• No results found

Hadronic structure functions in the e(+) e(-) -> (Lambda)over-bar Lambda reaction

N/A
N/A
Protected

Academic year: 2022

Share "Hadronic structure functions in the e(+) e(-) -> (Lambda)over-bar Lambda reaction"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Hadronic structure functions in the e + e → ¯ reaction

Göran Fäldt

, Andrzej Kupsc

DivisionofNuclearPhysics,DepartmentofPhysicsandAstronomy,UppsalaUniversity,Box 516,75120Uppsala,Sweden

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received28February2017

Receivedinrevisedform16April2017 Accepted4June2017

Availableonline8June2017 Editor:J.-P.Blaizot

Keywords:

Hadronproductioninee+interactions Hadronicdecays

Cross-section distributionsare calculated forthereactione+eJ/ψ→ ¯(→ ¯p

π

+)(p

π

),and relatedannihilationreactionsmediatedbyvectormesons.Thehyperon-decaydistributionsdependona number ofstructurefunctions thatarebilinear inthe,possiblycomplex,psionic formfactorsGψM and GψE oftheLambdahyperon.Therelativesizeandrelativephaseoftheseformfactorscan beuniquely determined from theunpolarized joint-decay distributions ofthe Lambda and anti-Lambda hyperons.

Alsothedecay-asymmetryparametersofLambdaandanti-Lambdahyperonscanbedetermined.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Twohadronicformfactors,commonlycalledGM

(

s

)

andGE

(

s

)

, areneededforthedescriptionoftheannihilationprocessee+

 ¯ 

, Fig. 1a, andby varying the c.m. energy√

s, their numerical valuescan inprinciple be determined forall s valuesabove

 ¯ 

threshold.Forthegeneralcaseofannihilationviaanintermediate photon,thejoint

(

p

π

) ¯ (

→ ¯p

π

+

)

decaydistributionswere calculated and analyzed in Ref. [1], using methods developed in [2,3].Recently,afirstattempttocalculatethehyperonformfactors GM

(

s

)

andGE

(

s

)

inthetime-likeregionwasreportedinRef.[4].

Previously, theinteresting specialcaseof annihilationthrough an intermediate J

or

ψ(

2S

)

, Fig. 1b, hasbeen investigated in severaltheoretical [5,6]andexperimental papers [7–9].This pro- cess has also been used for determination of the anti-Lambda decay-asymmetry parameter and for CP symmetry tests in the hyperon system. A precise knowledge of the Lambda decay- asymmetry parameter is needed for studies of spin polarization in



,



,and



+c decays.

Presently, a collected data sample of 1

.

31×109 J

events [10] by the BESIII detector[11] permitshigh-precision studies of spincorrelations.

Intheexperimental workreferredtoabove,thejoint-hyperon- decaydistributionsconsideredarenotthemostgeneralonespos- sible, butseem to be curtailed.Incomplete distribution functions donotpermitareliabledeterminationoftheformfactorsandwe

*

Correspondingauthor.

E-mailaddresses:goran.faldt@physics.uu.se(G. Fäldt), andrzej.kupsc@physics.uu.se(A. Kupsc).

Fig. 1. Graphdescribingthereactione+e→ ¯;a)generalcase,andb)mediated bythe Jresonance.

thereforesuggesttofittheexperimentaldatatothegeneraldistri- butiondescribedin[1],andfurtherelaboratedbelow.

Since thephoton andthe J

are both vector particles,their corresponding annihilation processeswillbe similar. Infact, by a simplesubstitution,thecross-sectiondistributionsinRef.[1],valid inthephotoncase,aretransformedintodistributionsvalidinthe J

case,butexpressedinthecorrespondingpsionicformfactors GψM andGψE.

http://dx.doi.org/10.1016/j.physletb.2017.06.011

0370-2693/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

In order to specify events and compare measured data with theoretical predictions, we need distribution functions expressed insome specific coordinate system. For this purpose we employ thecoordinatesystemintroducedin[1].Manyinvestigations em- ploydifferentcoordinatesystemsfortheLambdaandanti-Lambda decays,acustomwhichinouropinioncanleadtoconfusion.

Ourcalculationisperformedintwosteps.Aftersomeprelimi- nariesweturntotheinclusiveprocess ofleptonannihilationinto polarized hyperons. The results obtained are the starting point for the calculation of exclusive annihilation, i.e. the distribution forthe hyperon-decay products. Our method of calculation con- sistsin multiplying thehyperon-production distribution withthe hyperon-decaydistributions,averagingoverintermediatehyperon- spindirections.Themethodisreferredtoasfolding.

2. Basicnecessities

Resolvingthehyperonvertexin Fig. 1auncoversa numberof contributions. The one of interest to usis described by the dia- gramofFig. 1b,wherebythephotoninteractionwiththehyperons is mediated by the J

vector meson, andthe coupling of the initial-stateleptonstothe J

relatedtothedecay J

e+e. Fora J

decaythrough anintermediate photon,tensorcou- plingscan be ignored.Thus, theeffectivecouplingofthe J

to theleptonsisthesameasthatforthephoton,providedwereplace theelectricchargeeem byacouplingstrengtheψ,



eμ

(

k1

,

k2

) = −

ieψ

γ

μ

,

(2.1)

witheψ determinedbythe J

e+edecay(seeAppendix A).

Atthe J

-hyperonvertextwo form factorsare possible and theyarebothconsidered.WefollowRef.[1]inwritingthehyperon vertexas



μ

(

p1

,

p2

) = −

ieg



GψM

γ

μ

2M

Q2

(

GψM

GψE

)

Qμ



,

(2.2)

withP=p1+p2,andQ =p1p2,andM theLambdamass.The argumentoftheformfactorsequalss=P2.Thecouplingstrength eginEq.(2.2)isdeterminedbythehadronic-decayratefor J

 ¯ 

(seeAppendix A).

InRef.[1]polarizationsandcross-sectiondistributionswereex- pressed in terms of structure functions, themselves functions of theform factors GψM andGψE.Here, we shall introduce combina- tionsofformfactorscalledD,

α

,and

,whichareemployedby theexperimentalgroups[7–9]aswell.

Thestrengthofformfactorsismeasuredby D

(

s

)

,

D

(

s

) =

s

 

GψM

 

2

+

4M2

 

GψE

 

2

,

(2.3) afactorthatmultipliesallcross-sectiondistributions.Theratioof formfactorsismeasuredby

α

,

α =

s

 

GψM

 

2

4M2

 

GψE

 

2 s

 

GψM

 

2

+

4M2

 

GψE

 

2

,

(2.4)

with

α

satisfying−1

α

1.Therelativephaseofformfactorsis measuredby

,

GψE

GψM

=

ei



 

GψE GψM

 

 .

(2.5)

The diagram ofFig. 1 representsa J

exchange of momen- tum P . J

beingavectormeson,itspropagatortakestheform

gμν

PμPν

/

m2ψ

s

m2ψ

+

imψ

(ψ ) ,

(2.6)

wheremψ isthe J

mass,and

(ψ)

thefull widthofthe J

. However,sincethe J

couplestoconservedleptonandhyperon currents,thecontributionfromthePμ Pν termvanishes.Inconclu- sion,the matrixelement fore+e annihilationthrough aphoton willbestructurallyidenticaltothatforannihilationthrougha J

providedwemakethereplacement

eψeg

s

m2ψ

+

im2ψ

(ψ )

e2em

s

,

(2.7)

whereeemistheelectriccharge.

3. Crosssectionfore+e→ (s1) ¯(s2)

Our first taskis to calculate the cross-section distribution for e+e annihilationintopolarizedhyperons.From thesquaredma- trixelement|M|2 forthisprocessweremoveafactor

K

ψ,toget d

σ =

1

2s

K

ψ

| M

red

|

2dLips

(

k1

+

k2

;

p1

,

p2

),

(3.8) withdLips thephase-spacefactor,withs=P2,andwith

K

ψ

=

e

2 ψe2g

(

s

m2ψ

)

2

+

m2ψ



2

(

mψ

) .

(3.9) Thesquareofthereducedmatrixelementcanbefactorizedas

 M

red

(

e+e

→ (

s1

)(

s2

)) 

2

=

L

·

K

(

s1

,

s2

),

(3.10) withL

(

k1

,

k2

)

andK

(

p1

,

p2;s1

,

s2

)

leptonandhadrontensors,and s1 ands2 hyperonspinfour-vectors.

Leptontensorincludingaveragesoverleptonspins;

Lνμ

(

k1

,

k2

) =

14Tr



γ

ν

/

k1

γ

μk

/

2



=

k1νk2μ

+

k2νk1μ

12sgνμ

.

(3.11) Hadrontensorforpolarizedhyperons;

Kνμ

(

s1

,

s2

) =

Tr





ν

( /

p1

+

M

)

12

(

1

+ γ

5

/

s1

)

× 

μ

( /

p2

M

)

12

(

1

+ γ

5

/

s2

)



/

e2g

,

(3.12)

withp1ands1 momentumandspinfortheLambda hyperonand p2 ands2 correspondinglyfortheanti-Lambdahyperon.Thetrace itselfissymmetricinthetwohyperonvariables.

The spin four-vector s

(

p

,

n

)

of a hyperon of mass M, three- momentump,andspindirectionn initsrestsystem,is

s

(

p

,

n

) =

n

M

( |

p

|;

Ep

ˆ ) + (

0

;

n

).

(3.13) Here,longitudinalandtransversedesignationsrefertothep direc-ˆ tion; n=n· ˆp andn⊥=n− ˆp

(

n· ˆp

)

are parallel andtransverse components of the spin vector n. Also, observe that the four- vectorsp ands areorthogonal,i.e. p·s

(

p

)

=0.

Fortheevaluationofthematrixelementweturntotheglobal c.m. system wherekinematics simplifies. Here, three-momenta p andk aredefinedsuchthat

p1

= −

p2

=

p

,

(3.14)

k1

= −

k2

=

k

,

(3.15)

andscatteringangleby,

cos

θ = ˆ

p

· ˆ

k

.

(3.16)

(3)

Thephase-spacefactorbecomes dLips

(

k1

+

k2

;

p1

,

p2

) =

p

32

π

2kd

,

(3.17)

withp= |p|andk= |k|.

The matrix element in Eq.(3.10) can be written as a sum of four terms that depend on the hyperon spin directions in their respectiverestsystems,n1andn2,

 M

red

(

e+e

→ (

s1

)(

s2

))

2

=

sD

(

s

)



H00

(

0

,

0

) +

H05

(

n1

,

0

) +

H50

(

0

,

n2

) +

H55

(

n1

,

n2

)

 .

(3.18) Thepolarization distributions Hab are eachexpressedin termsof structurefunctionsthatdependonthescatteringangle

θ

,theratio function

α (

s

)

, andthe phasefunction

(

s

)

. There are sixsuch structurefunctions,

R =

1

+ α

cos2

θ,

(3.19)

S = 

1

α

2sin

θ

cos

θ

sin

( ),

(3.20)

T

1

= α +

cos2

θ,

(3.21)

T

2

= − α

sin2

θ,

(3.22)

T

3

=

1

+ α ,

(3.23)

T

4

= 

1

α

2cos

θ

cos

( ).

(3.24)

The definitions andnotations are slightlydifferentfrom those of Ref.[1].Inparticular,afactorsD

(

s

)

hasbeenpulledoutfromthe structurefunctions,andplacedinfrontofthesumofthepolariza- tiondistributionsofEq.(3.18).

Thepolarizationdistributions Habare,

H00

= R

(3.25)

H05

= S



1

sin

θ (

p

ˆ × ˆ

k

) ·

n1

(3.26) H50

= S



1

sin

θ (

p

ˆ × ˆ

k

) ·

n2

(3.27) H55

=

T

1n1

· ˆ

pn2

· ˆ

p

+ T

2n1

·

n2

+ T

3n1

· ˆ

kn2

· ˆ

k

+ T

4

n1

· ˆ

pn2

· ˆ

k

+

n2

· ˆ

pn1

· ˆ

k

(3.28)

Transversecomponentsn1andn2areorthogonaltotheLambda hyperonmomentum p intheglobalc.m. system. Also,transverse n andlongitudinaln= ˆp·n polarization componentsenterdif- ferently, since they transform differently under Lorentz transfor- mations.

Allpolarization observables,single anddouble,canbedirectly readoffEqs.(3.25)–(3.28),andtherearenootherpossibilities.The setofscalarproductsinvolvingn1andn2iscomplete.Asanexam- ple,the Lambda-hyperon polarization isobtainedfrom Eq.(3.26) whichshowsthatthepolarizationisdirectedalongthenormalto thescatteringplane,pˆ× ˆk,andthatthevalue ofthepolarization is

P

(θ ) = R S =

1

α

2cos

θ

sin

θ

1

+ α

cos2

θ

sin

( )

(3.29)

From Eq. (3.27) we conclude that the polarization of the anti- Lambda isexactlythe same,butthen oneshould rememberthat p is the momentum of the Lambda hyperon but −p that ofthe anti-Lambda.

Fig. 2. Graph describing the reaction e+e→ (→pπ) ¯(→ ¯pπ+).

4. Foldingofdistributions

Our next taskis tocalculate the cross-section distributionfor e+e annihilation into hyperon pairs, followed by the hyperon decays intonucleon–pion pairs.This reactionis described by the connecteddiagramofFig. 2.

Again,we extracta prefactor,

K = K

ψ

K

1

K

2,fromthesquared matrixelement,writing

| M |

2

= K | M

red

|

2

.

(4.30)

The prefactor originates, as before withthe propagator denomi- nators. Due to the smallness of the hyperon widths each of the hyperonpropagatorscan,aftersquaring,beapproximatedas,

K

i

=

1

(

p2i

M2

)

2

+

M2



2

(

M

) =

2

π

2M

(

M

) δ(

p2i

M2

).

(4.31) Effectively, this approximation puts the hyperons on their mass shells.

Hyperon-decay distributions are obtained by a folding calcu- lation, whereby hyperon-production and -decay distributions are multiplied together andaveragedover theintermediate hyperon- spindirections.ItwasprovedinRef.[2]thatthefoldingprescrip- tion gives the same result as the evaluation of the connected- Feynman-diagram expression. Hence, summing over final hadron spins,

| M |

2

= 

±s1s2

  M (

e+e

→ (

s1

) ¯ (

s2

))

2

×  M ((

s1

)

p

π

)

2

 M ( ¯ (

s2

) → ¯

p

π

+

)

2



n1n2

.

(4.32) Productionanddecaydistributionsare,

 M (

e+e

→ (

s1

) ¯ (

s2

))

2

=

L

·

K

(

s1

,

s2

),

(4.33)

 M ((

s1

)

p

π

)

2

=

R[1

α

1l1

·

s1

/

l]

,

(4.34)

 M ( ¯ (

s2

) → ¯

p

π

+

) 

2

=

R[1

α

2l2

·

s2

/

l]

,

(4.35) withl thedecay momentumin the Lambda restsystem. R is determinedbytheLambdadecayrate.

The notation in Eq. (4.34) is the following; s1 denotes the Lambda four-spinvector,l1 thefour-momentumofthedecaypro- ton,and

α

1thedecay-asymmetryparameter.Similarlyfortheanti- LambdahyperonparametersofEq.(4.35).

We evaluate the hyperon-decay distributions in the hyperon- restsystems,where

 M ((

s1

)

p

π

)

2

=

R



1

+ α

1

ˆ

l1

·

n1



,

(4.36)

 M ( ¯ (

s2

) → ¯

p

π

+

) 

2

=

R



1

+ α

2

ˆ

l2

·

n2



,

(4.37)

where ˆl1=l1

/

l is the unit vector in the direction of the pro- ton momentum in the Lambda-rest system, andcorrespondingly fortheanti-Lambdacase.

(4)

Angular averages in Eq.(4.32) are calculated accordingto the prescription

 (

n

·

l

)

n



n

=

l

.

(4.38)

The foldingof theproduction distributions, Eqs. (3.25)–(3.28), withthedecaydistributions,Eqs.(4.36,4.37),yields

| M

red

|

2

=

sD

(

s

)

R2



G00

+

G05

+

G50

+

G55

,

(4.39)

withtheGab functionsdefinedas

G00

= R ,

(4.40)

G05

= α

1

S



1

sin

θ (

p

ˆ × ˆ

k

) · ˆ

l1

,

(4.41)

G50

= α

2

S



1

sin

θ (

p

ˆ × ˆ

k

) · ˆ

l2

,

(4.42)

G55

= α

1

α

2

T

1

ˆ

l1

· ˆ

p

ˆ

l2

· ˆ

p

+ T

2

ˆ

l1

· ˆ

l2

+ T

3

ˆ

l1

· ˆ

k

ˆ

l2

· ˆ

k

+ T

4

ˆ

l1

· ˆ

p

ˆ

l2

· ˆ

k

+ ˆ

l2

· ˆ

p

ˆ

l1

· ˆ

k

.

(4.43)

Thus, we concludethe connection between joint-hadronproduc- tionandjoint-hadrondecaydistributionssimplytobe,

Gab

l1

l2

) =

Hab

(

n1

α

1

ˆ

l1

;

n2

α

2

ˆ

l2

).

(4.44) Werepeatthenotation;p andk aremomentaofLambdaand electronintheglobalc.m. system;l1 andl2 aremomentaofpro- tonandanti-proton inLambda andanti-Lambdarestsystems;or- thogonalmeansorthogonaltop;andstructurefunctions

R

,

S

,and

T

arefunctionsof

θ

,

α

,and

.Theangularfunctionsmultiply- ingthestructurefunctionsformasetofsevenmutuallyorthogonal functions,whenintegratedovertheprotonandanti-protondecay angles.

5. Crosssectionfore+e→ (→p

π

) ¯(→ ¯p

π

+)

Ourlast taskis to find the properly normalized cross-section distribution.Westartfromthegeneralexpression,

d

σ =

1

2s

K | M

red

|

2dLips

(

k1

+

k2

;

q1

,

l1

,

q2

,

l2

),

(5.45) with dLips the phase-space density for four final-state particles.

Theprefactor

K

containsonthemassshelldeltafunctionsforthe twohyperons.Thiseffectivelyseparatesthephasespaceintopro- ductionand decayparts. Repeating themanipulations ofRef. [2]

weget d

σ =

1

64

π

2

p k

α

g

α

ψ

(

s

m2ψ

)

2

+

m2ψ



2

(ψ )







¯



2

(

M

) ·

·

D

(

s

) 

a,b

Gab

d



d



1d



2

,

(5.46)

withk andp theinitial- andfinal-statemomenta;



thehyperon scatteringangleintheglobalc.m.system;



1and



2decayangles measured in the restsystems of



and ¯;



 and



¯ channel widths;and

(

M

)

and

(ψ)

totalwidths.

Integration over the angles



1 makes the contributions from thefunctionsG05 andG55disappear[2],andcorrespondingly for the angles



2.Integration over both angular variables results in thecross-sectiondistributionforthereactione+eJ

→  ¯.

Suppose weintegrate over theangles



2.Then, thepredicted hyperon-decaydistributionbecomesproportionaltothesum G00

+

G05

= R 

1

+ α

1P

· ˆ

l1



,

(5.47)

P

= S

R ,

(5.48)

withthepolarization PasinEq.(3.29),andthepolarization vec- torP directedalongthenormaltothescatteringplane

6. Differentialdistributions

Wefirstdefineourcoordinatesystem.Thescatteringplanewith thevectorsp andk makeup thexz-plane, withthe y-axisalong thenormaltothescatteringplane.Wechoosearight-handedco- ordinatesystemwithbasisvectors

ez

= ˆ

p

,

(6.49)

ey

=

1

sin

θ (

p

ˆ × ˆ

k

),

(6.50)

ex

=

1

sin

θ (

p

ˆ × ˆ

k

) × ˆ

p

.

(6.51)

Expressedintermsofthemtheinitial-statemomentum

k

ˆ =

sin

θ

ex

+

cos

θ

ez

.

