• No results found

Statistisk mekanik

N/A
N/A
Protected

Academic year: 2021

Share "Statistisk mekanik"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

SH1009, modern fysik, VT2013, KTH

Inledande statistisk mekanik:

Beskriv ett makroskopiskt system med ett stort antal partiklar med medelvärden från statistiska lösningar baserade på fysikens lagar. Om dessa medelvärden är tillräckligt precisa talat vi om termodynamiska system.

För slutet isolerat system där alla tillstånd är möjliga tillstånd är lika sannolika härleddes allmänna gaslagen mha termodynamikens 1:a huvudsats.

Föreläsning 14 Förra gången:

Det totala rörelsemängdsmomentet J = L+S är också kvantiserat.

j j j

j m m

J

s s

s s j

j j J

j j

z

där , 1 , ...., 1 ,

, 1 ...,

, 1 ,

där )

1 (

Fotonen som utsänds(absorberas) vid övergångar har spinn=1 gör att j att ändras 1.

Kanonisk ensemble.

System S med energi Ei kontakt med värmebad R med energi ER. Det totala systemet är isolerat och utgör en kanonisk ensemble med ET =E +ER.  ER=ET –E

Antal tillstånd hos det totala systemet med energi inom ET,ET+δE är: ΩT(ET)=ΩS(E)ΩR(ET -E) för visst E

Sannolikeheten att S i visst tillståndi är proportionellt mot antal mikrotillstånd av det totala systemet för vilket S är i mikrotillstånd ”i ” med energi Ei, vilket motsvarar antal mikrotillstånd för värmebadet med ER=ET –Ei

Pi  ΩR(ER)=ΩR(ET -Ei) utveckla ΩR i Eiutgående från entropi SR

 ln ( )  ...

) ( ln )

( ln )

1

(  

 

R T i B R T B R T i

B

k E E

E E k

E E

k

En term räcker pga ET ER >>Ei

 ln ( ) 

) 1 2

(

men

S

R

k E

Statistisk mekanik (forts)

Föreläsning 14

(2)

SH1009, modern fysik, VT2013, KTH

 

i

T kE

B

e

i

Z

Inför tillståndssumman:

Om tillstånd ”i ” degenererat tillkommer degenerationsfaktor gi:

 

i

T kE

i B

e

i

g Z

( Koppling till termodynamiken via Helmholtz fria energi: )

FETS   k

B

T ln Z

I många sammanhang är skillnaden mellan olika energinivåerna Ei så liten och de ligger så tätt att de bör betraktas som kontinuerliga istället för diskreta. Summan övergår då till en integral, där vi måste ta hänsyn till antal tillstånd inom ett litet energiintervall E, E+δE vilket ges av tillståndstätheten ρ(E)

dE e

E

Z ( )

kEBT

Partitionsfunktionen:

Sannolikheten för att systemet har energi Eges av Maxwell-Boltzmann-fördelningen:

T kE

e

B

Z E E

P ( ) 1 ( )

E E

E 

 

 ( ) ( )

Medelvärdet av energin kan nu beräknas:

dE e

E Z E

E 1 ( )

kEBT

(3)

SH1009, modern fysik, VT2013, KTH

Exempel:

Förhållandet mellan antal väteatomer i 1:a exciterade tillståndet och grundstillståndet vid rumstemperatur

(Lite artificiellt eftersom väte normalt är en tvåatomig molekyl vid rumstemperatur).

Energi för en väteatom ges huvudsakligen av huvudkvantalet n. (Enligt tidigare kan spinn-ban- koppling i detta fall försummas och vi har inget magnetfält).

Tillräckligt få väteatomer för att de skall kunna särskiljas  M-B fördelning.

Vi skall beräkna där n(Ei) står för antal atomer i energitillstånd i och i =1 är grundtillståndet.

n (E ) = D (E ) NMB(E )dE Här: diskreta energinivåer ger )

( ) (

1 2

E n

E n

T k E E T

k E

T k E

B B

B

E e D

E D Ae

E D

Ae E D E n

E

n

( )/

1 2 /

1

/ 2

1

2 2 1

1 2

) (

) ( )

( ) ( ) (

)

(

D(E ) är tillståndstätheten. I grundtillståndet, dvs då

huvudkvantalet = 1, finns bara två tillstånd, ett med elektronen i spinn upp och ett med spinn ner.

I första exciterade tillståndet, dvs då

huvudkvantalet = 2, kan ℓ =0 och ℓ =1, där det senare ger 2ℓ + 1 = 3 olika tillstånd, vardera med 2

spinntillstånd. Totalt: D (E2) = 8.

171 )

eV 300 10 62 . 8 /(

eV 2 , 10 1

2

10

2 8 ) (

)

(  e

5

E n

E n

eV 2 , 1 10

6 , 13 2

6 , 13

2 1 2

2

 E     

E

Storkanonisk ensemble.

(Avsikten med detta avsnitt är att ge bakgrund till Fermi-Dirac och Bose-Einstein fördelningarna.

Härledningar är inte helt kompletta och ges enbart översiktligt)

Öppna system som kan utbyta både energi och partiklar med omgivningen.

Eftersom partikelantal ändras kommer termer med kemiska potentialen μatt ha betydelse.

dN PdV

dE TdS dN

PdV TdS

dE

Jmfr:

Storkanoniska tillståndssumman ges av:

   

kT

i

T kE N i

T kN N

T kN

G B

G B

i B

B

Z T V N e g E V N e e

e V

T Z

 

  ( , , ), ,

, ,

0 0

(4)

SH1009, modern fysik, VT2013, KTH

Vi har gär utgått från diskreta formuleringen baserat på att kvantmekaniska energinivåer är diskreta.

Fermioner:

Pauliprincipen ger att varje fermiontillstånd bara kan ha 0 eller 1 fermion.

 

 

 

 

 

i EkTE G

B G G

B

e

F

Z T Z

k N

1 1 1

 

 

i

T Ek T G

Ek n

T Ek

n B

i B

i B

i

e Z e

e 1 1

1 , 0

Bidrag till stora tillståndssumman blir då:

”i ” står här för ett visst kvanttillstånd, dvs vågtal, spinn etc...

För fermioner används fermienergin EF istället för kemisk potential μ. Medelpartikelantalet är då:

1 1

T k E i E

B F

e

i

Medelockupationstalen för energinivåerna

n

ges av Fermi-Dirac fördelningen:

Bosoner:

Inga begränsningar på hur många partiklar som får finnas i ett visst tillstånd.

Bidrag till stora potentialen från ett tillstånd i blir då:

 

 

 

G B EkT

T Ek n

T k nE

B i

B i B

i

i k T e

e

e ( ) ln 1

1 1

0

1 ) 1

(

,

 

 

 

T k T E V i G

B

e

i

n i

Medelockupationstalen för energinivåerna ges av Bose-Einstein fördelningen:

(För fotoner, där antal inte bevaras, gäller att μ=0)

(5)

SH1009, modern fysik, VT2013, KTH

Om ockupationssannolikheterna är mycket små gäller för både FD- och BE-fördelningarna att

T Ek T

k i E T

Ek T

k

i E B

i

B i B

i

B

i

e

e n e

e n

     

 1 1 1

1 1

Dvs den klassika Maxwell-Boltzmann fördelningen (med μ= 0)

Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer.

Antal partiklar inom energiintervall Etill E +dE ges av

dN = D (E ) N(E ) dE där (med bokens beteckningar, jag föredrar f (E) istället för N(E))

D (E ) är tillståndstätheten, dvs antal tillstånd i intervallet Etill E+ dE

N(E ) är fördelningsfunktionen:

T k

MB

Ae

E B

E )

/

( 

N

Maxwell-Boltzmann fördelning.

Partiklar kan särskiljas. Obegränsat antal partiklar per energitillstånd.

1 ) 1

(

/

E kT

BE

Be

B

E

N

Bose-Einstein fördelning.

Ej särskiljbara partiklar. Obegränsat antal partiklar per energitillstånd.

(Heltaligt spinn, bosoner)

) 1 ( E 

N

Fermi-Dirac fördelning.

Sammanfattning av fördelningarna:

(6)

SH1009, modern fysik, VT2013, KTH

Jämförelse mellan fördelningsfunktionerna vid T =5000 K

Fermi-fördelningen vid T =0 och T >0.

EFär definitionsmässigt den energi där fördelningsfunktionen är ½, dvs den energi där hälften av de tillgängliga tillstånden är besatta.

References

Related documents

It's a masters thesis in Biology at Uppsala University in Sweden (and I did my lab work at the department of microbio. research at Umeå University).. In my thesis I'd like to use

På institutionen för mark och miljö, SLU, har man gjort försök med reglerbar dränering och då visat att när man minskar dräneringsdjupet förlänger man vattnets uppehållstid

Jag är inte säker på varför det är stört, men vi kan hjälpas åt att ta reda på det – för det kan vara viktigt för att kunna bli bättre.”. (Efter

Dansk selskab for Almen Medicin: Clinical guideline for general practice: Functional disorders (2013)?. Det är en

att vinna detta, synes i Statshushållningen icke kunna upptånkas någon nyttigare bestämmelse för de förhöjda afgifcer, som betunga denna slags Handel, ån den, att anslå dem

För ansökan om tillfälligt serveringstillstånd till allmänheten, där tillställningen pågår i upp till tre dagar: 3 000 kronor. Om tillställningen pågår i mer än tre dagar: 6

Miljökontoret har tagit detta beslut i enlighet med delegationsordningen för Miljönämnden i Södertälje.. Datum

Tillstånd i objektorienterade program (och mera interface)?. TDA 548: