• No results found

Utilization of Waste Heat from Sugar Mills in Cuba for Thermally Driven Cooling

N/A
N/A
Protected

Academic year: 2022

Share "Utilization of Waste Heat from Sugar Mills in Cuba for Thermally Driven Cooling"

Copied!
104
0
0

Loading.... (view fulltext now)

Full text

(1)

       

Utilization  of  Waste  Heat  from  Sugar  Mills  in  Cuba     for  Thermally  Driven  Cooling  

   

Sofia  Feychting   Marina  Vitez    

     

Bachelor  of  Science  Thesis  

KTH  School  of  Industrial  Engineering  and  Management   Energy  Technology  EGI-­‐2014  

SE-­‐100  44  STOCKHOLM  

(2)

  II    

 

 

  Bachelor  of  Science  Thesis  EGI-­‐2014    

Utilization  of  Waste  Heat  from  Sugar  Mills  in  Cuba     for  Thermally  Driven  Cooling  

     

    Sofia  Feychting  

Marina  Vitez   Approved  

2014-­‐06-­‐10  

Examiner   Catharina  Erlich  

Supervisor   Eyerusalem  Birru  

  Commissioner  

 

Contact  person    

   

   

(3)

  III  

Abstract  

The   demand   for   air   conditioning   keeps   rising,   especially   in   developing   countries   where   the   standard  of  living  has  improved.  This  results  in  an  increased  consumption  of  electricity  and  puts   further  pressure  on  the  power  grid.  In  Cuba,  electricity  is  a  scarce  commodity  and  the  electricity   production  relies  heavily  on  fossil  fuels,  which  causes  high  emissions.  An  alternative  technology   for  producing  cooling  is  thermally  driven  cooling  where  the  installment  of  an  absorption  chiller   could  utilize  waste  heat  from  existing  industries  to  provide  cooling  to  buildings.  Therefore,  there   are  possibilities  of  lowering  the  amount  of  electricity  needed  for  air  conditioning.  

 

In  this  thesis,  the  potential  of  using  waste  heat  from  sugar  mills  in  Cuba  was  investigated.  The   sugar   industry   is   high   water   consuming   and   often   produces   large   amounts   of   heated   waste   water  that  is  rarely  utilized.  To  collect  the  data  needed  for  the  investigation,  a  study  visit  was   conducted   at   the   sugar   mill   Carlos   Baliño   in   Villa   Clara,   Cuba.   Since   the   factory   did   not   track   water  mass  flows,  calculations  based  on  sugar  concentrations  and  energy  balances  were  used  to   determine   the   different   water   outlets.   The   identified   excess   water   has   a   mass   flow   of   10   kg/s   and  a  temperature  of  96  °C,  which  is  enough  to  supply  the  factory  with  cooling.  The  result  of  the   investigation  also  showed  that  the  mill  could  invest  in  thermally  driven  cooling  with  a  payback   time   of   between   three   to   six   seasons   depending   on   the   cost   of   the   selected   equipment.   The   energy   savings   per   crushing   season   would   be   nearly   140   000   kWh   which   equals   to   financial   savings  of  above  40  000  dollar  per  season.  

 

If  the  sugar  mill  Carlos  Baliño  would  invest  in  an  absorption  chiller,  the  cooling  supply  would  be   unreliable   because   of   the   high   number   of   production   shutdowns.   Before   any   possible   implementation,  the  causes  for  the  stops  in  production  need  to  be  further  examined.  The  supply   of   cooling   would   otherwise   have   to   rely   on   thermal   energy   storage   of   chilled   water,   which   in   such  large  quantities  would  be  costly.  The  factory  only  produces  waste  heat  during  the  crushing   season,  which  lasts  from  December  throughout  April,  but  there  is  a  cooling  demand  during  the   whole   year,   which   means   that   alternative   cooling   methods   for   an   off-­‐season   cooling   supply   would  have  to  be  investigated.  The  study  concludes  that  thermally  driven  cooling  would  be  very   suitable  for  similar  industries  that  also  produce  large  amounts  of  heated  excess  water,  but  are   operating  all  year  around  and  have  a  more  even  production  rate,  both  on  a  daily  and  seasonal  

basis.      

(4)

  IV  

Sammanfattning  

Efterfrågan   på   luftkonditionering   fortsätter   att   öka,   speciellt   i   utvecklingsländer   där   levnadsstandarden   har   förbättrats.   En   ökad   efterfrågan   på   luftkonditionering   resulterar   i   en   ökad  användning  av  elektricitet,  vilket  i  sin  tur  leder  till  en  ökad  belastning  på  elnätet.  På  Kuba   är  elektricitet  en  bristvara  och  elproduktionen  är  starkt  beroende  av  fossila  bränslen  vilket  leder   till   stora   utsläpp.   En   alternativ   teknologi   för   att   producera   kyla   är   värmedriven   kyla   där   en   absorptionkylmaskin  kan  utnyttja  spillvärme  från  redan  existerande  industrier  för  att  leverera   kyla   till   byggnader.   Därav   finns   det   möjlighet   att   minska   användandet   av   den   elektricitet   som   behövs  för  att  driva  luftkonditioneringsapparater.  

 

I  denna  uppsats  undersöks  potentialen  för  att  använda  spillvärme  från  sockerfabriker  på  Kuba.  

Sockerindustrin   konsumerar   stora   mängder   vatten   och   producerar   ofta   betydande   kvantiteter   av  uppvärmt  eller  förångat  spillvatten  som  sällan  utnyttjas.  För  att  samla  in  de  data  som  krävs   för   undersökningen   genomfördes   studiebesök   på   fabriken   Carlos   Baliño   i   Villa   Clara,   Kuba.  

Eftersom   vattenflöden   inte   mättes   i   fabriken   baserades   beräkningarna   på   sockerkoncentrationer   och   energibalanser   för   att   fastställa   utloppsflöden   av   vatten.   Det   identifierade   spillvattnet   har   ett   massflöde   på   10   kg/s   och   en   temperatur   på   96   °C,   vilket   är   tillräckligt   för   att   förse   fabriken   med   kyla.   Resultatet   av   undersökningen   visade   också   att   fabriken  skulle  kunna  investera  i  värmedriven  kyla  med  en  återbetalningstid  på  mellan  tre  till   sex   säsonger   beroende   på   kostnaden   för   vald   utrustning.   Energibesparingarna   per   produktionssäsong   skulle   bli   närmare   140   000   kWh   vilket   motsvaras   av   en   ekonomisk   besparing  på  drygt  40  000  dollar  per  säsong.  

 

Om   en   absorptionskylmaskin   skulle   implementeras   på   Carlos   Baliño   skulle   leveransen   av   kyla   vara   osäker   på   grund   av   det   höga   antalet   produktionsstopp   i   fabriken.   Före   en   eventuell   implementation  måste  orsakerna  till  stoppen  undersökas,  annars  skulle  kylningsmöjligheterna   bero   starkt   på   termiska   energilager   av   kallt   vatten   vilket   i   stora   volymer   kan   bli   kostsamt.  

Fabriken  producerar  endast  spillvärme  under  produktionssäsong  vilket  pågår  från  december  till   och  med  april  men  kylbehovet  existerar  under  hela  året.  Det  betyder  att  alternativa  kylmetoder   behöver  undersökas  för  att  kylbehovet  ska  kunna  tillgodoses  året  runt.  Slutsatsen  av  studien  är   att   värmedriven   kyla   är   en   ytterst   passande   lösning   för   liknande   industrier   som   också   ger   upphov   till   stora   mängder   av   varmt   spillvatten   men   som   producerar   hela   året   och   har   en  

jämnare  produktion,  både  på  daglig  basis  och  säsongsbasis.    

(5)

  V  

Acknowledgement    

We   are   thankful   for   the   guidance   from   Pablo   Romelio   Roque   and   Manuel   Alejandro   Rubio   Rodríguez  on  location  in  Cuba,  who  enabled  the  study  visit  at  the  sugar  mill  Carlos  Baliño  in  Villa   Clara.  We  also  want  to  direct  a  special  thanks  to  our  Swedish  supervisors,  Eyerusalem  Birru  and   Catharina  Erlich,  who  made  this  project  possible  and  also  the  Department  of  Energy,  CETER,  at   CUJAE  University  in  Havana.  

 

We  are  very  grateful  for  the  scholarship  from  Din  Els  Miljöfond,  which  enabled  our  field  trip  to   Cuba.  We  also  want  to  thank  ITM  for  the  support  in  writing  the  thesis  abroad.  

 

Finally,   we   want   to   mention   the   wonderful   employees   at   the   sugar   mill   Carlos   Baliño   in   Villa   Clara  in  Cuba,  who  showed  us  the  factory  and  help  us  gather  the  information  needed.  

 

Marina  Vitez  and  Sofia  Feychting   Havana,  Cuba  2014-­‐04-­‐24  

       

   

(6)

  VI  

Table  of  Content  

Abstract  ...  III   Sammanfattning  ...  IV   Acknowledgement  ...  V   Table  of  Figures  ...  IX   Table  of  Tables  ...  X   Nomenclature  ...  XI  

1.  Introduction  ...  1  

2.  Objectives  ...  2  

2.1.  Problem  Formulation  ...  2  

2.2.  Aim  of  Study  ...  2  

2.3.  Methodology  ...  2  

3.  Literature  Study  ...  4  

3.1.  Global  Energy  Usage  ...  4  

3.2.  Global  Air  Conditioning  Usage  ...  4  

3.2.1.  Negative  Effects  of  Air  Conditioning  ...  5  

3.2.2.  Positive  Effects  of  Air  Conditioning  ...  5  

3.3.  Energy  Situation  in  Cuba  ...  5  

3.3.1.  Historical  Background  ...  5  

3.3.2.  Cuban  Energy  System  Today  ...  6  

3.4.  Air  Conditioning  Usage  in  Cuba  ...  7  

3.5.  Cooling  Methods  ...  8  

3.5.1.  Vapor  Compression  Cooling  ...  8  

3.5.2.  Absorption  Cooling  ...  9  

3.6.  The  Sugar  Industry  ...  13  

3.6.1.  Global  Sugar  Industry  ...  13  

3.6.2.  Sugar  Production  ...  13  

3.6.3.  Cogeneration  in  Sugar  Mills  ...  16  

3.6.4.  Water  Usage  in  Sugar  Mills  ...  17  

3.7.  Previous  Work  on  the  Subject  ...  18  

4.  Model  ...  19  

4.1.  System  Boundaries  ...  19  

4.1.1.  Steady  State  Modeling  ...  20  

4.1.2.  Consideration  of  Losses  in  the  Models  ...  20  

4.2.  The  Process  ...  20  

4.3.  Modeling  of  the  Mass  Balances  in  the  Sugar  Mill  ...  21  

4.3.2.  Numerical  Calculations  of  the  Mass  Flow  ...  22  

4.3.3.  Assumptions  Made  when  Calculating  the  Mass  Flow  ...  30  

4.3.4.  Sensitivity  Analysis  ...  31  

4.4.  Model  of  Energy  Supply  and  Demand  ...  32  

4.4.1.  Modeling  of  the  Energy  Demand  ...  32  

4.4.2.  Modeling  of  the  Energy  Supply  ...  33  

4.4.3.  Model  of  the  Energy  Savings  ...  35  

4.4.4.  Sensitivity  Analysis  of  the  Energy  Supply  and  Energy  Savings  ...  36  

4.5.  Modeling  of  Financial  Aspects  ...  37  

4.5.1.  Numerical  Calculations  ...  37  

4.5.2.  Restrictions  ...  37  

(7)

  VII  

4.5.3.  Assumptions  ...  38  

4.5.4.  Sensitivity  Analysis  ...  38  

5.  Results  and  Discussion  ...  40  

5.1.  Results  from  Mass  Balances  ...  40  

5.2.  Results  from  the  Energy  Demand  and  Supply  Models  ...  42  

5.2.1.  Cooling  Demand  of  the  Factory  ...  42  

5.2.2.  Cooling  Demand  of  the  Village  ...  42  

5.2.3.  Maximum  Cooling  Supply  ...  43  

5.2.4.  The  Cooling  Supply  to  the  Factory  ...  43  

5.2.5.  The  Thermal  Energy  Storage  ...  44  

5.2.6.  Energy  Savings  ...  44  

5.3.  Results  from  Financial  Calculations  ...  44  

5.4.  Results  of  the  Sensitivity  Analysis  ...  45  

5.4.1.  The  Sugar  Balance  ...  45  

5.4.2.  Mass  Flow  and  Temperature  of  the  Contaminated  Condensate  ...  46  

5.4.3.  Energy  Supply  and  Energy  Savings  ...  47  

5.4.4.  Financial  Calculations  ...  48  

5.5.  General  Discussion  ...  49  

6.  Conclusions  and  Recommended  Future  Work  ...  53  

6.1.  Conclusions  ...  53  

6.2.  Recommended  Future  Work  ...  53  

References  ...  54  

Appendix  A:  Sugar  Balance  ...  57  

Appendix  B:  Specific  Heat  Capacity  of  Juice  ...  59  

Appendix  C:  Mass  Flows  through  Juice  Heaters  ...  60  

Appendix  D:  Specification  of  the  Juices  Heaters  ...  63  

Appendix  E:  Calculations  of  Mass  Flows  from  the  Evaporators  ...  64  

Appendix  F:  Results  of  the  Mass  Flow  of  Evaporated  Water  from  the  Evaporators  ...  65  

Appendix  G:  Condensate  from  Evaporators  ...  66  

Appendix  H:  Mass  Flow  through  Crystallizer  ...  67  

Appendix  I:  Mass  Flows  through  the  Evaporators  and  the  Crystallizers  ...  68  

Appendix  J:  Temperature  and  Mass  Flows  of  the  Contaminated  Condensate  Tank  ...  69  

Appendix  K:  Sensitivity  Analysis  of  Sugar  Balance  ...  70  

Appendix  L:  Sensitivity  Analysis  of  Contaminated  Condensate  Tank  ...  71  

Appendix  M:  Cooling  Demand  of  the  Factory  -­‐  Results  from  Interview  Study  ...  72  

Appendix  N:  Cooling  Demand  of  the  Village    -­‐  Results  from  Interview  Study  ...  73  

Appendix  O:  Questionnaire  for  the  Residents  in  the  Nearby  Village  ...  74  

Appendix  P:  Maximum  Cooling  Effect  from  the  Absorption  Chiller  ...  75  

Appendix  Q:  Maximum  Theoretical  Cooling  Supply  ...  76  

Appendix  R:  Dimensioning  of  the  Thermal  Energy  Storage  ...  77  

Appendix  S:  Capacity  of  Absorption  Chiller  ...  79  

(8)

  VIII  

Appendix  T:  Energy  Supply  per  Day  -­‐  When  Considering  Production  Shutdowns  ...  81  

Appendix  U:  Energy  Savings  ...  82  

Appendix  V:  Sensitivity  Analysis  of  the  Energy  supply  and  Energy  Savings  ...  83  

Appendix  W:  Implementation  Costs  ...  84  

Appendix  X:  Financial  Calculations  ...  86  

Appendix  Y:  Sensitivity  Analysis  of  Implementation  Costs  ...  88  

Appendix  Z:  Sensitivity  Analysis  of  the  Financial  Calculations  ...  90  

 

   

(9)

  IX  

Table  of  Figures  

Figure  3.1.  World  energy  demand,  exajoules  (The  Economist,  2013)  ...  4  

Figure  3.2.  Amount  of  electricity  not  served  (IAEA,  2008)  ...  6  

Figure  3.3.  The  fuel  shares  of  the  total  primary  energy  supply  (IAEA,  2008)  ...  7  

Figure  3.4.  Fuel  share  of  electricity  generation  (IAEA,  2008)  ...  7  

Figure  3.5.  Vapor  compression  cycle  (Hundy  et  al.,  2008)  ...  8  

Figure  3.6.  Absorption  cycle  (Hundy  et  al.,  2008)  ...  9  

Figure  3.7.  Mass  flows  in  sugar  production  process  (Erlich,  2009)  ...  13  

Figure  3.8.  Cogeneration  plant  in  sugar  mill  (Erlich,  2009)  ...  17  

Figure  4.1.  Model  depicting  system  boundaries  ...  19  

Figure  4.2.  The  process  of  determining  energy  savings  and  cost  reductions  ...  20  

Figure  4.4.  Processes  and  mapped  flows  in  the  sugar  mill  ...  22  

Figure  4.5.  Mass  balance  of  the  cane  crushers  and  milling  tandem  ...  23  

Figure  4.6.  Mass  balance  of  the  clarifier  and  filtration  unit  ...  24  

Figure  4.7.  Mass  balance  of  the  evaporators  ...  25  

Figure  4.8.  Mass  balance  of  the  crystallizers  ...  26  

Figure  4.9.  Illustration  of  the  juice  heaters  ...  27  

Figure  4.10.  Illustration  of  the  evaporators  ...  28  

Figure  4.11.  Illustration  of  the  mass  flows  in  and  out  of  the  contaminated  condensate  tank  ...  30  

Figure  4.12.  Production  and  distribution  of  cooling  ...  32  

Figure  5.1.  Results  of  the  mass  flows  of  the  sugar  balance  ...  40  

Figure  5.2.  Mass  flows  of  contaminated  condensate  ...  42  

Figure  5.3.  Energy  supply  and  demand  during  24  hours  ...  44  

 

 

(10)

  X  

Table  of  Tables  

Table  3.1.  Energy  per  100  kW  cooling,  at  3  °C  evaporation,  42  °C  condensation  (Hundy  et  al.,  2008)  ...  11  

Table  3.2.  Approximate  sugar  cane  content  by  type  (de  Camargo  et  al.,1990)  ...  14  

Table  4.1.  Equations  used  for  calculating  water  content  of  cane  and  the  milling  efficiency  ...  23  

Table  4.2.  Equations  used  to  determine  the  mass  balance  of  the  cane  crushers  and  milling  tandem  ...  24  

Table  4.3.  Equations  used  to  determine  the  mass  balance  of  the  clarification  and  filtration  process  ...  25  

Table  4.4  Equations  used  to  determine  the  mass  balance  of  the  evaporators  ...  25  

Table  4.5.  Equations  used  to  determine  the  mass  balance  of  the  crystallizers  ...  26  

Table  4.6.  Equations  used  for  calculating  the  mass  flows  through  the  juice  heaters  ...  27  

Table  4.7.  Equation  used  for  calculating  the  mass  flow  of  the  first  effect  evaporator  ...  29  

Table  4.8.  Equation  used  for  calculating  the  mass  flow  through  the  crystallizers  ...  29  

Table  4.9.  Equations  used  for  calculating  the  mass  flow  at  atmospheric  pressure  ...  29  

Table  4.10.  Equations  used  for  calculating  the  temperature  and  mass  flow  of  the  contaminated  condensate   tank  ...  30  

Table  4.11.  Results  investigated  in  the  sensitivity  analysis  ...  31  

Table  4.12.  Results  investigated  in  the  sensitivity  analysis  ...  32  

Table  4.13.  Equations  used  for  determining  the  possible  energy  supply  ...  33  

Table  4.14.  Equations  used  for  dimensioning  water  storage  ...  34  

Table  4.15.  Equations  used  for  determining  size  of  the  absorption  chiller  ...  35  

Table  4.16.  Equations  used  for  determining  the  possible  energy  savings  ...  35  

Table  4.17.  Results  investigated  in  the  sensitivity  analysis  ...  36  

Table  4.18.  Equations  for  financial  calculations  ...  37  

Table  5.1.  Mass  flows  to  the  contaminated  condensate  tank  ...  41  

Table  5.2.  Mass  flows  from  the  contaminated  condensate  tank  ...  41  

Table  5.3.  Cooling  demand  of  the  factory  ...  42  

Table  5.4.  Rough  estimation  of  village  cooling  demand  ...  43  

Table  5.5.  Maximum  cooling  supply  ...  43  

Table  5.6.  Specification  for  absorption  chiller  needed  ...  43  

Table  5.7.  Thermal  energy  storage  ...  44  

Table  5.8.  Results  of  financial  calculations  ...  45  

Table  5.9.  Ranges  of  the  result  of  the  sugar  mass  balance  ...  45  

Table  5.10.  Ranges  of  the  result  of  the  excess  water  ...  46  

Table  5.11.  Ranges  of  the  result  of  the  energy  supply  ...  47  

Table  5.12.  Ranges  of  the  financial  results  ...  48    

 

 

(11)

  XI  

Nomenclature  

 

Symbol     Denomination           Unit  

Peso  Convertible         CUC  

Peso  Cubano           CUP  

a   Surface  area           m2  

C   Cost           $  

cp   Specific  heat  capacity         J/kg°C  

COP   Coefficient  of  cooling  performance       -­‐  

COPav    Average  coefficient  of  cooling  performance  for  vapor         -­‐  

    compression  chillers  on  the  Cuban  market  

d   Number  of  days         -­‐  

e!     Electricity  price         $  

e!     Saved  electricity  after  installing  thermally  driven  cooling   kWh  

h   Enthalpy           J/kg  

I!"!     Total  initial  investment         $  

m   Mass           kg  

𝑚   Mass  flow           kg/s  

𝑚in   Incoming  mass  flow         kg/s  

n   Economical  lifetime  of  an  investment       season  

Pr   Percentage  of  target  production  rate  achieved  during  season   %   PV   Percentage  of  cooling  produced  out  of  the  village  cooling  demand   %  

p   Pressure           bar  

p!   Purity  of  the  cane  before  milling       %  

p!"   Purity  of  filter  cake         %  

PVF   Present  value  factor         -­‐  

PVSF   Present  value  sum  factor                                                         -­‐  

Q   Energy           kJ  

Q   Effect           kW  

Qin   Incoming  effect         kW  

Qout   Outgoing  effect         kW  

R!"#$%       Residual  value         $  

r   discount  rate           %  

REV   Revenues           $  

T   Temperature           °C  

∆T   Temperature  difference         °C    

tstop   Consecutive  hours  with  production  shutdown     hours  

tpeak   Hours  per  day  with  peak  demand       hours  

V   Volume           m3  

x   Content           %  

y   Factor  for  calculating  mass  flow  of  evaporated  water  from     -­‐    

  evaporators            

η!"##   Milling  efficiency  or  pol  recovered  after  milling  tandem     %  

     

(12)

  XII  

Symbol     Subscript              

24h   24  hours  

abs   Absorption  chiller   ah   After  heater  1,  2,  3  or  4  

atm   Atmospheric  pressure  

av   Average  

b   Bagasse  

bh   Before  heater  1,  2,  3  or  4   br   Brix  content  

c   Cane    

cap   Capacity  

cctank   Contaminated  condensate  tank   ch   Chilled  water  from  absorption  chiller  

cj   Concentrated  juice  

cl   Clear  juice   cond   Condensate     cool   Cooling  central  

cry   Crystallizers  

d   Demand  

dr   Driving  temperature  

e   Evaporator  1,  2,  3,  4  or  all   ed   Existing  cooling  demand  

el   Electricity  consumption  per  season  

ev   Evaporated  water  

excess   Excess  water  from  contaminated  condensate  tank  

pre   Pre-­‐evaporators  

f   Fiber  

fan   Fan  coil   fc   Filter  cake  

g   Generator  in  the  absorption  chiller  

h   Heater  (in  evaporator,  pre-­‐evaporator  or  in  crystallizer)   h1-­‐h4   Heater  1,  2,  3  or  4    

i   Index  for  the  mass  flows  in  to  the  contaminated  condensate  tank     imb   Imbibition  water  

in   Water  into  given  process  or  equipment   inst   Installation  of  equipment  

j   Juice  

l   Liquid  

lat   Latent  heat  of  vaporization  

m   Molasses  

main   Maintenance  

max   Maximum  

min   Minimum  

p   Pol  content  

pip   Piping  needed  for  ventilation  system   rd   Return  temperature  after  distribution    

rg   Return  temperature  after  generator  in  the  absorption  chiller    

(13)

  XIII  

s   Sugar  

st   Storage  

st,f   Days  needed  to  fill  storage  unit  

tot   Total  

v   Vapor  form  

vc   Vapor  compression  chiller  

w   Water  

   

     

         

(14)

1.  Introduction  

The  standard  of  living  has  improved  in  many  countries  all  over  the  world,  which  has  resulted  in   a   higher   consumption   of   electricity.   In   developing   countries,   the   expansion   of   the   power   grid   cannot   keep   up   with   the   increase   in   electricity   consumption,   leading   to   an   unreliable   energy   supply   and   recurring   blackouts   in   many   areas.   The   demand   for   air   conditioning   is   also   rising   which  puts  further  pressure  on  power  generation  and  distribution.  The  use  of  air  conditioning   enhances   productivity   and   wellbeing   but   the   main   cooling   device   on   the   market,   the   vapor   compression   chiller,   is   powered   by   electricity.   There   are,   however,   alternative   ways   of   producing  cooling,  for  example  thermally  driven  absorption  technology  that  can  use  waste  heat   from  already  existing  industries,  instead  of  electricity.    

 

In   Cuba,   the   energy   usage   has   also   increased   over   the   years   but   electricity   is   in   short   supply.  

Fossil   fuels   are   the   main   source   of   energy,   causing   more   emissions   of   carbon   dioxide.   Since   2005,  the  Cuban  government  has  initiated  several  projects  to  improve  energy  efficiency,  which   has   successfully   reduced   the   risk   and   number   of   blackouts   (Carpio,   2010).   Still,   there   are   not   enough  investments  being  made  into  renewable  resources  and  the  possibility  of  increasing  the   utilization  of  existing  resources  needs  to  be  further  investigated.  

 

One  possible  solution  that  would  lower  the  electricity  consumption  caused  by  air  conditioning   would  be  to  implement  thermally  driven  cooling  in  the  sugar  mills  in  Cuba.  The  sugar  industry   uses  large  quantities  of  water  in  the  production  process  and  also  produce  sizeable  amounts  of   waste  water  which  often  contain  heat  that  is  not  utilized.  Absorption  chillers  can  use  the  low-­‐

grade  heat  in  the  waste  water  to  produce  a  cooling  effect,  which  is  then  distributed  in  the  form  of   chilled  water  to  the  nearby  buildings  that  need  cooling.  If  the  vapor  compression  chillers  could   be  replaced  with  an  absorption  chiller  that  is  powered  with  waste  heat,  the  energy  savings  could   be   significant.   The   aim   of   this   project   is   to   investigate   these   possibilities   by   identifying   the   amount  of  waste  heat  produced  by  a  sugar  mill,  examine  the  necessary  absorption  technology   and  determine  the  investment  costs.  

 

 

(15)

2.  Objectives  

The   objectives   express   the   aim   of   the   project   and   explain   the   problems   which   were   be   investigated.   There   is   a   short   background   to   the   purpose   that   point   out   the   most   important   issues  that  the  project  focuses  on.  

 

2.1.  Problem  Formulation  

Electricity   is   a   scarce   commodity   in   Cuba,   and   the   consumption   of   electricity   increases   even   further   as   air   conditioning   ownership   becomes   more   widespread,   which   causes   a   higher   pressure   on   the   power   grid.   In   Cuba,   electricity   is   mainly   produced   from   fossil   fuels   and   the   carbon  dioxide  emissions  are  substantial.  

 

The  sugar  mills  in  Cuba  produce  a  considerable  amount  of  waste  water  that  is  rarely  utilized.  To   lower   the   electricity   consumption,   the   low-­‐grade   heat   from   the   waste   water   could   be   used   to   produce  cooling,  but  the  necessary  absorption  technology  does  not  exist  in  Cuba.  This  study  will   investigate   the   potential   of   using   waste   heat   from   the   sugar   mills   in   Cuba   to   implement   thermally  driven  cooling.  

 

2.2.  Aim  of  Study  

The  aim  of  the  study  is  to  investigate  the  possibility  of  utilizing  waste  heat  from  excess  water   produced   by   the   sugar   mills   in   Cuba.   The   potential   energy   savings   and   financial   benefits   from   utilizing   the   waste   heat   by   distributing   thermally   driven   cooling   to   the   factory   and   nearby   houses  are  determined.  The  amount  of  energy  that  can  be  obtained  from  the  waste  heat  from  the   factory   is   calculated   and   compared   to   the   estimated   amount   of   energy   needed   to   power   the   existing   electricity-­‐driven   air   conditioning   units.   The   data   needed   is   retrieved   from   one   sugar   mill,   Carlos   Baliño   in   Villa   Clara   in   Cuba,   but   most   models   will   be   applicable   to   other   similar   sugar  mills.  

 

The  study  will  determine:  

The  mass  flow  and  the  temperature  of  the  excess  water  produced  by  the  sugar  mill.  

The  amount  of  cooling  that  can  be  supplied  when  utilizing  the  excess  water  containing   low-­‐grade  heat.  

The  air  conditioning  demand  and  the  amount  of  electricity  used  by  the  existing  air   conditioning  units  in  the  offices  and  nearby  houses.  

The  capacity  of  the  absorption  chiller  needed  to  supply  the  cooling.  

Needed  storage  possibilities.  

The  total  energy  savings  as  a  result  of  implementing  the  project.  

The  financial  benefits  of  implementing  the  project.  

The  technical  and  financial  feasibility  of  utilizing  waste  heat  and  implementing   absorption  cooling.  

o If  the  energy  supply  matches  the  energy  demand   o Investment  costs  

o Payback  time    

2.3.  Methodology  

The   study   started   with   an   extensive   literature   study,   focusing   on   the   technology   of   thermally   driven   cooling,   specifically   absorption   chillers,   as   well   as   the   operational   processes   of   a   sugar   mill   and   the   effects   of   an   increasing   electricity   and   air   conditioning   usage,   worldwide   and   in   Cuba.    

 

(16)

During   the   project,   a   study   visit   was   conducted   at   the   sugar   mill   Carlos   Baliño   in   Villa   Clara,   Cuba.   Compared   to   other   sugar   mill   in   Cuba,   Carlos   Baliño   is   quite   small   and   is   the   only   ecological   sugar   producer   in   Cuba,   but   the   mill   also   produces   conventional   non-­‐organic   sugar.  

The   crushing   season,   when   the   sugar   mills   produce   sugar,   usually   lasts   from   the   middle   of   December  throughout  April.    

 

The  mass  flow  and  the  temperature  of  the  heated  waste  water  from  the  sugar  mill  determine  the   amount   of   energy   that   can   be   retrieved   and   used   for   thermally   driven   cooling.   The   sugar   concentrations  between  each  process  in  the  production  were  used  to  calculate  the  water  mass   flows.  In  order  to  identify  the  excess  water,  separate  investigations  into  certain  processes  were   conducted.  The  pressure,  temperature  and  mass  flow  of  the  water  and  the  sugar  juice  were  used   to  calculate  the  mass  flow  of  the  excess  water  which  made  it  possible  to  determine  the  cooling   supply   that   can   be   produced   by   using   the   waste   heat   from   the   excess   water   in   an   absorption   chiller.  

 

The  existing  air  conditioning  units  on  the  Cuban  market  were  investigated  and  the  capacity,  and   the  amount  of  electricity  needed  to  power  these  units,  was  determined.  The  cooling  demand  of   the   factory   and   the   nearby   village   was   estimated   by   conducting   an   interview   study   with   the   employees  at  the  mill  and  the  nearby  residents.  A  model  based  on  the  calculated  possible  cooling   supply  and  the  estimated  cooling  demand  was  used  to  determine  the  amount  of  energy  saved   and   the   financial   benefits   of   implementing   the   project.   Thereafter,   the   results   were   discussed   and  conclusions  were  made  based  on  the  results.  Recommended  future  work  is  also  presented  in  

the  report.      

(17)

3.  Literature  Study  

In  the  literature  study,  relevant  collected  information  is  presented  both  as  a  background  into  the   technology  and  the  objective  of  the  thesis.  The  information  was  gathered  from  relevant  books,   scientific  articles,  web  pages  and  from  personal  contacts.  The  references  used  are  considered  to   be  reliable  since  corresponding  information  has  been  collected  from  different  sources,  both  from   literature  and  from  personal  contacts.  The  collected  information  has  been  complemented  with   the  knowledge  obtained  from  the  study  visit  at  the  sugar  mill  Carlos  Baliño.  

 

3.1.  Global  Energy  Usage  

As  economies  grow  and  the  standard  of  living  increases  there  is  an  upgrade  in  living  comfort.  

This  has  occurred  in  many  countries  in  the  developing  world,  where  rising  income  levels  has  led   to  an  increased  usage  of  electrical  devices.  By  2004,  the  global  electricity  consumption  over  the   last  30  years  had  tripled  and  the  consumption  is  expected  to  double  over  the  following  20  years   (Rydstrand  et  al.,  2004).  The  international  Energy  Agency,  IEA,  estimates  that  two  thirds  of  the   increase  would  consist  of  energy  production  from  oil  and  natural  gas  (Udomsri,  2011),  leading   to  more  emissions  of  carbon  dioxide.  The  largest  increase  in  energy  consumption,  67  %  of  the   total   increase,   will   occur   in   developing   countries   (Udomsri,   2011).   Today   the   total   electricity   consumption  worldwide  is  approximately  19  000  TWh  (Index  Mundi,  2013),  of  which  more  than   1  000  TWh  is  consumed  by  air  conditioning  usage  (Dahl,  2013;  Udomsri,  2011).  

 

3.2.  Global  Air  Conditioning  Usage  

Over   the   last   two   decades   there   has   been   a   surge   in   air   conditioning   usage   in   developed   countries.  In  recent  years  the  consumption  of  cooling  has  also  increased  in  developing  countries.  

In  2011,  the  world  sales  of  air  conditioning  were  up  13  %  compared  to  2010  and  the  sales  are   expected  to  grow  even  more  rapidly  in  the  future  due  to  improved  living  conditions  in  warmer   countries  (Cox,  2012).  By  2050,  the  electricity  consumed  by  air  conditioning  units  is  expected  to   expand  more  than  tenfold  (Dahl,  2013),  as  seen  in  Figure  3.1.  

 

 

Figure  3.1.  World  energy  demand,  exajoules  (The  Economist,  2013)  

   

The   usage   of   air   conditioning   is   not   only   affected   by   climate,   but   also   by   income   level,   though   there   are   statistics   showing   that   the   use   of   air   conditioning   is   increasing   even   faster   than   the   economic   growth   in   countries   with   a   high   daily   average   temperatures   (McNeil   and   Letschert,   2008).   A   middle   class   with   an   increasing   wealth   is   a   particularly   strong   indicator   of   a   rising   future  demand  for  electrical  devices  (Sivak,  2013).  

(18)

3.2.1.  Negative  Effects  of  Air  Conditioning  

As   the   ownership   of   air   conditioning   units   continues   to   spread   over   the   world,   the   electricity   consumption   will   also   increase.   For   developing   countries   where   a   household   generally   consumes   a   low   amount   of   electricity,   the   installment   of   air   conditioning   would   significantly   increase  the  total  energy  demand.  This  jump  in  electricity  consumption  causes  a  higher  pressure   on  the  power  grid  in  these  countries,  since  the  grid  capacity  is  not  adapted  to  a  widespread  air   conditioning  usage  (McNeil  and  Letschert,  2008).  In  developing  countries  this  results  in  chronic   shortages   of   power.   In   order   to   increase   the   capacity   and   improve   the   existing   distribution   system,  a  lot  of  resources  and  capital  are  needed,  which  is  not  possible  to  obtain  in  financially   struggling   countries.   Therefore,   the   advancement   of   the   power   grid   will   always   be   one   step   behind  the  expansion  of  cooling,  which  can  be  very  disruptive  for  the  society.  

 

The   electricity   consumed   by   air   conditioning   is   produced   mainly   by   fossil   fuels   in   most   countries.  The  predominant  source  is  coal,  which  causes  a  lot  of  emissions  of  carbon  dioxide  to   the  atmosphere,  having  a  negative  impact  on  the  environment  (Cox,  2012).  Renewable  energy   sources  supply  only  around  14  %  of  the  world’s  primary  energy  demand  (Perera,  2012).  The  use   of   renewable   resources   is   growing,   but   currently   air   conditioning   usage   is   causing   a   lot   of   emissions.  The  emissions  will  only  increase  as  the  demand  for  cooling  continues  to  rise.  This  is   especially  a  problem  in  developing  countries  where  investments  into  green  technology  have  not   reached  the  same  levels  as  countries  with  greater  resources.  Since  every  prognosis  made  over   the   demand   for   cooling   is   projecting   a   great   surge   in   air   conditioning   usage,   there   is   an   even   greater  incentive  to  invest  in  green  energy  technology.  

 

3.2.2.  Positive  Effects  of  Air  Conditioning  

Air  conditioning  is  a  major  investment  for  households  in  developing  countries  and  is  deemed  a   luxurious   product   more   than   a   necessity.   There   are   however   a   lot   of   positive   effects   resulting   from   the   use   of   cooling   in   households   and   businesses.   There   is   a   correlation   between   productivity  and  the  average  temperature  of  the  environment.  A  study  at  Yale  University  found   that  the  economic  output  by  people  in  colder  areas  was  12  times  that  of  the  output  in  warmer   areas.   In   the   United   States,   the   number   of   people   falling   ill   or   dying   during   heat   waves   has   drastically  decreased  mainly  due  to  an  expanding  air  conditioning  usage.  Developing  countries   stricken  by  malaria,  dengue  fever  or  other  diseases  would  profit  enormously  from  a  widespread   utilization  of  cooling  (The  Economist,  2013).  

 

3.3.  Energy  Situation  in  Cuba  

The  Cuban  energy  sector  has  been  very  influenced  by  the  politics  within  Cuba,  and  by  the  social   relationships   with   other   countries   for   several   years,   instead   of   economic   and   environmental   influences  (IAEA,  2008)  

 

3.3.1.  Historical  Background  

Between  1958  and  1990,  Cuba  and  the  former  Soviet  Union  became  allies  after  the  United  States   posted   a   trade   blockade   against   Cuba   (Gustafsson,   2011).   Cuba   imported   fuel   oil   at   favorable   prices  from  the  Soviet  Union  and  the  Cuban  energy  system  was  adjusted  and  structured  based   on  the  imported  oil  (Belt,  2008).  At  this  time,  72  %  of  the  installed  capacity  was  based  on  fuel   oil-­‐driven  thermal  power  plants  and  a  dependency  of  imported  oil  had  arisen  (IAEA,  2008)    

During  the  special  period,  from  1990  until  1997,  Cuba  was  suffering  from  an  economic  crisis  due   to  the  dissolution  of  the  former  Soviet  Union.  Cuba  did  not  longer  have  the  possibility  to  import   the  necessary  fuel  oil  or  machines  for  the  energy  generation  needed  to  supply  the  demand  for   electricity   (IAEA,   2008).    The   Cuban   government   started   to   encourage   an   increased   usage   of  

(19)

other   energy   sources   in   order   to   reduce   the   fuel   oil   dependency   without   significant   results   (Cherni  and  Hill,  2009).    

 

The   power   plants   could   not   supply   all   the   electricity   needed,   therefore   Cuba   suffered   many   electricity  blackouts,  from  1997  and  forward,  due  to  the  former  economic  crisis  and  the  lack  of   investments   made   (Benjamin-­‐Alvarado,   2010).   In   2005   there   were   blackouts   during   224   days   that,  each  day,  lasted  for  more  than  one  hour.  Some  of  the  blackouts  lasted  for  as  long  as  seven  to   twelve  hours  and  could  be  greater  than  100  MW  (Ekeström,  2012).  As  shown  in  Figure  3.2,  there   have  been  several  periods  in  Cuba  with  large  quantity  of  electricity  not  served.  

 

 

Figure  3.2.  Amount  of  electricity  not  served  (IAEA,  2008)  

   

In   2006,   the   Cuban   government   launched   a   program   called   The   Energy   Revolution   (La   Revolución   Energética)   in   order   to   secure   the   electricity   supply   by   reducing   the   consumption   and  develop  the  generation  capacity  (Suárez  et  al.,  2012).  The  aim  of  these  major  investments   was  primarily  to  limit  the  number  of  blackouts  and  it  was  partly  done  by  decreasing  the  demand   for   electricity   on   a   daily   peak   basis   by   replacing   the   majority   of   energy   inefficient   appliances,   like   air   conditioners,   fans,   light   bulbs   and   refrigerators   which   significantly   decreased   the   demand  (Belt,  2008).  

 

3.3.2.  Cuban  Energy  System  Today  

The   Cuban   energy   sector   is   controlled   by   the   state.   One   of   the   largest   companies   in   Cuba,   La   Unión   Eléctrica,   is   responsible   for   generation,   transmission   and   distribution   of   the   electrical   energy.  Oil  is  the  far  most  used  energy  source,  but  some  of  the  energy  supply  is  obtained  from   renewable  resources  (hydro,  wind  and  biomass),  diesel  and  gas.  The  domestic  oil  is  not  enough   to  supply  the  Cuban  energy  demand,  thus  creating  a  dependency  on  oil  imports  from  Venezuela   (Benjamin-­‐Alvarado,  2010).  In  2003,  the  total  primary  energy  supply  was  76%  oil,  16%  biomass   and   5%   from   gas   (IAEA,   2008).   Figure   3.3   shows   the   fuel   shares   of   the   total   primary   energy   supply  over  the  years.  

(20)

Figure  3.3.  The  fuel  shares  of  the  total  primary  energy  supply  (IAEA,  2008)      

 

As  seen  in  Figure  3.4,  the  share  of  biomass  of  the  total  amount  of  fuel  for  electricity  generation   has  decreased  between  1975  and  2003.  Bagasse,  a  byproduct  from  sugar  production,  is  the  most   commonly   used   biomass   in   Cuba.   Since   the   sugar   industry   is   one   of   the   largest   industries   in   Cuba,  the  bagasse  has  the  potential  to  become  a  significant  part  of  the  Cuban  energy  supply  by   increasing  the  utilization  of  bagasse  as  fuel  (Suárez  et  al.,  2012).  

 

Figure  3.4.  Fuel  share  of  electricity  generation  (IAEA,  2008)  

   

Today,   Cuba   has   rather   well   developed   national   electrical   grid   and   97%   of   the   population   has   access  to  it  (Suárez  et  al.,  2012).  In  2009,  the  electricity  consumption  in  Cuba  was  17  802  million   kWh;  this  equals  to  1584  kWh  per  person.  This  represents  an  increase  by  20%  since  the  year   2000   (Strömdahl,   2010).   There   have   been   lots   of   changes   in   the   Cuban   energy   sector   and   the   number  of  electricity  blackouts  has  decreased.  However,  further  investments  are  necessary  as   higher   economic   stability   leads   to   higher   electricity   demand   and   the   energy   system   is   not   sustainable  when  it  relies  on  oil  as  the  main  supply  for  energy.  

 

3.4.  Air  Conditioning  Usage  in  Cuba  

Since   2005   it   was   prohibited   for   individuals   to   bring   air   conditioning   units   and   other   larger   electrical   appliances   in   to   the   country,   because   of   the   existing   energy   shortages.   By   2013   the   Cuban   government   had   lifted   the   ban   on   private   importation   of   air   conditioning   devices   (Chumley,   2013).   Since   many   electrical   appliances   are   in   short   supply   in   Cuba,   it   is   now   very  

(21)

common   for   Cubans   with   the   possibility   to   go   abroad   to   import   these   appliances   from   other   countries  (Garcia,  2013).  

 

During  Cuba’s  rational  energy  use  programs,  starting  in  2005  and  financed  by  the  government,   265  505  air  conditioning  units  were  replaced  with  newer,  more  efficient  ones.  These  units  made   up  88  %  of  the  total  amount  of  air  conditioning  units  in  the  country  (Carpio,  2010).  

 

3.5.  Cooling  Methods  

The   most   common   product   on   the   air   conditioning   market   is   the   vapor   compression   chiller.  

There  are  alternative  methods  of  cooling,  for  example  the  absorption  chiller.  This  technology  can   use  waste  heat  as  a  driving  force.  

 

3.5.1.  Vapor  Compression  Cooling  

The  most  common  cooling  unit  on  the  market  is  vapor  compression  chillers.  Electricity  is  needed   to   run   the   mechanical   compression   process   in   the   unit,   to   produce   cooling.   When   a   vapor   compression   chiller   is   installed   in   a   room,   the   process   is   as   follows   (see   Figure   3.5);   the   evaporator   absorbs   heat   from   the   air   as   the   refrigerant   evaporates   at   a   low   pressure,   thus   lowering   the   temperature   of   the   room.   The   refrigerant   is   transported   to   the   compressor   at   a   high   pressure   and   high   temperature.   In   the   condenser   the   temperature   is   lowered   as   heat   is   emitted   to   the   outside.   The   refrigerant   is   then   transported   to   the   expansion   valve   and   the   process  starts  all  over  again  (Larsson  and  Nilsson,  2009;  Persson,  2012).  

 

Figure  3.5.  Vapor  compression  cycle  (Hundy  et  al.,  2008)  

 

Energy  Efficiency  

The  energy  efficiency  of  air  conditioning  units  has  more  than  doubled  over  the  last  30  years  (The   Economist,  2013).  However,  this  only  applies  to  newer  units  in  developed  countries.  In  countries   with  less  economic  development,  older  units  are  still  in  use  and  the  regulations  on  new  imports   are  not  as  strict.  In  wealthier  countries,  the  manufacturers  are  forced  to  abide  by  standards  of   minimum  efficiency  in  order  to  optimize  the  equipment  and  reduce  the  electricity  consumption   (ASME,  2011).  

The  efficiency  of  air  conditioning  units  installed  in  the  United  States  increased  by  almost  30  %   from  1993  to  2005  –  at  the  same  time  the  electricity  consumed  by  household  air  conditioning   units   doubled   because   of   a   more   widespread   and   intensive   usage   (Cox,   2012).   This   further   confirms  the  need  for  a  sustainable  production  of  cooling.  

(22)

COP  

The  coefficient  of  performance  (COP)  is  one  way  to  measure  the  energy  efficiency  of  the  device   by  using  a  ratio  of  the  cooling  produced  and  the  energy  needed  to  produce  the  cooling.  A  modern   compression   chiller   can   have   a   COP   of   7   but   it   is   more   common   for   COP   to   be   around   5.  

Depending  on  the  method  used  to  cool  the  waste  heat  from  the  condenser,  the  COP  can  be  as  low   as  2-­‐3  (Larsson  and  Nilsson,  2009).  

If  you  count  the  efficiency  of  the  electricity  production,  the  total  efficiency  of  the  process  is  much   lower.  It  is  more  efficient  to  produce  cooling  directly  than  to  first  produce  electricity  that  is  in   turn  used  to  produce  cooling  (Rydstrand  et  al.,  2004).  

 

3.5.2.  Absorption  Cooling  

Since  the  growing  consumption  of  air  conditioning  leads  to  an  increased  electricity  production   and  more  emissions  of  carbon  dioxide,  it  is  pressing  to  find  a  better  solution  in  order  to  achieve   a   sustainable   energy   system.   An   efficient   solution   would   be   to   produce   the   energy   by   using   renewable   resources   or   waste   products,   and   to   produce   cooling   directly   instead   of   first   generating   electricity.   Absorption   cooling   is   such   a   solution   –   by   utilizing   thermally   driven   cooling  where  low-­‐grade  heat  in  water  can  be  used  to  generate  cold  water,  which  is  distributed   to   buildings   through   district   cooling.   The   technology   is   not   new   but   is   still   improving   and   becoming  more  efficient.  There  are  now  devices  on  the  market  that  can  use  heat  with  a  driving   temperature  of  as  low  as  75  °C  (Jardeby  and  Nordman,  2009)  to  produce  cooling  of  6  °C  (Zinko   et  al.,  2004).

Like  vapor  compression  cooling,  the  refrigerant  in  an  absorption  cooling  cycle  is  evaporated  at  a   low  pressure  as  heat  is  absorbed  to  create  a  cooling  effect.  The  difference  is  that  the  absorption   chiller  then  uses  a  second  refrigerant,  the  absorbent,  which  absorbs  the  first  refrigerant,  as  seen   in  Figure  3.6.    

 

Figure  3.6.  Absorption  cycle  (Hundy  et  al.,  2008)    

 

After   heat   is   emitted   from   the   absorber,   still   at   a   low   pressure,   the   solution   is   in   liquid   form,   containing  both  the  refrigerant  and  the  absorbent.  The  solution  is  then  pumped  to  the  generator   where  external  heat  is  added  through  a  heat  exchange  by  utilizing  hot  water.  During  this  process   the   refrigerant   evaporates   and   is   separated   from   the   absorbent   under   high   pressure.   The   absorbent   returns   to   the   absorber   and   the   refrigerant   continues   as   a   vapor   to   the   condenser  

References

Related documents

En ledare påpekade att i och med att de anmält intresse till Junis Sisters har de redan visat på ett ansvar, ett samhällsansvar, genom att de vill göra någonting för yngre

Det stora hela handlar om att genomföra en totalundersökning för att ta reda på vad kunderna, dvs. villaägarna verkligen vill ha. Vilka intressen och behov finns? Egeryds kan

Other interesting parameters from a system design point of view that can be extracted from the COMSOL simulation include temperature distribution in the matrix,

Hej mitt namn är NAMN EFTERNAMN, vi är två studenter som skriver examensarbete vid Kungliga Tekniska Högskolan inom elbilar och laddningsinfrastruktur med fokus

Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle.. Effects of anandamide and arachidonic

12 modifications are identified with one of four issues: (1) change the electricity characteristics: purchase and/or sale prices and amount of use; (2) change the price of fuels;

The absorption cooling solution on the other hand require a reduction of the energy and power price on the district heating used for cooling to be able to compete with the

New Smart Asset Management (SAM), based on data driven predictive maintenance methods, developed for District Heating can be spread to the utilities of drinking water