• No results found

Measurement of y(CP) in D-0-(D)over-bar(0) oscillation using quantum correlations in e(+)e(-) -> D-0(D)over-bar(0) at root s=3.773 GeV

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of y(CP) in D-0-(D)over-bar(0) oscillation using quantum correlations in e(+)e(-) -> D-0(D)over-bar(0) at root s=3.773 GeV"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

y

CP

in

D

0

–D

0

oscillation

using

quantum

correlations

in

e

+

e

D

0

D

0

at

s

=

3

.

773 GeV

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

h

,

1

,

X.C. Ai

a

,

O. Albayrak

d

,

M. Albrecht

c

,

D.J. Ambrose

au

,

A. Amoroso

ay

,

ba

,

F.F. An

a

,

Q. An

av

,

J.Z. Bai

a

,

R. Baldini Ferroli

s

,

Y. Ban

af

,

D.W. Bennett

r

,

J.V. Bennett

d

,

M. Bertani

s

,

D. Bettoni

u

,

J.M. Bian

at

,

F. Bianchi

ay

,

ba

,

E. Boger

x

,

8

,

O. Bondarenko

z

,

I. Boyko

x

,

R.A. Briere

d

,

H. Cai

bc

,

X. Cai

a

,

O. Cakir

ao

,

2

,

A. Calcaterra

s

,

G.F. Cao

a

,

S.A. Cetin

ap

,

J.F. Chang

a

,

G. Chelkov

x

,

3

,

G. Chen

a

,

H.S. Chen

a

,

H.Y. Chen

b

,

J.C. Chen

a

,

M.L. Chen

a

,

S.J. Chen

ad

,

X. Chen

a

,

X.R. Chen

aa

,

Y.B. Chen

a

,

H.P. Cheng

p

,

X.K. Chu

af

,

G. Cibinetto

u

,

D. Cronin-Hennessy

at

,

H.L. Dai

a

,

J.P. Dai

ai

,

A. Dbeyssi

m

,

D. Dedovich

x

,

Z.Y. Deng

a

,

A. Denig

w

,

I. Denysenko

x

,

M. Destefanis

ay

,

ba

,

F. De Mori

ay

,

ba

,

Y. Ding

ab

,

C. Dong

ae

,

J. Dong

a

,

L.Y. Dong

a

,

M.Y. Dong

a

,

S.X. Du

be

,

P.F. Duan

a

,

J.Z. Fan

an

,

J. Fang

a

,

S.S. Fang

a

,

X. Fang

av

,

Y. Fang

a

,

L. Fava

az

,

ba

,

F. Feldbauer

w

,

G. Felici

s

,

C.Q. Feng

av

,

E. Fioravanti

u

,

M. Fritsch

m

,

w

,

C.D. Fu

a

,

Q. Gao

a

,

Y. Gao

an

,

Z. Gao

av

,

I. Garzia

u

,

K. Goetzen

i

,

W.X. Gong

a

,

W. Gradl

w

,

M. Greco

ay

,

ba

,

M.H. Gu

a

,

Y.T. Gu

k

,

Y.H. Guan

a

,

,

A.Q. Guo

a

,

L.B. Guo

ac

,

T. Guo

ac

,

Y. Guo

a

,

Y.P. Guo

w

,

Z. Haddadi

z

,

A. Hafner

w

,

S. Han

bc

,

Y.L. Han

a

,

F.A. Harris

as

,

K.L. He

a

,

Z.Y. He

ae

,

T. Held

c

,

Y.K. Heng

a

,

Z.L. Hou

a

,

C. Hu

ac

,

H.M. Hu

a

,

J.F. Hu

ay

,

T. Hu

a

,

Y. Hu

a

,

G.M. Huang

e

,

G.S. Huang

av

,

H.P. Huang

bc

,

J.S. Huang

n

,

X.T. Huang

ah

,

Y. Huang

ad

,

T. Hussain

ax

,

Q. Ji

a

,

Q.P. Ji

ae

,

X.B. Ji

a

,

X.L. Ji

a

,

L.L. Jiang

a

,

L.W. Jiang

bc

,

X.S. Jiang

a

,

J.B. Jiao

ah

,

Z. Jiao

p

,

D.P. Jin

a

,

S. Jin

a

,

T. Johansson

bb

,

A. Julin

at

,

N. Kalantar-Nayestanaki

z

,

X.L. Kang

a

,

X.S. Kang

ae

,

M. Kavatsyuk

z

,

B.C. Ke

d

,

R. Kliemt

m

,

B. Kloss

w

,

O.B. Kolcu

ap

,

4

,

B. Kopf

c

,

M. Kornicer

as

,

W. Kuehn

y

,

A. Kupsc

bb

,

W. Lai

a

,

J.S. Lange

y

,

M. Lara

r

,

P. Larin

m

,

C.H. Li

a

,

Cheng Li

av

,

D.M. Li

be

,

F. Li

a

,

G. Li

a

,

H.B. Li

a

,

J.C. Li

a

,

Jin Li

ag

,

K. Li

ah

,

K. Li

l

,

P.R. Li

ar

,

T. Li

ah

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

ah

,

X.M. Li

k

,

X.N. Li

a

,

X.Q. Li

ae

,

Z.B. Li

am

,

H. Liang

av

,

Y.F. Liang

ak

,

Y.T. Liang

y

,

G.R. Liao

j

,

D.X. Lin

m

,

B.J. Liu

a

,

C.X. Liu

a

,

F.H. Liu

aj

,

Fang Liu

a

,

Feng Liu

e

,

H.B. Liu

k

,

H.H. Liu

a

,

H.H. Liu

o

,

H.M. Liu

a

,

J. Liu

a

,

J.P. Liu

bc

,

J.Y. Liu

a

,

K. Liu

an

,

K.Y. Liu

ab

,

L.D. Liu

af

,

P.L. Liu

a

,

Q. Liu

ar

,

S.B. Liu

av

,

X. Liu

aa

,

X.X. Liu

ar

,

Y.B. Liu

ae

,

Z.A. Liu

a

,

Zhiqiang Liu

a

,

Zhiqing Liu

w

,

H. Loehner

z

,

X.C. Lou

a

,

5

,

H.J. Lu

p

,

J.G. Lu

a

,

R.Q. Lu

q

,

Y. Lu

a

,

Y.P. Lu

a

,

C.L. Luo

ac

,

M.X. Luo

bd

,

T. Luo

as

,

X.L. Luo

a

,

M. Lv

a

,

X.R. Lyu

ar

,

,

F.C. Ma

ab

,

H.L. Ma

a

,

L.L. Ma

ah

,

Q.M. Ma

a

,

S. Ma

a

,

T. Ma

a

,

X.N. Ma

ae

,

X.Y. Ma

a

,

F.E. Maas

m

,

M. Maggiora

ay

,

ba

,

Q.A. Malik

ax

,

Y.J. Mao

af

,

Z.P. Mao

a

,

S. Marcello

ay

,

ba

,

J.G. Messchendorp

z

,

J. Min

a

,

T.J. Min

a

,

R.E. Mitchell

r

,

X.H. Mo

a

,

Y.J. Mo

e

,

C. Morales Morales

m

,

K. Moriya

r

,

N.Yu. Muchnoi

h

,

1

,

H. Muramatsu

at

,

Y. Nefedov

x

,

F. Nerling

m

,

I.B. Nikolaev

h

,

1

,

Z. Ning

a

,

S. Nisar

g

,

S.L. Niu

a

,

X.Y. Niu

a

,

S.L. Olsen

ag

,

Q. Ouyang

a

,

S. Pacetti

t

,

P. Patteri

s

,

M. Pelizaeus

c

,

H.P. Peng

av

,

K. Peters

i

,

J.L. Ping

ac

,

R.G. Ping

a

,

R. Poling

at

,

Y.N. Pu

q

,

M. Qi

ad

,

S. Qian

a

,

C.F. Qiao

ar

,

L.Q. Qin

ah

,

N. Qin

bc

,

X.S. Qin

a

,

Y. Qin

af

,

Z.H. Qin

a

,

J.F. Qiu

a

,

K.H. Rashid

ax

,

C.F. Redmer

w

,

H.L. Ren

q

,

M. Ripka

w

,

G. Rong

a

,

X.D. Ruan

k

,

V. Santoro

u

,

A. Sarantsev

x

,

6

,

M. Savrié

v

,

K. Schoenning

bb

,

S. Schumann

w

,

W. Shan

af

,

M. Shao

av

,

C.P. Shen

b

,

P.X. Shen

ae

,

http://dx.doi.org/10.1016/j.physletb.2015.04.008

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

X.Y. Shen

a

,

H.Y. Sheng

a

,

M.R. Shepherd

r

,

W.M. Song

a

,

X.Y. Song

a

,

S. Sosio

ay

,

ba

,

S. Spataro

ay

,

ba

,

B. Spruck

y

,

G.X. Sun

a

,

J.F. Sun

n

,

S.S. Sun

a

,

Y.J. Sun

av

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

Z.T. Sun

r

,

C.J. Tang

ak

,

X. Tang

a

,

I. Tapan

aq

,

E.H. Thorndike

au

,

M. Tiemens

z

,

D. Toth

at

,

M. Ullrich

y

,

I. Uman

ap

,

G.S. Varner

as

,

B. Wang

ae

,

B.L. Wang

ar

,

D. Wang

af

,

D.Y. Wang

af

,

K. Wang

a

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

ah

,

P. Wang

a

,

P.L. Wang

a

,

Q.J. Wang

a

,

S.G. Wang

af

,

W. Wang

a

,

X.F. Wang

an

,

Y.D. Wang

s

,

Y.F. Wang

a

,

Y.Q. Wang

w

,

Z. Wang

a

,

Z.G. Wang

a

,

Z.H. Wang

av

,

Z.Y. Wang

a

,

T. Weber

w

,

D.H. Wei

j

,

J.B. Wei

af

,

P. Weidenkaff

w

,

S.P. Wen

a

,

U. Wiedner

c

,

M. Wolke

bb

,

L.H. Wu

a

,

Z. Wu

a

,

L.G. Xia

an

,

Y. Xia

q

,

D. Xiao

a

,

Z.J. Xiao

ac

,

Y.G. Xie

a

,

G.F. Xu

a

,

L. Xu

a

,

Q.J. Xu

l

,

Q.N. Xu

ar

,

X.P. Xu

al

,

L. Yan

av

,

W.B. Yan

av

,

W.C. Yan

av

,

Y.H. Yan

q

,

H.X. Yang

a

,

L. Yang

bc

,

Y. Yang

e

,

Y.X. Yang

j

,

H. Ye

a

,

M. Ye

a

,

M.H. Ye

f

,

J.H. Yin

a

,

B.X. Yu

a

,

C.X. Yu

ae

,

H.W. Yu

af

,

J.S. Yu

aa

,

C.Z. Yuan

a

,

W.L. Yuan

ad

,

Y. Yuan

a

,

A. Yuncu

ap

,

7

,

A.A. Zafar

ax

,

A. Zallo

s

,

Y. Zeng

q

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

C. Zhang

ad

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

am

,

H.Y. Zhang

a

,

J.J. Zhang

a

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

K. Zhang

a

,

L. Zhang

a

,

S.H. Zhang

a

,

X.Y. Zhang

ah

,

Y. Zhang

a

,

Y.H. Zhang

a

,

Y.T. Zhang

av

,

Z.H. Zhang

e

,

Z.P. Zhang

av

,

Z.Y. Zhang

bc

,

G. Zhao

a

,

J.W. Zhao

a

,

J.Y. Zhao

a

,

J.Z. Zhao

a

,

Lei Zhao

av

,

Ling Zhao

a

,

M.G. Zhao

ae

,

Q. Zhao

a

,

Q.W. Zhao

a

,

S.J. Zhao

be

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

Z.G. Zhao

av

,

A. Zhemchugov

x

,

8

,

B. Zheng

aw

,

J.P. Zheng

a

,

W.J. Zheng

ah

,

Y.H. Zheng

ar

,

B. Zhong

ac

,

L. Zhou

a

,

Li Zhou

ae

,

X. Zhou

bc

,

X.K. Zhou

av

,

X.R. Zhou

av

,

X.Y. Zhou

a

,

K. Zhu

a

,

K.J. Zhu

a

,

S. Zhu

a

,

X.L. Zhu

an

,

Y.C. Zhu

av

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBochumRuhr-University,D-44780Bochum,Germany dCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

eCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

fChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

gCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan hG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

iGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany jGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

kGuangXiUniversity,Nanning530004,People’sRepublicofChina lHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina mHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany nHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

oHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina pHuangshanCollege,Huangshan245000,People’sRepublicofChina

qHunanUniversity,Changsha410082,People’sRepublicofChina rIndianaUniversity,Bloomington,IN 47405,USA

sINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy tINFNandUniversityofPerugia,I-06100,Perugia,Italy uINFNSezionediFerrara,I-44122,Ferrara,Italy vUniversityofFerrara,I-44122,Ferrara,Italy

wJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany xJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

yJustusLiebigUniversityGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany z

KVI-CART,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands

aaLanzhouUniversity,Lanzhou730000,People’sRepublicofChina abLiaoningUniversity,Shenyang110036,People’sRepublicofChina acNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina adNanjingUniversity,Nanjing210093,People’sRepublicofChina aeNankaiUniversity,Tianjin300071,People’sRepublicofChina afPekingUniversity,Beijing100871,People’sRepublicofChina agSeoulNationalUniversity,Seoul,151-747RepublicofKorea ahShandongUniversity,Jinan250100,People’sRepublicofChina

aiShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina ajShanxiUniversity,Taiyuan030006,People’sRepublicofChina

akSichuanUniversity,Chengdu610064,People’sRepublicofChina alSoochowUniversity,Suzhou215006,People’sRepublicofChina amSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina anTsinghuaUniversity,Beijing100084,People’sRepublicofChina aoIstanbulAydinUniversity,34295Sefakoy,Istanbul,Turkey apDogusUniversity,34722Istanbul,Turkey

aqUludagUniversity,16059Bursa,Turkey

arUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina asUniversityofHawaii,Honolulu,HI 96822,USA

atUniversityofMinnesota,Minneapolis,MN 55455,USA auUniversityofRochester,Rochester,NY 14627,USA

(3)

awUniversityofSouthChina,Hengyang421001,People’sRepublicofChina axUniversityofthePunjab,Lahore-54590,Pakistan

ayUniversityofTurin,I-10125,Turin,Italy

azUniversityofEasternPiedmont,I-15121,Alessandria,Italy baINFN,I-10125,Turin,Italy

bbUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bcWuhanUniversity,Wuhan430072,People’sRepublicofChina bdZhejiangUniversity,Hangzhou310027,People’sRepublicofChina beZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received7January2015

Receivedinrevisedform19March2015 Accepted6April2015

Availableonline9April2015 Editor:L.Rolandi Keywords: BESIII D0–D0oscillation yCP Quantumcorrelation

Wereportameasurementoftheparameter

y

CP in

D

0–D0oscillationsperformedbytakingadvantageof

quantumcoherencebetweenpairs ofD0D0mesonsproducedin

e

+eannihilationsnearthreshold.In

thiswork,doubly-tagged

D

0D0events,whereone D decays toa

CP eigenstate

andtheotherD decays in asemileptonicmode,are reconstructedusing adata sampleof2.92 fb−1 collectedwith theBESIII detectoratthecenter-of-massenergyof√s=3.773 GeV.We obtainyCP= (−2.0±1.3±0.7)%,where

thefirstuncertaintyisstatisticalandthesecondissystematic.Thisresultiscompatiblewiththecurrent worldaverage.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

1.1.Charmoscillation

Itiswell knownthatoscillations betweenmesonand antime-son, also called mixing, can occur when the flavor eigenstates differ from the physical mass eigenstates. These effects provide a mechanism whereby interference in the transition amplitudes

of mesons and antimesons may occur. They may also allow for

manifestation of CP violation (CPV) in the underlying dynamics

[1,2]. Oscillations in the K0–K0 [3], B0–B0 [4] and B0

s–B0s [5]

systemsare established; their oscillationratesare well-measured andconsistentwithpredictionsfromtheStandardModel (SM)[6]. Afteranaccumulationofstrongevidencefromavarietyof exper-iments[7–9], D0–D0 oscillationswere recentlyfirmly established by LHCb[10].The results were soon confirmed by CDF[11] and Belle[12].

Theoscillationsareconventionallycharacterizedbytwo dimen-sionless parameters x

= 

m

/ 

and y

= /

2



, where



m and



are the mass and width differences between the two mass

eigenstatesand



istheaveragedecaywidthofthoseeigenstates. The mass eigenstates can be written as

|

D1,2



=

p

|

D0



±

q

|

D0



, where p and q are complex parameters and

φ

=

arg

(

q

/

p

)

is a CP-violating phase. Using the phase convention CP

|

D0



= +|

D0



, theCP eigenstatesoftheD mesoncanbewrittenas

|

DCP+

 ≡

|

D 0

 + |

D0



2

,

|

DCP

 ≡

|

D0

 − |

D0



2

.

(1)

*

Correspondingauthor.

E-mailaddress:guanyh@ihep.ac.cn(Y.H. Guan).

1 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 2 AlsoatAnkaraUniversity,06100Tandogan,Ankara,Turkey.

3 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia andattheFunctionalElectronicsLaboratory,TomskStateUniversity,Tomsk,634050, Russia.

4 CurrentlyatIstanbulArelUniversity,34295Istanbul,Turkey. 5 AlsoatUniversityofTexasatDallas,Richardson,Texas75083,USA. 6 AlsoatthePNPI,Gatchina188300,Russia.

7 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

8 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia.

The difference in the effective lifetime between D decaysto CP eigenstatesandflavoreigenstatescanbeparameterizedby yCP.In

theabsenceofdirectCPV,butallowing forsmallindirectCPV,we have[13] yCP

=

1 2



y cos

φ





q p



 +





pq







x sin

φ





q p



 −





pq







.

(2)

In the absence of CPV,one has

|

p

/

q

|

=

1 and

φ

=

0, leading to yCP

=

y.

Although D0–D0 mixing from short-distance physics is sup-pressedby theCKMmatrix[14,15]andtheGIM mechanism[16], sizeablecharmmixingcanarisefromlong-distanceprocessesand newphysics[1,17].Currentexperimentalprecision[18]isnot suf-ficienttoconcludewhetherphysicsbeyondtheSMisinvolved,and furtherconstraintsareneeded.Sofar,themostprecise determina-tionofthesizeofthemixinghasbeenobtainedbymeasuringthe time-dependent decay rate in the D

K±

π

∓ channel [10–12]. However, the resulting information on the mixing parameters x and y is highly correlated. It is important to access the mixing parametersx andy directlytoprovidecomplementaryconstraints. Inthisanalysis,weuseatime-integratedmethodtoextract yCP,

asproposedinthereferences[19–22],whichusesthresholdD0D0 pairproductionine+e

γ

D0D0.Inthisprocess,theD0D0 pairisinastateofdefinite C

= −

1,such thatthetwo D mesons necessarilyhaveoppositeCP eigenvalues.The methodutilizesthe semileptonicdecaysof D meson andhence,avoids the complica-tionsfromhadroniceffectsinD decays,thusprovidesacleanand uniquewaytoprobetheD0–D0 oscillation.

1.2. Formalism

In the semileptonic decays of neutral D mesons (denoted as D

l),9thepartialdecaywidthisonlysensitivetoflavorcontent

anddoesnotdependontheCP eigenvalueoftheparentD meson. However,thetotaldecaywidthofthe DCP±doesdependonitsCP eigenvalue:

CP

±

= (

1

±

yCP

)

.Thus, the semileptonicbranching

fraction ofthe CP eigenstates DCP± is

BD

CP±l

BD

l

(

1

yCP),

andyCP canbeobtainedas

(4)

Table 1

D finalstatesreconstructedinthisanalysis.

Type Mode CP+ K+K−,π+π, K0 0π0 CPK00, K 0 Sω, K 0 Semileptonic Ke±ν, Kμ±ν yCP

1 4



BD

CP−→l

BD

CP+→l

BD

CP+→l

BD

CP−→l



.

(3)

AtBESIII, quantum-correlated D0D0 pairsproduced at thresh-oldallowustomeasure

BD

CP±l.Specifically,webeginwithafully

reconstructed D candidatedecaying intoa CP eigenstate, the so-calledSingle Tag(ST). We havethus taggedthe CP eigenvalueof thepartner D meson.ForasubsetoftheSTevents,theso-called Double Tag(DT)events, thistaggedpartner D mesonisalso ob-servedviaoneofthesemileptonicdecaychannels. CP violationin D decays isknown to be very small [18], andcan be safely ne-glected.Therefore,

BD

CPl canbeobtainedas

BD

CP∓→l

=

NCP±;l NCP±

·

ε

CP±

ε

CP±;l

,

(4)

whereNCP±(NCP±;l)and

ε

CP±(

ε

CP±;l)denotethesignalyieldsand

detection efficiencies of ST decays D

CP

±

(DT decays D D

CP

±;

l), respectively. For CP eigenstates, as listed in Table 1, we choose modeswith unambiguous CP contentand copiousyields. The CP violation in K0S decays is known to be very small, it is therefore neglected. The semileptonic modes used for the DT in thisanalysisare Ke±

ν

andK

μ

±

ν

.

1.3. TheBESIIIdetectoranddatasample

The analysispresented in thispaper isbased on a data sam-plewithanintegratedluminosityof2.92 fb−1[23] collectedwith the BESIII detector [24] at the center-of-mass energy of

s

=

3

.

