• No results found

Totala rörelsemängdsmomentet. Inledande statistisk fysik

N/A
N/A
Protected

Academic year: 2021

Share "Totala rörelsemängdsmomentet. Inledande statistisk fysik"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

SH1009, modern fysik, VT2013, KTH

Pauliprincipen:

Bosoner

Ett system med ej särskiljbara partiklar med heltaligt spinn har en symmetrisk vågfunktion m.a.p utbyte av partiklarna.

Fermioner

Ej särskiljbara partiklar med halvtaligt spinn har en asymmetrisk vågfunktion m.a.p. partikelbyte.

Vågfunktionen för två fermioner i exakt samma tillstånd:

( ) ( ) ( ) ( )

0 2

) 1 ,

( 1 2   12  21

Aaa rr a r a r a r a r

)

, ( )

,

( r

1

r

2 ab

r

2

r

1

ab

 

 

) , ( )

,

( r

1

r

2 ab

r

2

r

1

ab

 

  

Pauliprincipen (the exclusion principle)

Två ej särskiljbara fermioner kan inte vara i samma individuella kvanttillstånd Föreläsning 13

Förra gången:

Elektroner i atomer kan beskrivas med kvanttal med följande tillåtna värden:

n= 1, 2, ...

ℓ= 0, 1, .... n -1

m= -ℓ, -ℓ +1, .. 0,..., ℓ -1, ℓ ms= -1/2, 1/2

Totala rörelsemängdsmomentet. Inledande statistisk fysik

Genom att utnyttja att elektroner är fermioner och måste uppfylla Pauliprincipen (en elektron i varje tillstånd) kan man förklara det

periodiska systemet:

Nomenklatur: exempel: 1s22s22p5

huvudkvantal n= 1, 2

tillstånd med olika ℓanges med bokstav: s=0, p=1, d=2, f=3 ...

Antal e-för viss n,ℓ-kombination Varje kombination av n, ℓoch mkan enligt Pauliprincipen ha 2 elektroner om dessa har olika ms( respektive ).

s-skal (ℓ =0) hara bara m=0 och därför max 2 e- p-skal (ℓ =1) hara m=-1,0,1 och därför max 6 e- för visst ℓ finns 2ℓ+1 olika m-värden, vilket tillåter 2(2ℓ+1) elektroner i n,ℓ-kombinationen

(När elektroner ”fylls på” i p-skal för högre atomtal, är det oftast (beroende på e-i andra n,ℓ–skal) energimässigt fördelaktigt att fylla på i olika m-värden med lika riktade spinn (assymetrisk rumsdel, symmetrisk spinndel)därför att elektronerna, som har samma laddning hamnar längre ifrån varandra. (Hunds regel). )

(2)

SH1009, modern fysik, VT2013, KTH

Relativa energinivåer för olika skal som funktion av atomnummer.

Med fler än en elektron i atomen, kommer elektronerna att skärma kärnladdningen för varandra.

Systemet kan inte lösas analytiskt utan beräknas med hjälp av dator i approximationer.

Notera dock: kärnladdningen ökar med atomnummer. 1s skalet är närmast kärnan och har minst skärmning.

Bindningsenergin för en jon med bara en elektron är proportionell mot Z 2. (Z2-beroendet fås genom att i alla härledningar för väte ersätta qe2me Zqe2)

(Mosley visade att spektrallinjer för övergångar mellan n=2 och n=1 skalen ändras proportionellt mot (Z-1)2)

Jonisationsenergin för först frigjorda elektronen som funktion av Z.

Ädelgaser är svårast att jonisera.

Notera: helium, 24,6 eV för första frigjorda elektronen. Kvar finns en e- bunden till kärna med Z=2.

Bindningsenergin för denna enda

elektron i He+ är då 2213,6 eV = 54,2 eV

Totala rörelsemängdsmomentet

Rörelsemängdsmomentsvektorer (till vilka vi nu räknar spinn) kan inte bara adderas rakt up och ner utan lyder vissa kvantiseringsregler. Låt oss studera dessa regler genom att addera spinn Soch rörelsemängdsmoment L. Totala rörelsemängdsmomentet: J =L + S

Vektorernas storlek är och L (1) Ss(s1)

Även det totala rörelsemängdsmomentet är kvantiserat. (Stämmer experimentellt)

j j j

j m m

J

s s

s s j

j j J

j j

z

där , 1 , ...., 1 ,

, 1 ...,

, 1 ,

   där )

1 (

Pga reglerna för storleken av J, Loch S kan Loch S aldrig vara helt parallella eller motriktade.

2 2

2 2 max

max ( s)( s 1) J (  s s 2s)

J          

2 2

2 2 2 2

2

2 ( 2 )

) (

) 1 ( ) 1 (

s s s s s

s S

L

s s S

L

Vi ser att Jmax< L+S

Pss kan visas att Jmin> |L-S|

Exempel: ℓ=2, s =1/2

(totalt (2ℓ+1)(2s+1) = 10 kombinationer av joch mj)

Totala rörelsemängdsmomentet. Inledande statistisk fysik

(3)

SH1009, modern fysik, VT2013, KTH

Vilken av följande förändringar avj i övergång mellan två energinivåer där en foton utsänds är möjlig:

1) Δj = +1/2 2) Δj = -1 3) Δj = +2

I övergångar, t.ex. från exciterat 2P3/2tillstånd, gäller att totala rörelsemängdsmomentet bevaras.

Eftersom fotonen som utsänds(absorberas) har spinn=1 kommer j att ändras 1.

mjkan ändras -1, 0 eller 1

(P anger att ℓ=1, 3/2 anger att j=3/2)

(4)

SH1009, modern fysik, VT2013, KTH

Spinn-ban-koppling

Elektronens rörelsemängdsmoment i förhållande till atomkärnan ger ur elektronens synvinkel upphov till ett magnetfält från atomkärnans ”rörelse”.

Detta magnetfält verkar på elektronens magnetiska dipolmoment från spinnet.

Notera att magnetfält pga rörelesemängdsmoment kräver att L≠0, dvs n >1.

Om vi förenklat antar att strömmen som cirkulär rörelse med Lger upphov till ström som skapar B

L s

B

pga

U      

r L m vr q

r m m q v r q T

I q

e e e

e e e

e

2

2

2

2 /

2 

r L m B q

r L m

q r

B I

e e e

e

 

3 0 3

0 0

4 4

2 

För att förstå storleksordning av effekten:

Väteatom i tillstånd med n =2, L=√2ħ ger B≈ 0,28T (stort),

U≈ 10-4eV (litet, jmfr excitationsenergier: eV)

L r S m g q r L

m S q

m g q B

U

e e e

e e e

e e L

s

     

 

 

 

 

pga 0 3 0 22 3

8 4

2 

 

Statistisk fysik

(Inledning som ger grunderna för resonemang inom denna kurs.

Mer detaljer i kursen ”Termodymanik och statistisk mekanik” i åk 3 för F och MIEL).

Betrakta ett makroskopiskt system med ett stort antal partiklar, typ N1023(jmfr Avogadros tal).

Partiklarna kan vara identiska eller särskiljbara.

Varje partikel beskrivs av 3-dimensionell rörelsemängd och position.

 3N rörelsemängdskoordinater och 3N positionskoordinater, beskriver systemets tillstånd.

Tillståndet utvecklas med tiden. För att beskriva systemet i detalj skulle vi behöva en lösning för alla partiklarna, vilket är omöjligt även med avancerade datorer.

Vi beskriver istället systemet med medelvärden från statistiska lösningar baserade på fysikens lagar.

Om dessa medelvärden är tillräckligt precisa talat vi om termodynamiska system.

Exempel: Fördela N(särskiljbara) partiklar i ett rum som delas i två lika stora delar. Vad är medelvärdet av antalet partiklar i ena halvan (N1) ? Totala antalet tillstånd är 2N. Antal sätt att fördela med N1i ena halvan:

 !

!

!

1

1 N1 N N

N N

N





(binomialkoefficienten)

(5)

SH1009, modern fysik, VT2013, KTH

N1/N N1/N

N =100 N =1000

Smalare fördelningar kring medelvärdet N1=N/2 för ökat N. Vid N1023 : närmar sig delta-funktion.

Mikrokanonisk ensemble.

Isolerat, slutet, system i jämvikt. Volym, energi och antal partiklar är konstant.

Använd klassisk statistisk sannolikhet för varje tillåtet kvanttillstånd (mikrotillstånd).

Varje tillstånd är lika sannolikt !!!

Med antal möjliga tillstånd Ω(E ) (W i boken). (Egivet för systemet)

Tillstånd är här alla kombinationer av rörelsemängd pi och position qi (fasrummet) som är möjliga givet systemets energi och antalet partiklar mm. (Dessa utgör en ensemble).

Sannolikhet för tillstånd j Pj = 1/Ω Koppling till termodynamiken via entropin:

Boltzmanns antagande: S (E) =kBln Ω(E ), kB= Boltzmanns konstant = 1,38•10-23J/K Termodynamikens 1:a huvudsats:

ger:

Exempel: I ideal gas är partiklarna oberoende. Antal tillstånd per partikel blir proportionellt mot volymen:

T Nk V PV

T V S Nk

T P V Nk konst S

V V E

N

B B

E B N

N

   

 

 

 ( , , ) ln 1

,

) ( ln )

(E k E

S B

dN PdV dE TdS dN PdV TdS

dE

V E E

N V

N

T N S

V S T E P

S

T

, , ,

1 

 

 

 

 

 

 

 

 

(6)

SH1009, modern fysik, VT2013, KTH

Kanonisk ensemble.

