,Nucl.Instrum.MethodsA737(2014)281. [27]G.Blazey,etal.,RunIIjetphysics:proceedingsoftherunIIQCDandweak

bosonphysicsworkshop,arXiv:hep-ex/0005012,2000.

[28]V.M.Abazov,etal.,D0Collaboration,Improvedb quarkjetidentificationatthe D0experiment,Nucl.Instrum.MethodsA763(2014)290.

[29]V.M.Abazov,etal.,D0Collaboration,Measurementoftheasymmetryin angu-lardistributionsofleptonsproducedindileptont¯t finalstatesinpp collisions¯

at√s=1.96 TeV,Phys.Rev.D88(2013)112002.

[30]V.M.Abazov,etal.,D0Collaboration,JetenergyscaledeterminationintheD0 experiment,Nucl.Instrum.MethodsA763(2014)442.

[31]M. Mangano, et al., alpgen, a generator for hard multipartonprocesses in hadroniccollisions,J.HighEnergyPhys.07(2003)001;

M.Mangano,M.Moretti,R.Pittau,Multijetmatrixelementsandshower evo-lutioninhadroniccollisions:W bb¯+n jetsasacasestudy,Nucl.Phys.B632 (2002)343;

F.Caravaglios,etal.,Anewapproachtomultijetcalculationsinhadron colli-sions,Nucl.Phys.B539(1999)215.

(9)

[32]T.Sjöstrand,etal.,High-energy-physicseventgenerationwith pythia 6.1, Com-put.Phys.Commun.135(2001)238.

[33]M.Czakon,A.Mitov,Top++:aprogramforthecalculationofthetop-pair cross-sectionathadroncolliders,Comput.Phys.Commun.185(2014)2930; M.Cacciari,etal.,Top-pairproductionathadroncolliderswith next-to-next-to-leadinglogarithmicsoft-gluonresummation,Phys.Lett.B710(2012)612; P.Baernreuther, M. Czakon,A.Mitov, Percent-level-precisionphysics at the tevatron:next-to-next-to-leadingorderQCDcorrectionstoqq¯→t¯t+X ,Phys. Rev.Lett.109(2012)132001.

[34] R.Brun,F.Carminati,CERNprogramlibrarylongwriteupW5013,1993 (un-published).

[35]S.Abachi,etal.,D0Collaboration,Measurementofthetopquarkmassusing dileptonevents,Phys.Rev.Lett.80(1998)2063.

[36]V.M.Abazov,etal.,D0Collaboration,Measurementofthetopquarkmassin finalstateswithtwoleptons,Phys.Rev.D80(2009)092006.

[37]M.G.Bowler,e+e−productionofheavyquarksinthestringmodel,Z.Phys.C 11(1981)169.

[38] Y.Peters,K.Hamacher,D.Wicke,PreciseTuningoftheb Fragmentationforthe D0MonteCarlo,FERMILAB-TM-2425-E,2006.

[39]S.Frixione,etal.,Single-tophadroproductioninassociationwithaW boson,

J. HighEnergyPhys.07(2008)029;

S.Frixione,etal.,Single-topproductionin mc@nlo,J.HighEnergyPhys.03 (2006)092;

S.Frixione,B.Webber,MatchingNLOQCDcomputationsandpartonshower simulations,J.HighEnergyPhys.06(2002)029.

[40]G.Corcella,etal.,HERWIG6:aneventgeneratorforhadronemissionreactions withinterferinggluons(includingsupersymmetricprocesses),J.HighEnergy Phys.01(2001)010.

[41]P.Skands,TuningMonteCarlogenerators:thePerugiatunes,Phys.Rev.D82 (2010)074018;

P.Skands,TuningMonteCarlogenerators:thePerugiatunes,arXiv:1005.3457, 2011.

[42]J.Pumplin,et al.,Newgenerationofpartondistributionswithuncertainties fromglobalQCDanalysis,J.HighEnergyPhys.07(2002)012.

Figure

Fig. 1. The distribution in the mass estimator, μ w , for the combination of the ee, e μ , and μμ channels for (a) the preselected sample and (b) the final event sample

References

Related documents

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Generally, a transition from primary raw materials to recycled materials, along with a change to renewable energy, are the most important actions to reduce greenhouse gas emissions

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Från den teoretiska modellen vet vi att när det finns två budgivare på marknaden, och marknadsandelen för månadens vara ökar, så leder detta till lägre

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating