• No results found

Combined limit on the production of a light gauge boson decaying into mu(+) mu(-) and pi(+) pi(-)

N/A
N/A
Protected

Academic year: 2021

Share "Combined limit on the production of a light gauge boson decaying into mu(+) mu(-) and pi(+) pi(-)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Combined

limit

on

the

production

of

a

light

gauge

boson

decaying

into

μ

+

μ

and

π

+

π

The

KLOE-2

Collaboration

A. Anastasi

f

,

c

,

D. Babusci

c

,

M. Berlowski

c

,

w

,

C. Bloise

c

,

F. Bossi

c

,

P. Branchini

t

,

A. Budano

s

,

t

,

B. Cao

v

,

F. Ceradini

s

,

t

,

P. Ciambrone

c

,

F. Curciarello

c

,

,

E. Czerwi ´nski

b

,

G. D’Agostini

o

,

p

,

E. Danè

c

,

V. De Leo

r

,

E. De Lucia

c

,

A. De Santis

c

,

P. De Simone

c

,

A. Di Cicco

s

,

t

,

A. Di Domenico

o

,

p

,

D. Domenici

c

,

A. D’Uffizi

c

,

A. Fantini

q

,

r

,

G. Fantini

d

,

P. Fermani

c

,

S. Fiore

u

,

p

,

A. Gajos

b

,

P. Gauzzi

o

,

p

,

S. Giovannella

c

,

E. Graziani

t

,

V.L. Ivanov

h

,

i

,

T. Johansson

v

,

X. Kang

c

,

D. Kisielewska-Kami ´nska

b

,

E.A. Kozyrev

h

,

i

,

W. Krzemien

w

,

A. Kupsc

v

,

P.A. Lukin

h

,

i

,

G. Mandaglio

g

,

a

,

,

M. Martini

c

,

n

,

R. Messi

q

,

r

,

S. Miscetti

c

,

D. Moricciani

r

,

P. Moskal

b

,

A. Passeri

t

,

V. Patera

m

,

p

,

E. Perez del Rio

c

,

N. Raha

r

,

P. Santangelo

c

,

M. Schioppa

k

,

l

,

A. Selce

s

,

t

,

M. Silarski

b

,

F. Sirghi

c

,

e

,

E.P. Solodov

h

,

i

,

L. Tortora

t

,

G. Venanzoni

j

,

W. Wi´slicki

w

,

M. Wolke

v

aINFNSezionediCatania,Catania,Italy

bInstituteofPhysics,JagiellonianUniversity,Cracow,Poland cLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy dGranSassoScienceInstitute,L’Aquila,Italy

eHoriaHulubeiNationalInstituteofPhysicsandNuclearEngineering,Mˇagurele,Romania

fDipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy gDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheedAmbientalidell’UniversitàdiMessina,Messina,Italy

hBudkerInstituteofNuclearPhysics,Novosibirsk,Russia iNovosibirskStateUniversity,Novosibirsk,Russia jINFNSezionediPisa,Pisa,Italy

kDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy lINFNGruppocollegatodiCosenza,Rende,Italy

mDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy nDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy oDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy

pINFNSezionediRoma,Roma,Italy

qDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy rINFNSezionediRomaTorVergata,Roma,Italy

sDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy tINFNSezionediRomaTre,Roma,Italy

uENEA,DepartmentofFusionandTechnologyforNuclearSafetyandSecurity,Frascati(RM),Italy vDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden

wNationalCentreforNuclearResearch,Warsaw,Poland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received6July2018

Receivedinrevisedform3August2018 Accepted9August2018

Availableonline13August2018 Editor:L.Rolandi

We searched for the

μ

+

μ

− decayofalightvector gaugeboson, alsoknown as dark photon,in the

e+e−→

μ

+

μ

γ

ISRprocessbymeansoftheInitialStateRadiation(ISR)method.Weused 1.93 fb−1of

datacollectedbytheKLOEexperimentattheDANEφ-factory.Nostructureshavebeenobservedover the irreducible

μ

+

μ

− background.A 90%CLlimitontheratio

ε

2=

α

/

α

betweenthe darkcoupling constantand thefinestructureconstantof3×10−6–2×10−7 hasbeenset inthedarkphoton mass

regionbetween519MeVand 973MeV.Thisnewlimithasbeencombined withthe publishedresult

*

Correspondingauthors.

E-mailaddresses:francesca.curciarello@lnf.infn.it(F. Curciarello),gmandaglio@unime.it(G. Mandaglio).

https://doi.org/10.1016/j.physletb.2018.08.012

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Keywords: e+e−Collisions Darkforces Gaugevectorboson Upperlimits

obtainedinvestigatingthehypothesis ofthedark photondecayingintohadronsine+e−→

π

+

π

γ

ISR

events.Thecombined90%CLlimitincreasesthesensitivityespeciallyinthe

ρ

ω

interferenceregionand excludes

ε

2greaterthan(132)×10−7.Fordarkphotonmassesgreaterthan600MeVthecombined

limitislowerthan8×10−7resultingmorestringentthanpresentconstraintsfromotherexperiments.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Manygravitationalanomalies observed since thefirst decades ofthe twentieth century, aswell aslarge-scale structure forma-tionintheearlyUniverse,canbe explainedbytheexistence ofa non-baryonicmatterknownasdarkmatter(DM) [1].Darkmatter motivatesextendingtheStandardModelofparticlephysics(SM)to includeadarksectorconsistingoffieldsandparticleswithnoSM gaugechargesandincludingextragaugesymmetries.Theminimal extensionofthe SM consistsofjustone additionalabelian gauge symmetry UD

(

1

)

with associateda light vector gauge boson,the darkphoton –knownalsoasU boson,

γ

 or A–asmediatorof thenewforce,calledforthisreasondarkforce.Inthesimplest sce-nario [2],thecouplingwithSMparticlesarisesfromavectorportal knownaskinetic mixingconsisting inloopsof heavy dark parti-clescharged under both the electromagnetic andthe dark force. Theportalallowsthemixingofthedarkphotonbelongingtothe

UD

(

1

)

groupwiththeSM photon oftheUem

(

1

)

symmetry intro-ducingtheLagrangianterm:

Lmix

= −

ε

2F em i j F i j dark

.

(1)

Here

ε

isadimensionlessparameterwhichgovernsthestrengthof themixing(

ε

2

=

α



/

α

,

α

=

α

em

, α

 istheeffectivedarkcoupling constant)whileFem

i j andF i j

darkarethefieldstrengthtensorsofthe SM Uem

(

1

)

and dark UD

(

1

)

gauge groups, respectively. Through theportaltheU bosoncancoupletotheelectromagneticcurrent witha strength proportional to the SM particles electric charge. The process is responsible for both production and decayof the darkphoton inSM interactions thus resulting in an

ε

2 suppres-sion.Ifthekineticmixingappearsattheone-loop level,

ε

canbe estimatedtobeintherange10−2–10−6 allowingvisibleeffectsat highluminositye+e− colliders [3].

Duringthelastdecade,thedarkphotonhasbeenthefocusofa world-wideintensive researchbecause consideredaspossible ex-planationofmanyastrophysicalpuzzlingevidences [4].

Inthisworkweinvestigatethesimplesthypothesisofavisibly decaying dark photon looking for resonant production of U

bo-sonfromthecontinuum, consideringasallowed onlydecaysinto SMparticles.The U signal shouldappearasapeak inthe invari-ant mass of the final state particles with a widthmainly domi-natedbytheinvariantmassresolutionsincetheexpectedU -decay

widthcan beconsidered negligible [5].KLOEalreadyinvestigated

e+e

U h(dark Higgsstrahlung) [6], U bosonindecaysof vec-torparticlesto pseudoscalars [7,8],andthevisibledecay hypoth-esis publishing three searches for radiative U production in the

e+e

U

γ

process, withthe U boson decayinginto: a)

μ

+

μ

[9], using 240 pb−1 of data; b) e+e− [10], using a sample of 1.54 fb−1; c)

π

+

π

[11] analyzing thewholeKLOE dataset cor-respondingto anintegrated luminosityof 1.93 fb−1.Searches for muon andpion pairs, withthe ISR photon selected atsmall an-gle(

θ <

15◦

, θ >

165◦),coverapproximatelythesameU -boson

massrangeof520–990MeV,whilefortheelectronpairsthe pho-tonselection was atlarge angle(55◦

< θ <

125◦) allowing to

reachalowest U -bosonmassof5MeVandprobingthe

(

g

2

)

μ

favored region [12].

InthepresentworkweextendthestatisticsoftheU

μ

+

μ

search to the wholedata sample andupdate the analysiswitha newestimateofthebackground,analogoustotheoneusedforthe

U

π

+

π

− search. The new search confirms no U -bosonsignal inthe dimuoninvariant mass spectrum:a new90% CL exclusion limit in

ε

2 is estimated. This limit is of comparable magnitude withrespecttothepreviousones,thusacombinedsearchofdark photondecaysintobothmuon andpionpairswouldincrease the sensitivity ofthe single channel searches, particularly, it is more effectivein theregion ofthe

ρ

ω

interferencewhere thesearch forU

μ

+

μ

−losessensitivity.

2. TheKLOEdetector

TheKLOEdetectoroperatesatDA



NE[13],theFrascati

φ

-fac-tory. DA



NE is an e+e− collider working at a center of mass energy mφ



1

.

019 GeV. Positron and electron beams collide at an angleof

π

25 mrad,producing

φ

mesonsnearlyatrest.The detectorconsistsofalargecylindricaldriftchamber(DC) [14], sur-rounded by a lead scintillating-fiber electromagnetic calorimeter (EMC)[15].A superconductingcoilaroundtheEMCprovidesa0.52 Tmagneticfieldalongthebisectorofthecollidingbeamswhichis takenasthez axisofourcoordinatesystem.

The EMC barrel and end-caps cover 98% of the solid angle. Calorimetermodulesarereadoutatbothendsby4880 photomul-tipliers. Energy andtime resolutions are

σ

E

/

E

=

0

.

057

/

E

(

GeV

)

and

σ

t

=

57 ps

/

E

(

GeV

)

100 ps,respectively. The drift

cham-berhasonlystereowiresandis4 mindiameter,3.3 mlong.Itis builtout ofcarbon-fibersandoperates witha low- Z gasmixture (heliumwith10%isobutane).Spatialresolutionsare

σ

xy

150μm

and

σ

z

2 mm.Themomentumresolutionforlargeangletracksis

σ

(

p

)/

p

0

.

4%.ThetriggerusesbothEMCandDCinformation. Events used inthis analysisare triggered by atleast two energy depositslargerthan50 MeVintwosectorsofthebarrel calorime-ter [16].

3. e+e

μ

+

μ

γ

dataanalysis

3.1. Eventselection

We selected

μ

+

μ

γ

candidates by requiring events with two oppositely-charged tracks emitted at large polar angles, 50◦

< θ <

130◦,withtheundetectedISR photon missing mo-mentumpointing–accordingtothe

μ

+

μ

γ

kinematics–atsmall polarangles(

θ <

15◦

, θ >

165◦).Thetracksarerequiredtohave thepointofclosestapproachtothez axiswithinacylinderof ra-dius 8 cm and length 15 cm centered at the interaction point. Inordertoensuregoodreconstructionandefficiency,weselected trackswithtransverseandlongitudinalmomentump

>

160 MeV or

|

pz

|

>

90 MeV,respectively.Thisseparationoftrackandphoton

selectionregionsintheanalysis,greatlyreducesthecontamination fromtheresonantprocesse+e

→ φ →

π

+

π

π

0,fromtheFinal State Radiation (FSR)processes e+e

π

+

π

γ

FSR ande+e

μ

+

μ

γ

FSR, since the

μ

+

μ

γ

cross section diverges at small

(3)

Fig. 1. Mtrkdistributionsforμ+μ+γ andπ+πγ.Dataarerepresentedinblack, theMCsimulationsofπ+πγ and μ+μγ channelsareingreenandred, re-spectively,whiletheirsumisinblue;theverticalbacklinerepresentstheselection cutappliedtoseparatethetwochannels.(Forinterpretationofthecolorsinthe figure(s),thereaderisreferredtothewebversionofthisarticle.)

ISR photon angle making FSR processes and

φ

decays relatively unimportant [17–20].Consequently, since ISR-photons are mostly collinear with the beam line, a high statistics for the ISR signal eventsremains. The main background contributions affectingthe ISR

μ

+

μ

γ

samplearetheresonante+e

→ φ →

π

+

π

π

0 pro-cess andthe ISR and FSR e+e

x+x

γ(γ),

x

=

e

, π

processes. Their contributions have beenevaluated by applying kinematical cutsintheMtrk,M2π π plane,1 withMππ theinvariantmassofthe

trackpairinthepionmasshypothesis.

Aparticleidentificationestimator(PID),L±,basedona pseudo-likelihood function usingthe charged particles time-of-flight and energy depositionsin the five calorimeterlayers is used to sup-pressradiative Bhabhaevents [19,21,22]. Events withbothtracks having L±

<

0 are identified as e+e

γ

events andrejected (see Fig.2).

Finally,acutonthetrack-massvariable Mtrk selectsmuonsby requiringMtrk

<

115 MeV asshowninFig.1.Attheendofthe selectiondescribedaboveabout7.16

×

106eventssurvive.

In order to evaluate the residual background contributions, the sameanalysis chain was applied to simulatedevents forthe

π

+

π

γ

and

π

+

π

π

0 channelswhilethe radiativeBhabha con-tributionhas beenevaluated directlyfrommeasured data. Distri-butionsofthefractionalresidualbackgroundFBGforeachchannel andtheir sumare shownin Fig. 3asa function ofthe invariant massofthetrackpairinthemuonmasshypothesis,Mμμ.

Thetotalresidualbackgroundrisesuptoabout9%inthe

ρ

ω

regionanddecreases downtoabout3%atlowandhighinvariant massvalues.

4. Parametrizationoftheirreducible

μ

+

μ

γ

background

Tominimizethesystematicuncertaintiesaffectingtheanalysis, weevaluatedtheirreducible

μ

+

μ

γ

backgrounddirectlyfromthe data.InFig. 4,we report thecomparisonbetween dataand

esti-1 M

trk is computed from energy and momentum conservation, assumingthe presenceofoneundetectedphotonandthatthetracksbelongtoparticlesofthe samemass: √ s  | p+|2+M2 trk−  | p|2+M2 trk 2 − p++ p2=0

where p+( p−)isthemeasuredmomentumofthepositive(negative)particle,and onlyoneofthefoursolutionsisphysical.

Fig. 2. MCL+vs.L−PIDdistributionsforbothtracks.Eventscontainedinthelow leftrectangle(havingbothtrackswithL±<0)areregardedase+eγ eventsand rejectedintheselection.

Fig. 3. Fractional residual backgrounds as function of Mμμ.

matedbackgrounddistributions(toppanel)andtheirratio(bottom panel),whichareingoodagreementwithinerrors.

We estimated theirreducible

μ

+

μ

γ

background by using a sidebandfittotheobservedspectrum,keeping,foreachiteration, thefitwiththebestreduced

χ

2.Thefittosidebandsinthewhole

mass range has been performed considering sub ranges

±

12

σ

wide, where

σ

is thedimuon invariant massresolution ofabout 2MeV[11].ForeachU-masshypothesisaregioncorrespondingto

±

3

σ

isexcludedfromthefit.Wefitthedatadistributionsby us-ing Chebyshevpolynomials(asinRef. [9])up to6thorderinthe massranges519–757 MeVand811–973 MeV.Inthemassinterval between759and809 MeV,wheretheeffectofthe

ρ

ω

interfer-enceispresent[23],weusedanotherparametrization:

f

(

x

)

=

pol2

(

x

)

· [

1

+

A

· (

x

M

)

·

exp

(

0

.

5

· ((

x

M

)/λ)

2

)

].

(2) The parametrization (2) has beenused because found to best fitthe

μμ

invariantmasssimulatedspectrum(PHOKHARA gener-ator [24–27] with vacuumpolarization correction included anda full descriptionofthe detectorperformedwiththeGEANFI pack-age [28])asshowninFig. 5.As afirststep,thethreecoefficients ofthesecond orderpolynomial pol2(x)andthe parameters A, M

and

λ

arecomputedbyfittingthefunctioninEq.(2) overthefull

μ

+

μ

γ

simulatedspectrum:valuesof782.24MeVand6.09MeV wereobtainedfortheparametersM and

λ

,respectively.Then,the

(4)

Fig. 4. Toppanel:μ+μγ observedspectrum(fullsquares)and estimated irre-duciblebackground(opensquares).Bottompanel:dataandestimatedbackground ratio.

Fig. 5. FitofreconstructedPHOKHARAMCwithvacuumpolarization correction in-cluded.

fitsinthe consideredmassrange(759–809 MeV)ofthe

μ

+

μ

γ

observedspectrumhavebeenperformedbyusingagainthe func-tion (2), keeping the parameters M and

λ

fixed at the values 782.24MeVand6.09MeV,andleavingfreeall theother parame-ters.

ExamplesofthefitsperformedbyusingChebyshevpolynomials ortheparametrizationineq. (2) areshowninFig.6.

Thereduced

χ

2 ofthefittosidebandsforboth parameteriza-tionsremainsbelow2inthewholemassrange.Thefitprocedure isstableinthe wholedata rangeandnoanomaly is observedin thefittedbackground.

5. Systematicuncertainties

Inthefollowingwe report thesystematicuncertainties affect-ing the analysis, mainly dueto the evaluationof the irreducible

Fig. 6. Examplesoffitsperformedintwosub-rangesoftheμ+μγ spectrumby usingChebyshevpolynomials(upperpanel)andparametrization(2) (lowerpanel).

Fig. 7. Bin-by-bin total fractional systematic error of the background estimate.

backgroundandtotheeventselectionappliedtothe

μ

+

μ

γ

can-didates.

5.1. Systematicuncertaintiesontheirreduciblebackground

Thefractionalsystematicerrorontheirreducible

μ

+

μ

γ

back-groundisshowninFig.7.Theevaluationofthesystematic uncer-taintieshasbeenderivedforeachmassbinbyestimatingtheerror ofthefit.Thetotalsystematicerrorislessthan1%inmostofthe massrange.

The systematic error dueto the side bands fit procedure has been also evaluated by varying the range of the fit interval of

±

1

σ

andcomputingthemaximumdifferencebetweennominalfit

(5)

Fig. 8. Global efficiency as function of Mμμ.

Table 1

Summaryofthesystematicuncertainties.

Systematic source Relative uncertainty (%)

Mtrkcut 0.4 Acceptance 0.6–0.1 as Mμμincreases Trigger 0.1 Tracking 0.3–0.6 as Mμμincreases Generator 0.5 Luminosity 0.3 PID negligible Total 0.98–0.94 as Mμμincreases

andthefitderived bychangingthefitinterval.Itscontributionis

<<

1%andthereforeresultsnegligibleinthewholemassrange.

5.2. Systematicuncertaintiesoftheglobalefficiency

Fig.8showstheglobalanalysisefficiencythathasbeen evalu-atedfromafull

μ

+

μ

γ

simulation.Thisefficiencyincludes con-tributions from kinematic selection, trigger, tracking, acceptance andPID-likelihoodefficiencies.

Table 1 lists all the systematic errors affecting the

μ

+

μ

γ

analysis. We evaluated the corresponding uncertainties by using the same procedures described in Ref. [9]. These systematic un-certaintiesdonotaffecttheirreduciblebackgroundestimationbut enterin thedetermination oftheselection efficiencyandthe lu-minositymeasurement.

6. LimitsonU -bosonproductionin

μμγ

events

The

μ

+

μ

γ

observed spectrum doesnot reveal thepresence of any visible structure (see Fig. 4) within the mass-dependent systematicuncertainties.Forthisreason,aprocedurehasbeen ap-plied to evaluate the statisticalsignificance of theobserved data fluctuationsandeventually set a limit on the e+e

U

γ

,

U

μ

+

μ

− process. The following subsection describesthe results of thelimitextractionprocedure.

6.1. Upperlimitextractionon

ε

2

Toextractthe upperlimit(UL) on

ε

2 weused theConfidence LevelSignal(CLS)technique [29].Theprocedurerequiresasinputs theinvariantmassdataspectrum,thebackground(theirreducible

μ

+

μ

γ

background),theU -bosonsignalandthesystematic frac-tional uncertainties on the background estimation foreach Mμμ

bin.ThesignalhasbeengeneratedwithatoyMCinstepsof2MeV fortheU -bosonmass.Ateachstep,aGaussiandistributionisbuilt

withawidthcorrespondingtotheinvariantmassresolutionofthe dimuonsystemofabout2 MeV.Thesignalisthenintegratedover