System S med energi Ei kontakt med värmebad R med energi ER. Det totala systemet är isolerat och utgör en kanonisk ensemble med ET =E +ER.  ER=ET –E

Antal tillstånd hos det totala systemet med energi inom ET,ET+δE är: ΩT(ET)=ΩS(E)ΩR(ET -E) för visst E

Sannolikeheten att S i visst tillståndi är proportionellt mot antal mikrotillstånd av det totala systemet för vilket S är i mikrotillstånd ”i ” med energi Ei, vilket motsvarar antal mikrotillstånd för värmebadet med ER=ET –Ei

Pi  ΩR(ER)=ΩR(ET -Ei) utveckla ΩR i Eiutgående från entropi SR

 ln ( )  ...

) ( ln )

( ln )

1

(  

 

R T i B R T B R T i

B

k E E

E E k

E E

k

En term räcker pga ET ER >>Ei

 ln ( ) 

) 1 2

(

R

k

B R

E

T

E E

S

T

 

 

men

Kombinera (1) och (2) samt exponentiera ger kT

E T i

k E T R i

T

R B

i B

i

p e

e E E

E

 ( ) ( ) dvs

Normalisera:

i BT kEi BT kEi

e i e

i

p

i

1 p

 

i

T kE

B

e

i

Z

Inför tillståndssumman:

Om tillstånd ”i ” degenererat tillkommer degenerationsfaktor gi:

 

i

T kE

i B

e

i

g Z

( Koppling till termodynamiken via Helmholtz fria energi: )

FETS   k

B

T ln Z

I många sammanhang är skillnaden mellan olika energinivåerna Ei så liten och de ligger så tätt att de bör betraktas som kontinuerliga istället för diskreta. Summan övergår då till en integral, där vi måste ta hänsyn till antal tillstånd inom ett litet energiintervall E, E+δE vilket ges av tillståndstätheten ρ(E)

dE e

E

Z ( )

kEBT

Partitionsfunktionen:

Sannolikheten för att systemet har energi Eges av Maxwell-Boltzmann-fördelningen:

T kE

e

B

Z E E

P ( )  1  ( )

E E E

 ( ) ( )

(7)

SH1009, modern fysik, VT2013, KTH

Medelvärdet av energin kan nu beräknas:

dE e

E Z E

E 1 ( )

kEBT

Exempel:

Förhållandet mellan antal väteatomer i 1:a exciterade tillståndet och grundstillståndet vid rumstemperatur

(Lite artificiellt eftersom väte normalt är en tvåatomig molekyl vid rumstemperatur).

Energi för en väteatom ges huvudsakligen av huvudkvantalet n. (Enligt tidigare kan spinn-ban- koppling i detta fall försummas och vi har inget magnetfält).

Tillräckligt få väteatomer för att de skall kunna särskiljas  M-B fördelning.

Vi skall beräkna där n(Ei) står för antal atomer i energitillstånd i och i =1 är grundtillståndet.

n (E ) = D (E ) NMB(E )dE Här: diskreta energinivåer ger )

( ) (

1 2

E n

E n

T k E E T

k E

T k E

B B

B

E e D

E D Ae

E D

Ae E D E n

E

n

( )/

1 2 /

1

/ 2

1

2 2 1

1 2

) (

) ( )

( ) ( ) (

)

(

D(E ) är tillståndstätheten. I grundtillståndet, dvs då

huvudkvantalet = 1, finns bara två tillstånd, ett med elektronen i spinn upp och ett med spinn ner.

I första exciterade tillståndet, dvs då

huvudkvantalet = 2, kan ℓ =0 och ℓ =1, där det senare ger 2ℓ + 1 = 3 olika tillstånd, vardera med 2

spinntillstånd. Totalt: D (E2) = 8.

171 )

eV 300 10 62 . 8 /(

eV 2 , 10 1

2

10

2 8 ) (

)

(  e

5

E n

E n

eV 2 , 1 10

6 , 13 2

6 , 13

2 1 2

2

 E     

E

References

Related documents

Resonemang, inf¨ orda beteckningar och utr¨ akningar f˚ ar inte vara s˚ a knapph¨ andigt presenterade att de blir sv˚ ara att f¨ olja.. ¨ Aven endast delvis l¨ osta problem kan

Läs noggrant informationen nedan innan du börjar skriva tentamen..  Svara kort

Läs noggrant informationen nedan innan du börjar skriva tentamen..  Svara kort

Läs noggrant informationen nedan innan du börjar skriva tentamen..  Svara kort

Läs noggrant informationen nedan innan du börjar skriva tentamen..  Svara kort

Läs noggrant informationen nedan innan du börjar skriva tentamen..  Svara kort

 Svara kort och koncist.  Till alla uppgifterna ska fullständiga lösningar lämnas.  Lösningen till varje ny uppgift skall börjas på en ny sida.  Använd bara en sida

Läs noggrant informationen nedan innan du börjar skriva tentamen..  Svara kort