• No results found

Measurement of the branching fraction for psi(3770) -> gamma chi c0

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the branching fraction for psi(3770) -> gamma chi c0"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

branching

fraction

for

ψ (3770)

γ χ

c0

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

6

,

X.C. Ai

a

,

O. Albayrak

e

,

M. Albrecht

d

,

D.J. Ambrose

aw

,

A. Amoroso

bb

,

bd

,

F.F. An

a

,

Q. An

ay

,

1

,

J.Z. Bai

a

,

R. Baldini

Ferroli

t

,

Y. Ban

ag

,

D.W. Bennett

s

,

J.V. Bennett

e

,

M. Bertani

t

,

D. Bettoni

v

,

J.M. Bian

av

,

F. Bianchi

bb

,

bd

,

E. Boger

y

,

4

,

I. Boyko

y

,

R.A. Briere

e

,

H. Cai

bf

,

X. Cai

a

,

1

,

O. Cakir

ap

,

2

,

A. Calcaterra

t

,

G.F. Cao

a

,

S.A. Cetin

aq

,

J.F. Chang

a

,

1

,

G. Chelkov

y

,

4

,

5

,

G. Chen

a

,

H.S. Chen

a

,

H.Y. Chen

b

,

J.C. Chen

a

,

M.L. Chen

a

,

1

,

S.J. Chen

ae

,

X. Chen

a

,

1

,

X.R. Chen

ab

,

Y.B. Chen

a

,

1

,

H.P. Cheng

q

,

X.K. Chu

ag

,

G. Cibinetto

v

,

H.L. Dai

a

,

1

,

J.P. Dai

aj

,

A. Dbeyssi

n

,

D. Dedovich

y

,

Z.Y. Deng

a

,

A. Denig

x

,

I. Denysenko

y

,

M. Destefanis

bb

,

bd

,

F. De

Mori

bb

,

bd

,

Y. Ding

ac

,

C. Dong

af

,

J. Dong

a

,

1

,

L.Y. Dong

a

,

M.Y. Dong

a

,

1

,

Z.L. Dou

ae

,

S.X. Du

bh

,

P.F. Duan

a

,

E.E. Eren

aq

,

J.Z. Fan

ao

,

J. Fang

a

,

1

,

S.S. Fang

a

,

X. Fang

ay

,

1

,

Y. Fang

a

,

R. Farinelli

v

,

w

,

L. Fava

bc

,

bd

,

O. Fedorov

y

,

F. Feldbauer

x

,

G. Felici

t

,

C.Q. Feng

ay

,

1

,

E. Fioravanti

v

,

M. Fritsch

n

,

x

,

C.D. Fu

a

,

Q. Gao

a

,

X.L. Gao

ay

,

1

,

X.Y. Gao

b

,

Y. Gao

ao

,

Z. Gao

ay

,

1

,

I. Garzia

v

,

K. Goetzen

j

,

L. Gong

af

,

W.X. Gong

a

,

1

,

W. Gradl

x

,

M. Greco

bb

,

bd

,

M.H. Gu

a

,

1

,

Y.T. Gu

l

,

Y.H. Guan

a

,

A.Q. Guo

a

,

L.B. Guo

ad

,

Y. Guo

a

,

Y.P. Guo

x

,

Z. Haddadi

aa

,

A. Hafner

x

,

S. Han

bf

,

X.Q. Hao

o

,

F.A. Harris

au

,

K.L. He

a

,

T. Held

d

,

Y.K. Heng

a

,

1

,

Z.L. Hou

a

,

C. Hu

ad

,

H.M. Hu

a

,

J.F. Hu

bb

,

bd

,

T. Hu

a

,

1

,

Y. Hu

a

,

G.S. Huang

ay

,

1

,

J.S. Huang

o

,

X.T. Huang

ai

,

Y. Huang

ae

,

T. Hussain

ba

,

Q. Ji

a

,

Q.P. Ji

af

,

X.B. Ji

a

,

X.L. Ji

a

,

1

,

L.W. Jiang

bf

,

X.S. Jiang

a

,

1

,

X.Y. Jiang

af

,

J.B. Jiao

ai

,

Z. Jiao

q

,

D.P. Jin

a

,

1

,

S. Jin

a

,

T. Johansson

be

,

A. Julin

av

,

N. Kalantar-Nayestanaki

aa

,

X.L. Kang

a

,

X.S. Kang

af

,

M. Kavatsyuk

aa

,

B.C. Ke

e

,

P. Kiese

x

,

R. Kliemt

n

,

B. Kloss

x

,

O.B. Kolcu

aq

,

9

,

B. Kopf

d

,

M. Kornicer

au

,

W. Kuehn

z

,

A. Kupsc

be

,

J.S. Lange

z

,

1

,

M. Lara

s

,

P. Larin

n

,

C. Leng

bd

,

C. Li

be

,

Cheng Li

ay

,

1

,

D.M. Li

bh

,

F. Li

a

,

1

,

F.Y. Li

ag

,

G. Li

a

,

H.B. Li

a

,

J.C. Li

a

,

Jin Li

ah

,

K. Li

m

,

K. Li

ai

,

Lei Li

c

,

P.R. Li

at

,

Q.Y. Li

ai

,

T. Li

ai

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

ai

,

X.M. Li

l

,

X.N. Li

a

,

1

,

X.Q. Li

af

,

Z.B. Li

an

,

H. Liang

ay

,

1

,

Y.F. Liang

al

,

Y.T. Liang

z

,

G.R. Liao

k

,

D.X. Lin

n

,

B.J. Liu

a

,

C.X. Liu

a

,

D. Liu

ay

,

1

,

F.H. Liu

ak

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.H. Liu

a

,

H.H. Liu

p

,

H.M. Liu

a

,

J. Liu

a

,

J.B. Liu

ay

,

1

,

J.P. Liu

bf

,

J.Y. Liu

a

,

K. Liu

ao

,

K.Y. Liu

ac

,

L.D. Liu

ag

,

P.L. Liu

a

,

1

,

Q. Liu

at

,

S.B. Liu

ay

,

1

,

X. Liu

ab

,

Y.B. Liu

af

,

Z.A. Liu

a

,

1

,

Zhiqing Liu

x

,

H. Loehner

aa

,

X.C. Lou

a

,

1

,

8

,

H.J. Lu

q

,

J.G. Lu

a

,

1

,

Y. Lu

a

,

Y.P. Lu

a

,

1

,

C.L. Luo

ad

,

M.X. Luo

bg

,

T. Luo

au

,

X.L. Luo

a

,

1

,

X.R. Lyu

at

,

F.C. Ma

ac

,

H.L. Ma

a

,

,

L.L. Ma

ai

,

Q.M. Ma

a

,

T. Ma

a

,

X.N. Ma

af

,

X.Y. Ma

a

,

1

,

Y.M. Ma

ai

,

F.E. Maas

n

,