(6.52)

Thiscoordinatesystemisusedforfixingthedirectionalangles ofthedecayprotonintheLambdarestsystem,andthedecayanti- protonintheanti-Lambdarestsystem.Thesphericalanglesforthe protonare

θ

1 and

φ

1,andthecomponentsoftheunitvectorindi- rectionofthedecay-protonmomentumare,

ˆ

l1

= (

cos

φ

1sin

θ

1

,

sin

φ

1sin

θ

1

,

cos

θ

1

),

(6.53) sothat

ˆ

l1

= (

cos

φ

1sin

θ

1

,

sin

φ

1sin

θ

1

,

0

).

(6.54) Themomentumofthedecayprotonisbydefinitionl1=lˆl1.This same coordinate system is used for defining the directional an- glesofthedecayanti-protonintheanti-Lambdarestsystem,with sphericalangles

θ

2 and

φ

2.

Now,wehaveallingredientsneededforthecalculationofthe G functionsofEqs.(4.40)–(4.43),thefunctionsthatintheendde- terminethecross-sectiondistributions.

An event of the reaction e+e→ (→p

π

) ¯ (

→ ¯p

π

+

)

is specified by the fivedimensional vector ξ= (θ,



1

, 

2

)

,and the differential-cross-sectiondistributionassummarizedbyEq.(4.39) reads,

d

σW (ξ )

dcos

θ

d



1d



2

.

At the moment, we are not interested in the absolute normal- izationofthedifferentialdistribution.Thedifferential-distribution function

W(ξ)

isobtainedfromEqs.(4.40)–(4.43)andcanbeex- pressedas,

W (ξ ) = F

0

(ξ ) + α F

5

(ξ ) + α

1

α

2

 F

1

(ξ ) + 

1

α

2cos

( ) F

2

(ξ ) + α F

6

(ξ )



+ 

1

α

2sin

( ) ( α

1

F

3

(ξ ) + α

2

F

4

(ξ )) ,

(6.55) usingasetofsevenangularfunctions

F

k

(ξ )

definedas:

(5)

F

0

(ξ ) =

1

F

1

(ξ ) =

sin2

θ

sin

θ

1sin

θ

2cos

φ

1cos

φ

2

+

cos2

θ

cos

θ

1cos

θ

2

F

2

(ξ ) =

sin

θ

cos

θ (

sin

θ

1cos

θ

2cos

φ

1

+

cos

θ

1sin

θ

2cos

φ

2

) F

3

(ξ ) =

sin

θ

cos

θ

sin

θ

1sin

φ

1

F

4

(ξ ) =

sin

θ

cos

θ

sin

θ

2sin

φ

2

F

5

(ξ ) =

cos2

θ

F

6

(ξ ) =

cos

θ

1cos

θ

2

sin2

θ

sin

θ

1sin

θ

2sin

φ

1sin

φ

2

.

(6.56) ThedifferentialdistributionofEq.(6.55) involvestwoparame- tersrelatedtothee+e→  ¯processthatcanbedeterminedby data: theratio ofform factors

α

,and therelative phase of form factors

. In addition, the distribution function

W(ξ)

can be usedtoextractseparately



and ¯decay-asymmetryparameters:

α

1 and

α

2,andhenceallowingadirecttestofCPconservationin thehyperondecays.

Thetermproportional tosin

( )

inEq.(6.55)originateswith Eqs.(4.41)and(4.42),andcanberewrittenas,

S (θ ) ( α

1sin

θ

1sin

φ

1

+ α

2sin

θ

2sin

φ

2

) ,

withthe structure function

S

definedby Eq. (3.20). The relation betweenthe structure functionsand the polarization P

(θ )

was discussed in Sect. 3, where it was shown that the polarization, P

(θ )

ofEq.(3.29),andthepolarization vector,ey,arethe same for Lambda and anti-Lambda hyperons. This information tells us that



is polarized along the normal to the production plane, andthat the polarization vanishes at

θ

=0, 90 and 180. The maximumvalue ofthepolarizationisforcos

θ

= ±1

/(

2+

α )

,and

|P

(θ )| <

23sin

( )

.

It should be stressed that thesimplified distributions usedin previousanalyses,suchasRef.[9],assumethehyperonstobeun- polarized and therefore terms containing P

(θ )

are missing. In fact, such decay distributions, only permit the determination of two parameters: the ratioof form factors

α

, andthe product of hyperon-asymmetryparameters

α

1

α

2.

Inouropinion,theformulaspresentedinthislettershouldbe employed for the exclusive analysisof the newBESIII data [10].

Duetohugeandcleandatasamples:

(

440675±670

)

J

→  ¯

and

(

31119±187

) ψ(

3686

)

→  ¯,precisionvaluesforthedecay- hadronic-formfactorscould beextractedaswellasprecisionval- uesfor



and ¯ decay-asymmetryparameters.The formulaspre-

sentedcouldeasilybegeneralizedtoneutrondecaysofthe



and to production of other J=1

/

2 hyperons with analogous decay modes.

Acknowledgements

WearegratefultoTordJohanssonwhoprovidedtheinspiration forthiswork.

Appendix A

The coupling of the initial-state leptons to the J

vector meson is determined by the decay J

e+e. Assuming the decay to go via an intermediate photon, Fig. 1b, we can safely ignore any tensor coupling. The vector coupling of the J

to leptons is thereforethe same as forthe photon, if replacing the electric charge eem by a coupling strength eψ. From the decay

J

e+eonederives

α

ψ

=

e2ψ

/

4

π =

3

(

J

e+e

)/

mψ

.

(A.57) In a similar fashion we relate the strength eg of J

cou- pling to the hyperonsto the decay J

→  ¯. In analogywith Eq.(A.57)weget

α

g

=

e2g

/

4

π =

3

(

1

+

2M2

/

m2ψ

)



1

4M2

/

m2ψ

1

× (

J

→  ¯)/

mψ

.

(A.58)

When the



mass M is replaced by thelepton mass ml=0 we recoverEq.(A.57).

References

[1]G.Fäldt,Eur.Phys.J.A52(2016)141.

[2]G.Fäldt,Eur.Phys.J.A51(2015)74.

[3]H.Czy ˙z,A.Grzeli ´nska,J.H.Kühn,Phys.Rev.D75(2007)074026.

[4]J.Haidenbauer,U.-G.Meißner,Phys.Lett.B761(2016)456.

[5]HongChen,Rong-GangPing,Phys.Rev.D76(2007)036005.

[6]BinZhong,GuangruiLiao,ActaPhys.Pol.46(2015)2459.

[7]D.Pallin,etal.,Nucl.Phys.B292(1987)653.

[8]M.H.Tixier,etal.,Phys.Lett.B212(1988)523.

[9]M.Ablikim,etal.,Phys.Rev.D81(2010)012003.

[10]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D95(2017)052003.

[11]M.Ablikim,etal.,BESIIICollaboration,Nucl.Instrum.MethodsA614(2010) 345.

References

Related documents

perspective within this field: Mark Bedau aims to uncover the role of value notions underlying our use of prima facie teleological terms (1992/1998, 286), Christopher Boorse

Taken together, our results indicate that repeatability impre- cision profiles calculated from duplicate measurements of natural patient samples within the intervals of

In the second part of the paper, we consider the corresponding formulas for hyperbolic modular functions, and show that these Möbius transformations can be used to prove

To prove this, several tools from complex function theory are used, such as the concept of greatest common divisors which depends on Weierstraß products, and Mittag-Leffler series

The efficiency is the number of reconstructed events fulfilling all criteria, divided by the number of generated MC truth events of the reaction of interest. I obtained a

It starts from a master formula which is a product of three factors, describing: the annihilation of a lepton pair into a hyperon pair, the spin-density distribution WðξÞ

Definition 1.7.7 The minimal dimension of the state space in Theorem 1.7.5 is called the Mac-Millan degree of the given rational matrix-valued function.... In particular, (s − A)

Emojis are useful and efficient tools in computer-mediated communication. The present study aims to find out how English-speaking Twitter users employ five specific emojis, and if