773 GeV.TheBESIIIdetectorisageneral-purposesolenoidal de-tector attheBEPCII [25]double storagerings. Thedetectorhasa geometrical acceptanceof 93% of the full solid angle. We briefly describe thecomponentsof BESIIIfromthe interactionpoint (IP) outwards.Asmall-cellmaindriftchamber(MDC),usinga helium-basedgastomeasuremomentaandspecificionizationsofcharged particles, is surrounded by a time-of-flight (TOF) system based onplasticscintillatorsthat determinestheflighttimesofcharged particles.ACsI(Tl)electromagneticcalorimeter(EMC)detects elec-tromagnetic showers. These componentsare all situatedinside a superconducting solenoidmagnet, that providesa 1.0 Tmagnetic field parallel to the beam direction. Finally, a multi-layer resis-tive plate counter system installed in the iron flux return yoke ofthemagnetisusedto trackmuons. Themomentumresolution for charged tracks in the MDC is 0.5% for a transverse momen-tumof1 GeV

/

c.TheenergyresolutionforshowersintheEMCis 2.5%(5.0%)for1 GeVphotonsinthebarrel(endcap)region.More detailsonthefeaturesandcapabilitiesofBESIIIcanbefound else-where[24].

High-statisticsMonteCarlo(MC) simulationsare usedto eval-uatethedetectionefficiencyandto understandbackgrounds.The geant4-based[26]MCsimulationprogramisdesignedtosimulate interactions ofparticles in thespectrometer and thedetector re-sponse.Fortheproduction of

ψ(

3770

)

,the kkmc [27] package is used;thebeamenergyspreadandtheeffectsofinitial-state radi-ation(ISR) areincluded.TheMCsamplesconsist ofthe D D pairs withconsiderationofquantumcoherenceforallmodesrelevantto thisanalysis, non-D D decays of

ψ(

3770

)

, ISR productionof low-mass

ψ

states,andQEDandqq continuum

¯

processes.Theeffective

luminosity ofthe MC samples is about10 times that ofthe an-alyzed data. Known decays recorded by the Particle Data Group (PDG) [6] are generated with evtgen [28,29] using PDG branch-ing fractions, and the remaining unknown decays are generated with lundcharm[30].Final-stateradiation(FSR)ofchargedtracks istakenintoaccountwiththe photos package[31].

2. Eventselectionanddataanalysis

Each chargedtrackisrequiredto satisfy

|

cos

θ

|

<

0

.

93,where

θ

isthepolaranglewithrespecttothebeamaxis.Chargedtracks other than K0

S daughtersare requiredtobewithin 1 cmoftheIP

transversetothebeamlineandwithin10 cmoftheIP alongthe beamaxis.Particleidentificationforchargedhadronsh (h

=

π

,

K ) is accomplishedby combiningthe measured energyloss (dE

/

dx) inthe MDCandtheflight timeobtainedfromtheTOF toforma likelihood

L(

h

)

for eachhadron hypothesis. The K± (

π

±) candi-datesarerequiredtosatisfy

L(

K

)

>

L(

π

)

(

L(

π

)

>

L(

K

)

).

The K0S candidates are selected with a vertex-constrained fit frompairs ofoppositelychargedtracks,which arerequiredto be within 20 cm of the IP along the beam direction; no constraint in the transverse plane is required. The two charged tracks are not subjected to the particle identification discussed above, and are assumedto be pions. We impose 0

.

487 GeV

/

c2

<

+π

<

0

.

511 GeV

/

c2, that is within about3 standard deviations of the observed K0

S mass,andthetwotracksareconstrainedtooriginate

fromacommondecayvertexbyrequiringthe

χ

2 ofthevertexfit to belessthan100. Thedecayvertexisrequiredto beseparated from theIP with asignificance greater than two standard devia-tions.

ReconstructedEMCshowersthatareseparatedfromthe extrap-olated positions ofanycharged tracksby morethan 10standard deviationsaretakenasphotoncandidates.Theenergydepositedin nearbyTOFcountersisincludedtoimprovethereconstruction effi-ciencyandenergyresolution.Photoncandidatesmusthavea min-imum energy of 25 MeV for barrelshowers (

|

cos

θ

|

<

0

.

80) and 50 MeV for end cap showers (0

.

84

<

|

cos

θ

|

<

0

.