M. Maggiora

bb

,

bd

,

Y.J. Mao

ag

,

Z.P. Mao

a

,

S. Marcello

bb

,

bd

,

J.G. Messchendorp

aa

,

J. Min

a

,

1

,

R.E. Mitchell

s

,

X.H. Mo

a

,

1

,

Y.J. Mo

f

,

C. Morales

Morales

n

,

N.Yu. Muchnoi

i

,

6

,

H. Muramatsu

av

,

Y. Nefedov

y

,

F. Nerling

n

,

I.B. Nikolaev

i

,

6

,

Z. Ning

a

,

1

,

S. Nisar

h

,

S.L. Niu

a

,

1

,

X.Y. Niu

a

,

S.L. Olsen

ah

,

Q. Ouyang

a

,

1

,

S. Pacetti

u

,

Y. Pan

ay

,

1

,

P. Patteri

t

,

M. Pelizaeus

d

,

H.P. Peng

ay

,

1

,

K. Peters

j

,

J. Pettersson

be

,

J.L. Ping

ad

,

R.G. Ping

a

,

R. Poling

av

,

V. Prasad

a

,

H.R. Qi

b

,

M. Qi

ae

,

S. Qian

a

,

1

,

C.F. Qiao

at

,

L.Q. Qin

ai

,

N. Qin

bf

,

X.S. Qin

a

,

Z.H. Qin

a

,

1

,

J.F. Qiu

a

,

K.H. Rashid

ba

,

C.F. Redmer

x

,

M. Ripka

x

,

G. Rong

a

,

Ch. Rosner

n

,

X.D. Ruan

l

,

V. Santoro

v

,

A. Sarantsev

y

,

7

,

M. Savrié

w

,

K. Schoenning

be

,

S. Schumann

x

,

W. Shan

ag

,

M. Shao

ay

,

1

,

C.P. Shen

b

,

P.X. Shen

af

,

X.Y. Shen

a

,

H.Y. Sheng

a

,

http://dx.doi.org/10.1016/j.physletb.2015.11.074

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

W.M. Song

a

,

X.Y. Song

a

,

S. Sosio

bb

,

bd

,

S. Spataro

bb

,

bd

,

G.X. Sun

a

,

J.F. Sun

o

,

S.S. Sun

a

,

Y.J. Sun

ay

,

1

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

1

,

Z.T. Sun

s

,

C.J. Tang

al

,

X. Tang

a

,

I. Tapan

ar

,

E.H. Thorndike

aw

,

M. Tiemens

aa

,

M. Ullrich

z

,

I. Uman

as

,

G.S. Varner

au

,

B. Wang

af

,

B.L. Wang

at

,

D. Wang

ag

,

D.Y. Wang

ag

,

K. Wang

a

,

1

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

ai

,

P. Wang

a

,

P.L. Wang

a

,

S.G. Wang

ag

,

W. Wang

a

,

1

,

W.P. Wang

ay

,

1

,

X.F. Wang

ao

,

Y.D. Wang

n

,

Y.F. Wang

a

,

1

,

Y.Q. Wang

x

,

Z. Wang

a

,

1

,

Z.G. Wang

a

,

1

,

Z.H. Wang

ay

,

1

,

Z.Y. Wang

a

,

T. Weber

x

,

D.H. Wei

k

,

J.B. Wei

ag

,

P. Weidenkaff

x

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

be

,

L.H. Wu

a

,

Z. Wu

a

,

1

,

L. Xia

ay

,

1

,

L.G. Xia

ao

,

Y. Xia

r

,

D. Xiao

a

,

H. Xiao

az

,

Z.J. Xiao

ad

,

Y.G. Xie

a

,

1

,

Q.L. Xiu

a

,

1

,

G.F. Xu

a

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

at

,

X.P. Xu

am

,

L. Yan

bb

,

bd

,

W.B. Yan

ay

,

1

,

W.C. Yan

ay

,

1

,

Y.H. Yan

r

,

H.J. Yang

aj

,

H.X. Yang

a

,

L. Yang

bf

,

Y.X. Yang

k

,

M. Ye

a

,

1

,

M.H. Ye

g

,

J.H. Yin

a

,

B.X. Yu

a

,

1

,

C.X. Yu

af

,

J.S. Yu

ab

,

C.Z. Yuan

a

,

W.L. Yuan

ae

,

Y. Yuan

a

,

A. Yuncu

aq

,

3

,

A.A. Zafar

ba

,

A. Zallo

t

,

Y. Zeng

r

,

Z. Zeng

ay

,

1

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

1

,

C. Zhang

ae

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

an

,

H.Y. Zhang

a

,

1

,

J.J. Zhang

a

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

1

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

K. Zhang

a

,

L. Zhang

a

,

X.Y. Zhang

ai

,

Y. Zhang

a

,

Y.H. Zhang

a

,

1

,

Y.N. Zhang

at

,

Y.T. Zhang

ay

,

1

,

Yu Zhang

at

,

Z.H. Zhang

f

,

Z.P. Zhang

ay

,

Z.Y. Zhang

bf

,

G. Zhao

a

,

J.W. Zhao

a

,

1

,

J.Y. Zhao

a

,

J.Z. Zhao

a

,

1

,

Lei Zhao

ay

,

1

,

Ling Zhao

a

,

M.G. Zhao

af

,

Q. Zhao

a

,

Q.W. Zhao

a

,

S.J. Zhao

bh

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

1

,

Z.G. Zhao

ay

,

1

,

A. Zhemchugov

y

,

4

,

B. Zheng

az

,

J.P. Zheng

a

,

1

,

W.J. Zheng

ai

,

Y.H. Zheng

at

,

B. Zhong

ad

,

L. Zhou

a

,

1

,

X. Zhou

bf

,

X.K. Zhou

ay

,

1

,

X.R. Zhou

ay

,

1

,

X.Y. Zhou

a

,

K. Zhu

a

,

K.J. Zhu

a

,

1

,

S. Zhu

a

,

S.H. Zhu

ax

,

X.L. Zhu

ao

,

Y.C. Zhu

ay

,

1

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

1

,

L. Zotti

bb

,

bd

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangXiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanUniversity,Changsha410082,People’sRepublicofChina sIndianaUniversity,Bloomington,IN 47405,USA

tINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy uINFNandUniversityofPerugia,I-06100,Perugia,Italy vINFNSezionediFerrara,I-44122,Ferrara,Italy wUniversityofFerrara,I-44122,Ferrara,Italy

xJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany yJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

zJustusLiebigUniversityGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany aaKVI-CART,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands

abLanzhouUniversity,Lanzhou730000,People’sRepublicofChina acLiaoningUniversity,Shenyang110036,People’sRepublicofChina adNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina aeNanjingUniversity,Nanjing210093,People’sRepublicofChina afNankaiUniversity,Tianjin300071,People’sRepublicofChina agPekingUniversity,Beijing100871,People’sRepublicofChina ahSeoulNationalUniversity,Seoul,151-747,RepublicofKorea aiShandongUniversity,Jinan250100,People’sRepublicofChina

ajShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina akShanxiUniversity,Taiyuan030006,People’sRepublicofChina

alSichuanUniversity,Chengdu610064,People’sRepublicofChina amSoochowUniversity,Suzhou215006,People’sRepublicofChina anSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina aoTsinghuaUniversity,Beijing100084,People’sRepublicofChina apIstanbulAydinUniversity,34295Sefakoy,Istanbul,Turkey aqIstanbulBilgiUniversity,34060Eyup,Istanbul,Turkey arUludagUniversity,16059Bursa,Turkey

asNearEastUniversity,Nicosia,NorthCyprus,10,Mersin,Turkey

(3)

auUniversityofHawaii,Honolulu,HI 96822,USA avUniversityofMinnesota,Minneapolis,MN 55455,USA awUniversityofRochester,Rochester,NY 14627,USA

axUniversityofScienceandTechnologyLiaoning,Anshan114051,People’sRepublicofChina ayUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina azUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

baUniversityofthePunjab,Lahore-54590,Pakistan bbUniversityofTurin,I-10125,Turin,Italy

bcUniversityofEasternPiedmont,I-15121,Alessandria,Italy bdINFN,I-10125,Turin,Italy

beUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bfWuhanUniversity,Wuhan430072,People’sRepublicofChina bgZhejiangUniversity,Hangzhou310027,People’sRepublicofChina bhZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received4November2015

Receivedinrevisedform24November2015 Accepted30November2015

Availableonline9December2015 Editor: W.-D.Schlatter

Byanalyzingadata setof2.92 fb−1ofe+e− collisiondatatakenat√s=3.773 GeV and106.41×106

ψ(3686) decaystakenat√s=3.686 GeV withthe BESIIIdetector attheBEPCIIcollider, wemeasure the branchingfraction andthe partialdecaywidthfor ψ(3770)

γ χ

c0tobeB(ψ(3770)

γ χ

c0)= (6.88±0.28±0.67)×10−3and[ψ(3770)

γ χ

c0]= (187±8±19)keV,respectively.Thesearethe

mostprecisemeasurementstodate.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Transitions between charmonium states can be used to shed lighton variousaspects ofQuantum Chromodynamics (QCD),the theoryofthestronginteractions,inboththeperturbativeand non-perturbative regimes [1]. The

ψ(

3770

)

resonance is the lowest-mass charmonium state lying above the production threshold of open-charm DD pairs.

¯

It is assumed to be the 13D

1 cc state

¯

witha small 23S1 admixture. Based on this S–D mixing model,

predictions have been made [2–6] for the partial widths of the

ψ(

3770

)

electric-dipole (E1) radiative transitions. These predic-tionsvaryover alargerangedepending ontheunderlyingmodel assumptions.Oneofthelargestvariationsinpredictionsisforthe partialwidth of

ψ(

3770

)

γ χ

c0,withpredictions ranging from 213 keVto523 keV.A precisemeasurement ofthepartial width of

ψ(

3770

)

γ χ

c0 provides a stringent test ofthe various the-oretical approaches, thereby providing a better understanding of

ψ(

3770

)

decays.

In 2006, the CLEO Collaboration reported the first observa-tionof

ψ(

3770

)

γ χ

c0/1 andmeasured thepartialwidths[7,8].

A comparisonbetweentheir resultsandpredictionsoftraditional theorymodels[2–5]indicatesthatrelativisticandcoupled-channel effects are necessary ingredients to describe the data. A similar conclusionhasbeendrawnin

ψ(

3686

)

γ χ

cJ decays[9].The re-sultsofCLEOwerenormalizedtothecrosssection of

ψ(

3770

)

DD to

¯

obtainthetotalnumberof

ψ(

3770

)

decays,whichassumed

*

Correspondingauthor.

E-mailaddress:mahl@ihep.ac.cn(H.L. Ma).

1 Also at State Key Laboratory of Particle Detection and Electronics, Beijing 100049,Hefei230026,People’sRepublicofChina.

2 AlsoatAnkaraUniversity,06100Tandogan,Ankara,Turkey. 3 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

4 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 5 Alsoat theFunctional ElectronicsLaboratory,Tomsk StateUniversity,Tomsk, 634050,Russia.

6 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 7 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 8 AlsoattheUniversity ofTexasatDallas,Richardson,TX 75083,USA. 9 AlsoatIstanbulArelUniversity,34295Istanbul,Turkey.

thecontributionof

ψ(

3770

)

non-DD decays

¯

isnegligible[27]. Recently,theBESIIICollaborationpresentedanimproved measure-mentof

ψ(

3770

)

γ χ

c1 [10].

In this Letter, we report on an alternative and complemen-tary measurement ofthe branching fractionand partialwidth of

ψ(

3770

)

γ χ

c0 using

χ

c0

2

(

π

+

π

)

,K+K

π

+

π

−,3

(

π

+

π

)

and K+K− decays.Theresultsofourmeasurements areobtained by taking the relative strength with respect to the well-known

ψ(

3686

)

radiative E1 transition [11]. In this way, the measure-mentwillnotdependonknowledgeofthe

χ

cJ branchingfractions tolighthadronfinalstates,whichhavelargeuncertainties[7].This

measurementformsanindependentandmoreprecise benchmark

that can be compared to the predictions of various theoretical models.

2. BESIIIdetectorandMonteCarlosimulation

Inthiswork, weuse2

.

92 fb−1 ofe+e−collision datatakenat

s

=

3

.

773 GeV[12],and106

.

41

×

106

ψ(

3686

)

decaystakenat

s

=

3

.

686 GeV [13] withthe BESIII detector.These are labeled the

ψ(

3770

)

and

ψ(

3686

)

datasamples,respectively, throughout thisLetter.

TheBESIIIdetector[14]hasageometricalacceptanceof93%of 4

π

andconsistsoffourmaincomponents.Inthefollowing,we de-scribeeachdetectorcomponentstartingfromtheinnermost (clos-esttotheinteraction region)tothemostoutsidelayer.Theinner threecomponentsareimmersedinthe1 T magneticfieldofa su-perconductingsolenoid.First,asmall-cell,helium-basedmaindrift chamber (MDC)with43layers provideschargedparticle tracking andmeasurement ofionization energy loss (dE

/

dx). The average single wire resolution is 135 μm,and the momentum resolution for1 GeVelectronsina1 T magneticfieldis0.5%.Thenext detec-toraftertheMDCisatime-of-flightsystem(TOF)usedforparticle identification. It is composed of a barrel part made of two lay-ersof88plasticscintillators,each with5 cmthicknessand2.4 m length; andtwo endcaps,eachwith96fan-shapedplastic scintil-latorsof5 cmthickness.Thetimeresolutionis80 psinthebarrel, and 110 ps in the endcaps, corresponding to a K

/

π

separation betterthan2

σ

formomentauptoabout1.0 GeV.Thethird

(4)

detec-tor componentis an electromagnetic calorimeter(EMC) made of 6240CsI(Tl) crystals arrangedin a cylindricalshape (barrel) plus two endcaps. For1.0 GeV photons, the energy resolutionis 2.5% inthebarreland5%intheendcaps,andthepositionresolutionis 6 mminthe barreland9 mminthe endcaps.Outside theEMC, amuonchamber system(MUC)isincorporatedinthereturniron ofthesuperconductingmagnet.Itismadeof1272 m2ofresistive

platechambersarrangedin9layers inthe barreland8 layersin theendcaps.Thepositionresolutionisabout2 cm.

A GEANT4 [15] based Monte Carlo (MC) simulation software

package,whichincludesthegeometricdescriptionofthedetector andthedetectorresponse,isusedtodeterminethedetection effi-ciencyofthesignal processandtoestimatethepotential peaking backgrounds.SignalMCsamplesof

ψ(

3686

)/ψ(

3770

)

γ χ

cJ are generatedwiththeangulardistributionthatcorrespondstoan E1

transition,andthe

χ

cJ decaystolighthadronfinal statesare gen-eratedaccordingtoaphase-spacemodel.Particledecaysare mod-eledusingEvtGen[16],whiletheinitialproductionishandledby theMCgeneratorKKMC[17],inwhichbothinitialstate radiation (ISR)effects[18]andfinalstateradiation(FSR)effects[19]are con-sidered.Forthebackgroundstudiesof

ψ(

3686

)

decays,106

×

106 MCeventsofgenericdecays

ψ(

3686

)

anything areproducedat

s

=

3

.

686 GeV. Forthe background studies of

ψ(

3770

)

decays, MCsamplesof

ψ(

3770

)

D0D

¯

0,

ψ(

3770

)

D+D,

ψ(

3770

)

non-DD decays,

¯

ISRproductionof

ψ(

3686

)

and J

,QED,andqq

¯

continuumprocessesareproducedat

s

=

3

.

773 GeV.Theknown decay modes of the J

,

ψ(

3686

)

and

ψ(

3770

)

are generated withbranchingfractionstakenfromthePDG[11],andthe remain-ingeventsaregeneratedwithLundcharm[20].

3. Analysis

Toselectcandidate eventsfor

ψ(

3686

)/ψ(

3770

)

γ χ

cJ with

χ

cJ

2

(

π

+

π

)/

K+K

π

+

π

/

3

(

π

+

π

)/

K+K−, we require at least4

/

4

/

6

/

2 charged trackstobe reconstructedintheMDC, re-spectively.Allchargedtracksusedinthisanalysisarerequiredto be within a polar-angle(

θ

) range of

|

cos

θ

|

<

0

.

93.It is required that all charged tracks originate from the interaction region de-finedby

|

Vz

|

<

10 cm and

|

Vxy

|

<

1 cm,where

|

Vz

|

and

|

Vxy

|

are thedistancesofclosestapproachofthechargedtracktothe colli-sionpointinthebeamdirectionandintheplaneperpendicularto thebeam,respectively.

Charged particles are identified by confidencelevels for kaon and pion hypotheses calculated using dE

/

dx and TOF measure-ments.Toeffectivelyseparatepionsandkaons,atrackisidentified asa pion (or kaon) only if theconfidence level for thepion (or kaon) hypothesis islarger thanthe confidencelevel forthe kaon (orpion)hypothesis.

Photons are selected by exploiting the information from the EMC. It is required that the shower time be within 700 ns of the event start time and the shower energy be greater than 25 (50) MeVin thebarrel(endcap) regiondefined by

|

cos

θ

|

<

0

.

80 (0

.

86

<

|

cos

θ

|

<

0

.

92).Here,

θ

isthephotonpolaranglewith re-specttothebeamdirection.

In the selection of

γ

2

(

π

+

π

)

, background events from ra-diative Bhabha events in which at least two radiative photons are produced and one of them converts into an e+e− pair are suppressed by requiring the opening angle of any

π

+

π

− com-bination be larger than 10◦. For the selection of

γ

K+K−, the background events of e+e

γ

e+e− are suppressed by requir-ing EEMC

<

1 GeV and EEMC/pMDC

<

0

.

8 for each charged kaon,

where EEMC and pMDC arethe energydeposited in theEMC and

themomentummeasuredbytheMDC,respectively.

In each event, there maybe several different charged and/or neutraltrackcombinationswhichsatisfy theselection criteriafor

Fig. 1. Invariant massspectraofthe(a)2+π),(b)K+Kπ+π−,(c)3+π) and(d) K+K− combinationsfortheψ(3686)data.Thedotswitherrorbarsare fordataandthebluesolidlinesarethefitresults.Thereddashedlinesarethe fittedbackgrounds.Thered,pinkandbluearrowsshowtheχc0,χc1andχc2

nom-inalmasses,respectively.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

each light hadron final state. Each combination is subjected to a 4C kinematic fit for the hypotheses of

ψ(

3686

)/ψ(

3770

)

γ

2

(

π

+

π

)

,

γ

K+K

π

+

π

−,

γ

3

(

π

+

π

)

and

γ

K+K−.Foreach fi-nalstate,ifmorethanone combinationsatisfiestheselection cri-teria, onlythe combinationwiththe least

χ

2

4C isretained,where

χ

2

4C isthechi-squareofthe4C kinematicfit.Thefinalstateswith

χ

2

4C

<

25 arekeptforfurtheranalysis.

To identify the

χ

cJ decays, we examine the invariant mass spectra of the light hadron final states. Fig. 1 shows the corre-sponding massspectra forthe

ψ(

3686

)

data, inwhich clear

χ

c0,

χ

c1 and

χ

c2 signals are observed. Since the

χ

c1 cannot decay into two pseudoscalar mesons because of spin-parity conserva-tion, the

χ

c1 signal cannot be observed in the K+K− invariant mass spectrum.Byfittingthesespectraseparately,we obtain the numbers of

χ

cJ observed fromthe

ψ(

3686

)

data, Nψ (3686),which

are summarized in Table 1. In the fits, the

χ

cJ signals are de-scribed by the MC simulatedline-shapes convoluted byGaussian functionsfortheresolution.Backgroundsinthefourchannelsare describedby3/3/3/1-parameterpolynomialfunctions.The parame-tersoftheconvolutedGaussianfunctionsandtheChebychev poly-nomialfunctionsareallfree.

Fig. 2 shows thecorresponding mass spectra forthe

ψ(

3770

)

data, in which clear peaks can be observed for the

χ

c0 decays. Fitting to these spectra similarly, we obtain the number of

χ

cJ

(

J

=

0

,

1

)

decaysobservedfromthe

ψ(

3770

)

data,Nψ (3770),which

aresummarizedinTable 1.Duetothelimitedstatistics,thedecay

ψ(

3770

)

γ χ

c2 is not further considered in this analysis. The means and widths of the convoluted Gaussian functions for the

χ

c0 signalsare left free.For the

χ

c1, themeanand widthofthe convoluted Gaussian functionsarefixed atthe valuestakenfrom thefitstothe

ψ(

3686

)

data.Backgroundsinthefourchannelsare describedby6

/

2

/

6

/

2-parameterpolynomialfunctions.

The background eventsfrom e+e

→ (

γ

ISR)ψ(3686

)

produced near

s

=

3

.

773 GeV have the same event topologies as those from

ψ(

3770

)

decaysandareindistinguishablefrom

ψ(

3770

)

de-cays. In thefits to the

ψ(

3770

)

data, the size andline-shape of

(5)

Table 1

MeasuredRcJ (%),whereNψ (3770)andNψ (3686)arethe(peakingbackgroundcorrected)

num-bersof χcJ observedfrom the ψ(3770)and ψ(3686) data, ψ (3770) and ψ (3686) arethe

detectionefficiencies(%).Theuncertaintiesarestatisticalonly.

χcJLH J=0 J=1 2+π) Nψ (3770) 756±51 80±26 ψ (3770) 24.1±0.2 25.7±0.2 Nψ (3686) 59 976±318 19 712±175 ψ (3686) 24.9±0.2 26.5±0.2 RcJ 6.64±0.45 2.13±0.69 K+Kπ+πNψ (3770) 716±54 46±24 ψ (3770) 24.0±0.2 25.4±0.2 Nψ (3686) 46 929±240 11 576±115 ψ (3686) 23.3±0.2 24.9±0.2 RcJ 7.56±0.57 2.00±1.04 3+π) Nψ (3770) 502±54 76±27 ψ (3770) 18.5±0.2 20.0±0.2 Nψ (3686) 36 536±237 19 593±153 ψ (3686) 18.1±0.2 19.6±0.2 RcJ 6.86±0.74 1.94±0.69 K+KNψ (3770) 283±24 – ψ (3770) 32.5±0.2 – Nψ (3686) 21 452±154 – ψ (3686) 32.1±0.2 – RcJ 6.65±0.57 – Averaged RcJ 6.89±0.28 2.03±0.44

Fig. 2. Invariant massspectraofthe(a)2+π),(b)K+Kπ+π−,(c)3+π) and(d)K+K− combinationsfor theψ(3770)data.Thedotswitherrorbarsare dataandthebluesolidlinesarethefitresults.The redsolidlinesarethefitted combinatorialbackgrounds.Thereddashedlinesarethesumsofthepeakingand fittedcombinatorialbackgrounds.Thered,pinkandbluearrowsshowtheχc0,χc1

andχc2nominalmasses,respectively.(Forinterpretationofthereferencestocolor

inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

suchbackgroundsarefixedaccordingtoMCsimulations,withthe numbersofbackgroundeventsbeingdeterminedby

Nbχ cJ

=

σ

χcJ,LH,obs

ψ (3686)

·

L

ψ (3770)

·

η

,

(1)

where

L

ψ (3770) isthe integratedluminosityofthe

ψ(

3770

)

data,

σ

χcJ,LH,obs

ψ (3686) is the observed cross section of e+e

→ ψ(

3686

)

γ χ

cJ with

χ

cJ

LH, in which LH denotes 2

(

π

+

π

)

,

K+K

π

+

π

−,3

(

π

+

π

)

andK+K−.Inthiswork,weassumethat

there is noother effectaffecting the

ψ(

3686

)

and

ψ(

3770

)

pro-ductionintheenergyrangefrom3.73to3.89 GeV.Thevariable

η

representsthe rateofmisidentifying

ψ(

3686

)

decaysas

ψ(

3770

)

decays, which is obtained by analyzing 1

.

5

×

106 MC events of

ψ(

3686

)

γ χ

cJwith

χ

cJ

LH generatedat

s

=

3

.

773 GeV.The

observed cross section for

ψ(

3686

)

γ χ

cJ with

χ

cJ

LH at a center-of-massenergyof

s isgivenby

σ

χcJ,LH,obs

ψ (3686)

=



σ

χcJ,LH

ψ (3686)

(

s

)

f

(

s

)

F

(

x

,

s

)

G

(

s

,

s

)

dsdx

,

(2)

wheres

s

(

1

x

)

isthesquareoftheactualcenter-of-mass en-ergyofthee+e− afterradiatingphoton(s),x isthefractionofthe radiativeenergytothebeamenergy; f

(

s

)

isthephasespace fac-tor,

(

(

s

)/

E0γ

)

3,inwhich

(

s

)

andE0γ arethephotonenergies in

ψ(

3686

)

γ χ

cJtransitionat

sandatthe

ψ(

3686

)

mass, re-spectively;F

(

x

,

s

)

isthesamplingfunctiondescribingtheradiative photonenergyfractionx at

s[18];G

(

s

,

s

)

isaGaussianfunction describingthe distributionofthecollision energywithan energy spread

σ

E

=

1

.