Mμμ around MU.Thenumberof signalevents,givenasinput to

theprocedure,isinitiallyarbitraryandveryhigh(abouttentimes the square rootof the estimatedbackground value inthe corre-spondingmassbin)andtheniterativelyscaleduntiltheconfidence levelCLS reaches0.1within

±

0.01.Theintegralofthesignal cor-respondingtothedefinedlevelofconfidencerepresentsthelimit on the numberof U -bosoneventsexcluded at 90%CL. Since the limit isstronglydependent ontheirreduciblebackground evalua-tion,thelimitextractionaccountsforthesystematicuncertainties of the background estimate. The limit extraction procedure uses the total bin-by-bin fractional systematicuncertainty, reportedin Fig. 7, to perform a Gaussian smearing of the

μ

+

μ

γ

expected backgroundgivenasinput.

TheULonthekinetic mixingparameterhasbeenextractedby using,foreachU -bosonmassvalue,thefollowingformula [9–11]:

ε

2

=

α



α

=

NCLS



eff

·

L

·

H

·

I (3) where NCLS is thelimit on thenumber ofevents,



eff represents the global efficiency (shown in Fig. 8), L is the integrated lumi-nosity (1.93 fb−1 with an uncertainty of 0.3% [18,19]), H is the radiator function calculated at QED next-to-leading-order correc-tionswithanuncertaintyof0.5% [25–27,30] andgivenby: H

=

d

σ

μμγ

/

dMμμ

σ

(

e+e

μ

+

μ

,

Mμμ

)

.

(4)

Here d

σ

μμγ

/

dMμμ is the differential cross section of e+e

μ

+

μ

γ

,

σ

(

e+e

μ

+

μ

,

Mμμ

)

isthetotalcrosssectionofthe

e+e

μ

+

μ

− process.InEq. (3), I isgivenbythefollowing in-tegralaround MU:

I

=



σ

Uμμd

s

,

(5)

where

σ

Uμμ

=

σ

(

e+e

U

μ

+

μ

,

s

)

isthetotalcrosssection

of U -bosonproductiondecaying inthe

μ

+

μ

− channelwhen the

kineticmixingparameter

ε

isequalto1,s

=

M2

U.Theuncertainties

on H ,



eff, L, and I, propagate tothe systematicerror on

ε

2 via eq. (3).The resultinguncertaintyon

ε

2 islowerthan 1%andhas beentakenintoaccountintheestimatedlimit.

The exclusion plot on

ε

2 is shown asa dashed linein Fig. 9 comparedwiththeexistinglimitsinthemassrangebelow1 GeV. Our90%CLULrangesfrom3

×

10−6 to2

×

10−7 inthe519–973 MeVmassinterval.

7. CombinedlimitonU -bosonproductionin

μμγ

and

π π γ

events

Inthissectionwepresentthecombinationprocedureofthefull statistics

π

+

π

γ

and

μ

+

μ

γ

limits. As forthe previous analy-ses, weuse theCLS technique toestimate a 90%CL limit forthe

e+e

U

γ

ISR

,

U

μ

+

μ

, π

+

π

− process. Toextract the limit, weusethealreadyestimatedbackgroundandobservedspectrafor both

π π γ

[11] and

μμγ

channels in a combined way. A total systematicerrorontheirreduciblebackgroundestimate,givenby the combinationofthecorresponding estimateduncertainties for bothU -bosondecaymodes,isalsogivenasinputtotheprocedure. A combinedU -bosonsignal isgeneratedforboth decaychannels taking into account the differences in global efficiencyand rela-tive branching ratio [3]. Thesignal inputsare generatedwiththe same toy MC procedure performedfor the

μ

+

μ

γ

limit extrac-tion,then,eachsignalisintegratedandnormalized tothenumber

(6)

Fig. 9. 90%CLexclusionplot forε2 as afunctionofthe U -boson massfor the e+e−→ process.The Uμ+μ− limit(dashedline), theUπ+π− [11] constraint(dotted line),and the Uμ+μ+π− combination (solidline) at fullKLOE statistics,arepresentedincomparisonwiththe competitivelimits by BaBar [31],NA48/2 [32],andLHCbexperiments[33].

of events estimated from Eq. (3), for a given hypothesis of the kinetic mixingparameter

ε

2. Thelimit computation proceeds ac-cordingtothefollowingsteps:itmakesahypothesisofthe

ε

2 ki-neticmixingparameter,startingfromanarbitraryverylowvalue; thecorresponding numberofeventsfor

π π γ

and

μμγ

channels aregeneratedaccordingtoEq. (3) inordertobuild thesignal in-puthistogram, then, the procedure runsas before by comparing data andexpected irreducible background. The search procedure endswhentheestimatedCLS becomescloseto 0.1within

±

0.01, providingdirectlythecorrespondingexclusionon

ε

2.