37 MeV as achieved atBEPCII;

σ

χcJ,LH

ψ (3686)

(

s

)

is the

crosssectiondescribedbytheBreit–Wignerfunction

σ

χcJ,LH ψ (3686)

(

s

)

=

12π



ψ (ee3686)



totψ (3686)ψ (cJ3686,LH )

(

s2

M2 ψ (3686)

)

2

+ (

ψ (tot3686)Mψ (3686)

)

2

,

(3)

in which



eeψ (3686) and



ψ (tot3686) are, respectively, the leptonic width andtotal widthof the

ψ(

3686

)

, Mψ (3686) is the

ψ(

3686

)

mass,

B

χcJ,LH

ψ (3686) isthe combinedbranchingfractionof

ψ(

3686

)

γ χ

cJ with

χ

cJ

LH. Here, the upper limit of x is set at 1

m2

χcJ

/

s, where mχcJ is the

χ

cJ nominal mass. We determine the

branching fraction

B

χψ (cJ3686,LH) by dividing the number of

χ

cJ de-cays of

ψ(

3686

)

by the total number of

ψ(

3686

)

and by the corresponding efficiency obtained in this work. The rates

η

of misidentifying

ψ(

3686

)

γ χ

c0/1/2 as

ψ(

3770

)

γ χ

c0/1/2 are

estimated to be 4

.

72

/

6

.

40

/

7

.

60

×

10−4, 4

.

40

/

6

.

27

/

7

.

57

×

10−4, 3

.

53

/

4

.

95

/

6

.

14

×

10−4 and 6

.

56

/

−/

11

.

02

×

10−4 for

χ

c0/1/2

2

(

π

+

π

)

,K+K

π

+

π

−,3

(

π

+

π

)

andK+K−,respectively.These

(6)

(

γ

ISR)ψ(3686

)

to be 90

.

6

±

3

.

4

/

37

.

5

±

1

.

4

/

76

.

5

±

2

.

9, 70

.

0

±

2

.

7

/

23

.

5

±

0

.

9

/

51

.

0

±

1

.

9, 56

.

6

±

2

.

2

/

39

.

7

±

1

.

5

/

73

.

5

±

2

.

8 and 34

.

9

±

1

.

3

/

−/

11

.

1

±

0

.

4 for

ψ(

3770

)

γ χ

c0/1/2 with

χ

c0/1/2

2

(

π

+

π

)

, K+K

π

+

π

−, 3

(

π

+

π

)

and K+K− decays, respec-tively. The errors arise from uncertainties in the

ψ(

3686

)

reso-nanceparameters, theintegratedluminosity ofthe

ψ(

3770

)

data

L

ψ (3770) and the misidentification rates

η

. In Eq. (1), the

num-ber of background events depends on the ratio of the misiden-tification rate

η

over the efficiency

ψ (3686) of reconstructing

ψ(

3686

)

χ

cJ. Since

η

and

ψ (3686) all contain the simulation

of

χ

cJ

LH,apossiblesystematicuncertaintyfromthesimulation

of

χ

cJ

LH iscanceledhere.

4. Results

Theratioofthebranchingfractionfor

ψ(

3770

)

γ χ

cJdivided bythebranchingfractionfor

ψ(

3686

)

γ χ

cJisdetermined chan-nelbychannelas RcJ

=

B

[ψ(

3770

)

γ χ

cJ

]

B

[ψ(

3686

)

γ χ

cJ

]

=

Nψ (3770)

·

Nψ (tot3686)

·

ψ (3686) Nψ (3686)

·

Nψ (tot3770)

·

ψ (3770)

,

(4) whereNψ (3686)andNψ (3770)arethenumbersof

χ

cJobservedfrom the

ψ(

3686

)

and

ψ(

3770

)

data,Nψ (tot3686)andNtotψ (3770)arethetotal numbersof

ψ(

3686

)

and

ψ(

3770

)

decays,

ψ (3686)and

ψ (3770)are

the efficiencies of reconstructing

ψ(

3686

)

and

ψ(

3770

)

γ χ

cJ

with

χ

cJ

LH estimated by MC simulations, respectively. Here,

Ntot

ψ (3770) is determined by

σ

ψ (obs3770)

·

L

ψ (3770), where

σ

ψ (obs3770)

=

(

7

.

15

±

0

.

27

±

0

.

27

)

nb isthecrosssectionfor

ψ(

3770

)

production

[21–23]and

L

ψ (3770) istheintegratedluminosityofthe

ψ(

3770

)

dataset[12].

Table 1 summarizesthe ratios RcJ measured via the different channels.Theresultsareconsistentwithinstatisticaluncertainties. Fromthesemeasurements,weobtainthestatistical-weighted aver-ages R

¯

c0

= (

6

.

89

±

0

.

28

±

0

.

65

)

% andR

¯

c1

= (

2

.

03

±

0

.

44

±

0

.

66

)

%, wherethefirstuncertaintyisstatisticalandthesecondsystematic. InthemeasurementsofR

¯

c0/1,thesystematicuncertaintyarises

from the uncertainties in the total number (0.81%) of

ψ(

3686

)

decays (Ntotψ (3686) [13]); the integrated luminosity (1.0%) of the

ψ(

3770

)

data(Lψ (3770)[12]);thecrosssection(5.3%)for

ψ(

3770

)

(

σ

obs

ψ (3770) [21–23]);thephoton selection(1.4%),assignedbasedon

1.0% per photon [24]; the MDC tracking (2.6%/4.0%); the particle identification (2.6%/4.0%); the statistical uncertainty (1.0%)of the efficiencydueto the sizeof thesimulated eventsample;the 4C kinematic fit (1.0%), estimated by comparing the measurements with and without the kinematic fit correction; the fit to mass spectra (6.4%/31.5%), estimated by comparing the measurements with alternative fit ranges (

±

20 MeV

/

c2), signal shape (simple

Breit–Wigner function) andbackground shapes (

±

1 order ofthe polynomial functions); and the subtraction of

ψ(

3686

)

peaking background(0.5%/2.0%). The efficiencies ofthe MDCtracking and particleidentificationfor K+ or

π

+ areexamined by thedoubly taggedhadronic DD events.

¯

The difference betweenthe efficien-cies of data and MC is assigned as an uncertainty. Then, their effects on R

¯

c0/1 are estimated to be 2.6%/4.0%. Table 2

summa-rizes these uncertainties. Adding them in quadrature, we obtain thetotalsystematicuncertaintyforR

¯

c0/1tobe9.4%/32.6%.

Multiplying R

¯

cJ by the branching fraction

B[ψ(

3686

)

γ χ

cJ

]

(andthetotalwidth



ψ (tot3770))takenfromthePDG[11],weobtain the branching fractions (and the partial widths) for

ψ(

3770

)

γ χ

cJ, which are summarized in Table 3, where the first uncer-taintyisstatisticalandthesecondsystematic.Inthemeasurement of

B[ψ(

3770

)

γ χ

cJ

]

(and



[ψ(

3770

)

γ χ

cJ

]

), the systematic uncertaintyarisesfromthe uncertainties of R

¯

c0/1 andthe

uncer-Table 2

Systematicuncertainties(%)inthemeasurementsofR¯cJ.

¯ Rc0 R¯c1 Ntot ψ (3686)[13] 0.81 0.81 σobs ψ (3770)[21–23] 5.3 5.3 Lψ (3770)[12] 1.0 1.0 MC statistics 1.0 1.0 Photon selection 1.4 1.4 MDC tracking 2.6 4.0 Particle identification 2.6 4.0 4C kinematic fit 1.0 1.0

Fit to mass spectra 6.4 31.5

Background subtraction 0.5 2.0

Total 9.4 32.6

Table 3

Comparisonsofthepartialwidthsforψ(3770)γ χcJ(inkeV),whereBand

de-notethebranchingfractionandthepartialwidthforψ(3770)γ χcJ,respectively.

FortheBESIIIresults,thefirstuncertaintyisstatisticalandthesecondsystematic. DetailedexplanationsabouttheCLEOresultscanbefoundinfootnote1.

Experiments J=0 J=1 BBESIII(×10−3) 6.88±0.28±0.67 1.94±0.42±0.64 BBESIII(×10−3)[10] 2.48±0.15±0.23 BESIII 187±8±19 53±12±18 BESIII[10] 67.5±4.1±6.7 CLEO[7,8] 172±30 70±17 correctedCLEO 192±24 72±16 Theories Rosner[2](non-relativistic) 523±12 73±9 Ding–Qing–Chao[3] non-relativistic 312 95 relativistic 199 72 Eichten–Lane–Quigg[4] non-relativistic 254 183

withcoupledchannels corrections 225 59 Barnes–Godfrey–Swanson[5] non-relativistic 403 125 relativistic 213 77 NRCQM[6] 218 70

tainties of

B[ψ(

3686

)

γ χ

c0/1

]

of2.7/3.2%(andtheuncertainty

of



ψ (tot3770)of3.7%). 5. Summary

In summary, by analyzing 2

.

92 fb−1 of e+e− collision data takenat

s

=

3

.

773 GeV and106

.

41

×

106

ψ(

3686

)

decaystaken at

s

=

3

.

686 GeV with the BESIII detector at the BEPCII col-lider, we measure the branching fraction

B(ψ(

3770

)

γ χ

c0

)

=

(

6

.

88

±

0

.

28

±

0

.

67

)

×

10−3 andthe partial width



[ψ(

3770

)

γ χ

c0

]

= (

187

±

8

±

19

)

keV.Theseareobtainedbyfirstmeasuring theratiowithrespecttotheaccurately knownbranchingfraction for

ψ(

3686

)

γ χ

cJ decays. Our results are, thereby, not influ-encedbytheuncertaintiesinthebranchingfractionsof

χ

cJdecays to light hadrons as done in Ref. [7]. The branching fraction and partialwidthfor

ψ(

3770

)

γ χ

c1measuredinthisworkare con-sistentwithourpreviousmeasurement[10]withinerrors.Table 3

comparesthe



[ψ(

3770

)

γ χ

c0/1

]

measuredatBESIIIwiththose

measured by CLEO [7,8]1 and the theoretical calculations from Refs. [2–6]. The partial width



[ψ(

3770

)

γ χ

c0

]

measured at

1 The CLEOmeasurements werebased on thetotal width

totψ (3770)= (23.

2.7)MeV[25]andthecrosssectionσobs

ψ (3770)DD¯= (6.39±0.10 +0.17

−0.08)nb for de-terminingthe totalnumberofψ(3770)decays,wheretheψ(3770)non-DD¯

(7)

BESIIIisconsistentwithin errorswiththeone measuredby CLEO withanimproved precision.These resultsunderline thefact that the traditional models [3–5] with a relativistic assumption or a coupled-channelcorrectionagreequantitativelybetterwiththe ex-perimentaldatathanthose [2–5] basedupon non-relativistic cal-culations.For thesetraditional models,the non-relativistic calcu-lationsclearlyoverestimatethepartialwidth



[ψ(

3770

)

γ χ

cJ

]

. The experimental data alsosupport the recent calculation based onthe non-relativisticconstituentquark model(NRCQM) [6]. To-gether with further theoretical developments, our results aim to contributetoadeeperunderstandingofthedynamicsof charmo-niumdecaysabovetheopen-charmthreshold.

Acknowledgements

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by the National Key Basic Research Program

ofChina underContract Nos.2009CB825204 and2015CB856700;

NationalNatural Science Foundation of China (NSFC) under Con-tractsNos.10935007, 11125525,11235011, 11305180, 11322544,

11335008, 11425524; the Chinese Academy of Sciences (CAS)

Large-ScaleScientific Facility Program; JointLarge-Scale Scientific FacilityFundsoftheNSFCandCASunderContractsNos.11179007,

U1232201, U1332201; CAS under Contracts Nos. KJCX2-YW-N29,

KJCX2-YW-N45; 100 Talents Program of CAS; the CAS Center

for Excellence in Particle Physics (CCEPP); INPAC and Shang-hai Key Laboratory for Particle Physics and Cosmology; German

Research Foundation DFG under Collaborative Research Center

Contract No. CRC-1044; Istituto Nazionale di Fisica Nucleare,

Italy; Ministry of Development of Turkey under Contract No.

DPT2006K-120470; Russian Foundation for Basic Research

un-der Contract No. 14-07-91152; U.S. Department of Energy

un-derContractsNos.DE-FG02-04ER41291,DE-FG02-05ER41374,

DE-FG02-94ER40823, DESC0010118; U.S. National Science

Founda-tion; University of Groningen (RuG) and the Helmholtzzentrum

fürSchwerionenforschung GmbH(GSI), Darmstadt;WCUProgram

of National Research Foundation of Korea under Contract No.

R32-2008-000-10155-0.