Thecombinedupperlimit,obtainedafteraveraging the statis-ticalfluctuationsby asmoothingprocedure,excludesvaluesof

ε

2 greaterthan

(

13

2

)

×

10−7 intheU -massrange519–987 MeV. ItisshowninFig.9,comparedtothemostcompetitivelimits.The other existing limits [7–10,34–37] are not reported to make the figure more readable. The combined limit is represented by the blue area and is more stringent with respect to the already set limitsinthemassregion600–987 MeV,whileitiscomparableto BaBarandLHCbresultsformasseslowerthan600 MeV.

8. Conclusions

We analyzed 1.93 fb−1 of KLOE data to investigate the hy-pothesis ofa light vector gauge boson decaying into muonsand pions by means of the ISR method in the e+e

U

γ

ISR

,

U

μ

+

μ

, π

+

π

− process.No U -bosonevidencehasbeenfound and acombinedlimitat90%CLusingthetwoU -decaymodeshasbeen extractedonthekineticmixingparameter

ε

2 intheenergyrange between519and987 MeV.Thenewcombinedlimitismore strin-gent than the alreadyset constraints in the region between600 and987MeVbyexcludingvaluesof

ε

2 higherthan

(

8

2

)

×

10−7. Acknowledgements

We warmly thank our former KLOE colleagues for the

ac-cess to the data collected during the KLOE data taking

cam-paign.WethanktheDA



NEteamfortheir effortsinmaintaining

low background running conditions and their collaboration dur-ing all data taking. We want to thank our technical staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring ef-ficient operation of the KLOE computing facilities; M. Anelli for hiscontinuous attentiontothegassystemanddetectorsafety;A. Balla, M. Gatta, G. Corradiand G. Papalino for electronics main-tenance; C. Piscitelli for his help during major maintenance pe-riods. This work was supported in part by the Polish National

Science Centre through the Grants Nos. 2013/11/B/ST2/04245,

2014/14/E/ST2/00262,2014/12/S/ST2/00459,2016/21/N/ST2/01727, 2016/23/N/ST2/01293,2017/26/M/ST2/00697.

References

[1]C.Patrignani,etal.,Chin.Phys.C40(2016)100001;

G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405 (2005) 279, arXiv:hep-ph/ 0404175;

G. Bertone,Particle DarkMatter: Observations, Modelsand Searches, Cam-bridgeUniversityPress,2010;

J.Alexander,etal.,arXiv:1608.08632. [2]B.Holdom,Phys.Lett.B166(1985)196;

C.Boehm,P.Fayet,Nucl.Phys.B683(2004)219; P.Fayet,Phys.Rev.D75(2007)115017;

Y.Mambrini,J.Cosmol.Astropart.Phys.1009(2010)022; M.Pospelov,A.Ritz,M.B.Voloshin,Phys.Lett.B662(2008)53. [3]R.Essig,P.Schuster,N.Toro,Phys.Rev.80(2009)015003;

B.Batell,M.Pospelov,A.Ritz,Phys.Rev.D79(2009)115008; M.Reece,L.T.Wang,J.HighEnergyPhys.07(2009)051. [4]O.Adriani,etal.,Nature458(2009)607;

P.Jean,etal.,Astron.Astrophys.407(2003)L55; J.Chang,etal.,Nature456(2008)362;

F.Aharonian,etal.,Phys.Rev.Lett.101(2008)261104; A.A.Abdo,etal.,Phys.Rev.Lett.102(2009)181101; R.Bernabei,etal.,Eur.Phys.J.C56(2008)333; M.Aguilar,etal.,Phys.Rev.Lett.110(2013)141102. [5]L.Barzè,etal.,Eur.Phys.J.C71(2011)1680. [6]A.Anastasi,etal.,Phys.Lett.B747(2015)365. [7]F.Archilli,etal.,Phys.Lett.B706(2012)251. [8]D.Babusci,etal.,Phys.Lett.B720(2013)111. [9]D.Babusci,etal.,Phys.Lett.B736(2014)459. [10]A.Anastasi,etal.,Phys.Lett.B750(2015)633. [11]A.Anastasi,etal.,Phys.Lett.B757(2016)356. [12]M.Pospelov,Phys.Rev.D80(2009)095002.

[13]A.Gallo,etal.,DAFNEstatusreport,ConfProc.C060626(2006)604–606. [14]M.Adinolfi,etal.,Nucl.Instrum.Methods,Sect.A488(2002)51. [15]M.Adinolfi,etal.,Nucl.Instrum.Methods,Sect.A482(2002)364. [16]M.Adinolfi,etal.,Nucl.Instrum.Methods,Sect.A492(2002)134. [17]S.Binner,J.H.Kuehn,K.Melnikov,Phys.Lett.B459(1999)279. [18]A.Aloisio,etal.,Phys.Lett.B606(2005)12.

[19]F.Ambrosino,etal.,Phys.Lett.B670(2009)285. [20]D.Babusci,etal.,Phys.Lett.B720(2013)336. [21]D.Babusci,etal.,Phys.Lett.B720(2009)336. [22]F.Ambrosino,etal.,Phys.Lett.B700(2011)102. [23]A.Anastasi,etal.,Phys.Lett.B767(2017)485.

[24]H.Czy ˙z,A.Grzelinska,J.H.Kühn,G.Rodrigo,Eur.Phys.J.C39(2005)411. [25]G.Rodrigo,H.Czy ˙z,J.H.Kühn,M.Szopa,Eur.Phys.J.C24(2002)71. [26]H.Czy ˙z,A.Grzelinska,J.H.Kühn,G.Rodrigo,Eur.Phys.J.C27(2003)563. [27]H.Czy ˙z,A.Grzelinska,J.H.Kühn,G.Rodrigo,Eur.Phys.J.C33(2004)333. [28]F.Ambrosino,etal.,Nucl.Instrum.Methods,Sect.A534(2004)403. [29]G.C.Feldman,R.D.Cousins,Phys.Rev.D57(1998)3873.

[30]S.Actis,etal.,Eur.Phys.J.C66(2010)585. [31]J.P.Lees,etal.,Phys.Rev.Lett.113(2014)201801. [32]J.R.Batley,etal.,Phys.Lett.B746(2015)178. [33]R.Aaij,etal.,Phys.Rev.Lett.120(2018)061801. [34]H.Merkel,etal.,Phys.Rev.Lett.112(2014)221802. [35]S.Abrahamyan,etal.,Phys.Rev.Lett.107(2011)191804. [36]P.Adlarson,etal.,Phys.Lett.B726(2013)187. [37]G.Agakishiev,etal.,Phys.Lett.B731(2014)265.

References

Related documents

nate different spin-2 signal hypotheses from the SM Higgs- boson hypothesis for the 0-jet and the 1-jet category, respec- tively.. For both the 0-jet and the 1-jet categories,

Ett annat exempel är att andelen läkarbesök utan registrerad diagnos sjönk från ca 10 % år 2003, innan mål och mått ersättningen infördes, till som bäst något över

För de bränslen, som går till produktionsprocesser, har vi endast föreslagit att ungarna i måleriet ska förvärmas med fjärrvärme men inte beräknat hur stor denna

The aims of this thesis were to outline the design protocol for a prospective clinical epidemiological study of injuries among athletics athletes; study the 1-

Contextual ambidexterity, with its focus on motivating employees to engage in explorative activities although their formal tasks relate more to exploitation,

Antagandet om denna möjlighet, utifrån den essentiella åtskillnaden mellan våra föreställningar (i det här fallet våra metoder) och verkligheten i sig (där kunskap om

Eftersom Naturvårdsverkets handbok 2003:6 med allmänna råd om vattenskyddsområde säger att det ska ta grundvattnet i sekundär skyddszon minst 100 dygn att nå gränsen

Detta omfattar även sjöbefäl, som genom att delta kan påverka tekniken och regelverken och genom detta även bli något mer positivt inställda till den teknik som de kommer