0.11±0.46)% and B(ψ(3686)γ χc1)= (9.07±0.11±0.54)% to determine

B(ψ(3770)γ χcJ)fromRef.[26].AlthoughCLEOdeterminedthebranching

frac-tionofψ(3770)non-DD decays¯ to be(−3.3±1.4+4.8

−6.6)% andset anupper limitof9%at90%confidencelevel[27],thePDGvalueforDD¯

ψ (3770)/ 

tot

ψ (3770)[28]

fromfour measurements at BESII[22,29–31]implied the branchingfraction for ψ(3770)non-DD decays¯ to be (14.7±3.2)%. At present, the PDG value for ψ (DD¯3770)/ 

tot

ψ (3770) gives the branching fraction of ψ(3770)non-DD de-¯

caystobe(7+89)%[11]. Therefore, for bettercomparisons,we alsolist the cor-rectedCLEO partial widths with the same input values as those used in our measurements,whichareσobs

ψ (3770)= (7.15±0.27±0.27)nb[21–23], tot ψ (3770)= (27.2±1.0)MeV,B(ψ(3686)γ χc0)= (9.99±0.27)% andB(ψ(3686)γ χc1)= (9.55±0.31)%[11]. References

[1]M.B. Voloshin,Prog.Part.Nucl.Phys.61(2008)455; E. Eichten,etal.,Rev.Mod.Phys.80(2008)1161; N. Brambilla,etal.,Eur.Phys.J.C71(2011)1534. [2]J.L. Rosner,Phys.Rev.D64(2001)094002;

J.L. Rosner,Ann.Phys.319(2005)1.

[3]Y.-B. Ding,D.-H. Qin,K.-T. Chao,Phys.Rev.D44(1991)3562. [4]E.J. Eichten,K. Lane,C. Quigg,Phys.Rev.D69(2004)094019. [5]T. Barnes,S. Godfrey,E.S. Swanson,Phys.Rev.D72(2005)054026. [6]W.-J. Deng,L.-Y. Xiao,L.-C. Gui,X.-H. Zhong,arXiv:1510.08269[hep-ph]. [7]CLEOCollaboration,B.A. Briere,etal.,Phys.Rev.D74(2006)031106. [8]CLEOCollaboration,T.E. Coans,etal.,Phys.Rev.Lett.96(2006)182002. [9]T. Skwarnicki,Int.J.Mod.Phys.A19(2004)1030.

[10]BESIIICollaboration,M. Ablikim,etal.,Phys.Rev.D91(2015)092009. [11]ParticleDataGroup,K.A. Olive,etal.,Chin.Phys.C38(2014)090001. [12]BESIIICollaboration,M. Ablikim,etal.,Chin.Phys.C37(2013)123001. [13]BESIIICollaboration,M. Ablikim,etal.,Chin.Phys.C37(2013)063001. [14]BESIIICollaboration,M. Ablikim,etal.,Nucl.Instrum.MethodsA614(2010)

345.

[15]GEANT4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. MethodsA 506 (2003)250.

[16]D.J. Lange,Nucl.Instrum.MethodsA462(2001)152; R.G. Ping,Chin.Phys.C32(2008)599.

[17]S. Jadach,B.F.L. Ward,Z. Was,Comput.Phys.Commun.130(2000)260; S. Jadach,B.F.L. Ward,Z. Was,Phys.Rev.D63(2001)113009. [18]E.A. Kureav,V.S. Fadin,Sov.J.Nucl.Phys.41(1985)466;

E.A. Kureav,V.S. Fadin,Yad.Fiz.41(1985)733.

[19]E. Barberio,Z. Was,Comput.Phys.Commun.79(1994)291. [20]J.C. Chen,etal.,Phys.Rev.D62(2000)034003.

[21]BESCollaboration,M. Ablikim,etal.,Phys.Lett.B650(2007)111. [22]BESCollaboration,M. Ablikim,etal.,Phys.Rev.Lett.97(2006)121801. [23]BESCollaboration,M. Ablikim,etal.,Phys.Lett.B652(2007)238. [24]BESIIICollaboration,M. Ablikim,etal.,Chin.Phys.C34(2010)421;

BESIIICollaboration,M. Ablikim,etal.,Phys.Rev.D81(2010)052005; BESIIICollaboration,M. Ablikim,etal.,Phys.Rev.Lett.105(2010)261801; BESIIICollaboration,M. Ablikim,etal.,Phys.Rev.D83(2011)012003; BESIIICollaboration,M. Ablikim,etal.,Phys.Rev.D83(2011)012006; BESIIICollaboration,M. Ablikim,etal.,Phys.Rev.D83(2011)032003. [25]ParticleDataGroup,S. Eidelman,etal.,Phys.Lett.B592(2004)1. [26]CLEOCollaboration,S.B. Athar,etal.,Phys.Rev.D70(2004)112002. [27]CLEOCollaboration,D. Besson,etal.,Phys.Rev.Lett.96(2006)092002;

CLEOCollaboration,D. Besson,etal.,Phys.Rev.Lett.104(2010)159901E. [28]ParticleDataGroup,C. Amsler,etal.,Phys.Lett.B661(2008)1. [29]BESCollaboration,M. Ablikim,etal.,Phys.Lett.B641(2006)145. [30]BESCollaboration,M. Ablikim,etal.,Phys.Rev.D76(2007)122002. [31]BESCollaboration,M. Ablikim,etal.,Phys.Lett.B659(2008)74.

Figure

Fig. 1. Invariant mass spectra of the (a) 2 ( π + π − ) , (b) K + K − π + π − , (c) 3 ( π + π − ) and (d) K + K − combinations for the ψ( 3686 ) data
Fig. 2. Invariant mass spectra of the (a) 2 ( π + π − ) , (b) K + K − π + π − , (c) 3 ( π + π − ) and (d) K + K − combinations for the ψ( 3770 ) data
Table 1 summarizes the ratios R cJ measured via the different channels. The results are consistent within statistical uncertainties.

References

Related documents

Consequently, the aim of this study is to identify whether the country context (Sweden, U.S. and England), where public space ETs and ICTs are used by older adults, or having

In the present study, when the participant teachers direct the students’ at- tention to metalinguistic knowledge as well as metacognitive reading strategies, I regard it as a

For example, the online resource from which the teacher excerpted texts used early in the course (Clio, 2020) contains separate sections for contrasting sources representing

Liksom i den inledande kommunikationen kring bilder från sagan om Askungen går det att se hur logiska samband bidrar till att signalera hur texten rör sig mot fullbordan genom

Precis som i ett tidigare samtal om algebra och multiplikation framstår lärarens, och i detta fall även elevernas, erfarenheter från att bo i andra länder som en resurs

Även i arbetet med att lagra kunskap har vi dock kunnat visa inslag av kommunikativt handlande, genom hur läraren och eleverna i öppen dialog sökte en gemensam

Restricted to cir- cularly symmetric Gaussian distributed processes, we have obtained (i) a formula for LSPs for the optimal spectral es- timation kernel in the ambiguity

The overall aim was to study periodontitis prevalence and severity in two Swedish adult populations, and to describe the changes over time. Further aims were to examine the effect