92). The show-ers in the gap between the barrel and the end cap regions are poorly reconstructedandthusexcluded.The showertiming is re-quired to be no later than 700 ns after the reconstructed event start time to suppress electronic noise and energy deposits un-related to theevent. The

η

and

π

0 candidates are reconstructed frompairsofphotons.DuetothepoorerresolutionintheEMCend capregions,thosecandidateswithbothphotonscomingfromEMC end caps arerejected. The invariant mass Mγ γ is requiredto be 0

.

115 GeV

/

c2

<

Mγ γ

<

0

.

150 GeV

/

c2 for

π

0 and0

.

505 GeV

/

c2

<

Mγ γ

<

0

.

570 GeV

/

c2 for

η

candidates. The photon pair is kine-matically constrainedtothe nominalmass ofthe

π

0 or

η

[6]to improvethemesonfour-vectorcalculation.

The

ω

candidates are reconstructed through the decay

ω

π

+

π

π

0. For all modes with

ω

candidates, sideband events in the +ππ0 spectrumareusedtoestimatepeakingbackgrounds from non-

ω

D

K0S

π

+

π

π

0 decays.We take the signal region as (0.7600,0.8050) GeV

/

c2 andthe sideband regions as(0.6000, 0.7300) GeV

/

c2 or(0.8300,0.8525) GeV

/

c2.Theupperedgeofthe right sideband is restrictedbecause of the K

ρ

background that alterstheshapeof+ππ0.Thesidebandsarescaledtothe esti-matedpeakingbackgroundsinthesignalregion.Thescalingfactor is determinedfrom afit tothe +ππ0 distribution indata,as shown in

Fig. 1

, wherethe

ω

signal is determined with theMC shape convolutedwithaGaussian whoseparametersare leftfree in thefit to better matchdataresolution, andthebackground is modeledbyapolynomialfunction.

(5)

Fig. 1. FittotheinvariantmassMπ+ππ0 foreventsreconstructedfromdata.The solidlineisthetotalfitandthedashedlineshowsthepolynomialbackground.The shadedareashowsthesignalregionandcross-hatchedareasshowthesidebands.

Table 2

Requirementson



E forSTD candidates.

Mode Requirement (GeV)

K+K− −0.020< E<0.020 π+π− −0.030< E<0.030 K0 0π0 −0.080< E<0.045 K00 −0.070< E<0.040 K0 −0.050< E<0.030 K0 −0.040< E<0.040

2.1.SingletagsusingCP modes

Toidentify the reconstructed D candidates, we use two vari-ables,the beam-constrainedmass MBC andthe energydifference



E,whicharedefinedas

MBC



E2beam

/

c4

− |

p

D

|

2

/

c2

,

(5)



E

ED

Ebeam

,

(6)

where

pD and ED are the momentumandenergy ofthe D

can-didateinthee+e−center-of-masssystem,andEbeam isthebeam energy.The D signalpeaksatthenominalD mass inMBC andat zeroin



E. We accept only one candidate per mode per event; when multiple candidates are present, the one with the small-est

|

E

|

is chosen. Since the correlation between



E and MBC isfoundtobesmall,thiswillnotbiasthebackgrounddistribution inMBC.Weapplythemode-dependent



E requirementslistedin

Table 2.

For K+K− and

π

+

π

− ST modes, ifcandidate events contain onlytwochargedtracks,thefollowingrequirementsareappliedto suppressbackgroundsfromcosmic rays andBhabhaevents.First, werequireatleastone EMCshower separatedfromthetracksof theSTwithenergylargerthan50 MeV.Second,thetwoSTtracks must not be both identified as muons or electrons, and, if they havevalidTOF times,thetime differencemustbe lessthan 5 ns. BasedonMCstudies,nopeakingbackgroundispresentinMBCin ourSTmodesexceptforthe K0S

π

0 mode. Inthe K0

S

π

0 STmode,

therearefewbackgroundeventsfromD0

ρπ

.FromMCstudies, theestimatedfractionislessthan0

.

5%;thiswillbeconsideredin thesystematicuncertainties.

TheMBCdistributionsforthesixSTmodesareshownin

Fig. 2

.

Unbinned maximum likelihood fits are performed to obtain the

numbersofSTyieldsexceptinthe K0S

ω

mode,forwhichabinned least-square fit is applied to the MBC distribution after subtrac-tion of the

ω

sidebands. In each fit, the signal shape is derived fromsimulatedsignal eventsconvoluted witha bifurcated Gaus-sianwithfreeparameterstoaccountforimperfectmodelingofthe detectorresolution andbeamenergycalibration.Backgrounds are describedby theARGUS[32] function.Themeasured STyieldsin

Table 3

Yieldsand efficiencies ofallST and DTmodes, where NCP± (NCP±;l)and εCP±

(εCP±;l)denotesignalyieldsanddetectionefficienciesofDCP±(D DCP±;l),

respectively.Theuncertaintiesarestatisticalonly.

ST Mode NCP± εCP±(%) K+K− 54 494±251 61.32±0.18 π+π− 19 921±174 64.09±0.18 K0 0π0 24 015±236 16.13±0.08 K0 0 71 421±285 40.67±0.14 K0 20 989±243 13.44±0.07 K0 9878±117 34.39±0.13 DT Mode NCP±;l εCP±;l(%) K+K, K eν 1216±40 39.80±0.14 π+π, K eν 427±23 41.75±0.14 K0 0π0, K eν 560±28 11 .05±0.07 K0 0, K eν 1699±47 26.70±0.12 K0 Sω, K eν 481±30 9.27±0.07 K0 Sη, K eν 243±17 22.96±0.11 K+K, Kμν 1093±37 36.89±0.14 π+π, Kμν 400±23 38.43±0.15 K0 0π0, Kμν 558±28 10.76±0.08 K0 0, Kμν 1475±43 25 .21±0.12 K0 Sω, Kμν 521±27 8.75±0.07 K0 Sη, Kμν 241±18 21.85±0.11

thesignal regionof1

.

855 GeV

/

c2

<

M

BC

<

1

.

875 GeV

/

c2 andthe correspondingefficienciesaregivenin

Table 3

.

2.2. Doubletagsofsemileptonicmodes

In each ST event, we search among the unused tracks and

showersforsemileptonicD

K e

(

μ

)

ν

candidates.Werequirethat there be exactly two oppositely-charged tracks that satisfy the fiducialrequirementsdescribedabove.

In searchingfor K

μν

decays,kaoncandidates are requiredto satisfy

L(

K

)

>

L(

π

)

.Ifthetwo trackscan passthecriterion, the track with larger

L(

K

)

is taken as the K± candidate, and the other track is assumed to be the

μ

candidate. The energy de-posit in the EMC of the

μ

candidateis required to be lessthan 0.3 GeV. We further require the K

μ

invariant mass MKμ to be lessthan 1

.

65 GeV

/

c2 to reject D

K

π

backgrounds.The total energyof remaining unmatched EMC showers, denoted as Eextra, isrequiredtobelessthan0.2 GeVtosuppress D

K

π π

0 back-grounds. Toreduce backgrounds from the D

K e

ν

process, the ratio

R

L

(

e

)

L

(

e

)/

[

L

(

e

)

+

L

(

μ

)

+

L

(

π

)

+

L

(

K

)

]

is required to belessthan 0.8,where thelikelihood

L

(

i

)

forthehypothesis i

=

e,

μ

,

π

or K isformed by combining EMC informationwith thedE

/

dx andTOFinformation.

ToselectK e

ν

events,electroncandidatesarerequiredtosatisfy

L

(

e

)

>

0

.

001 and

R

L

(

e

)

>

0

.

8, where

R

L

(

e

)

L

(

e

)/

[

L

(

e

)

+

L

(

π

)

+

L

(

K

)

]

.Ifboth trackssatisfy theserequirements,theone

withlarger

R

L

(

e

)

istakenastheelectron.Theremainingtrackis requiredtosatisfy

L(

K

)

>

L(

π

)

.

The variable Umiss is used to distinguish semileptonic signal eventsfrombackground:

Umiss

Emiss

c

|

pmiss

|,

(7)

where, Emiss

Ebeam

EK

El

,

(8)

pmiss

≡ −



pK

+

pl

+ ˆ

pST



E2 beam

/

c2

c2m2D



,

(9)

(6)

Fig. 2. TheMBCdistributionsforSTD candidatesfromdata.ThesolidlineisthetotalfitandthedashedlineshowsthebackgroundcontributiondescribedbyanARGUS function.

EK(l) (

pK(l)) is the energy (three-momentum) of K(l±), p

ˆ

ST is theunit vectorinthe directionofthereconstructedCP-tagged D andmD isthenominalD mass. Theuseofthebeamenergyand

the nominal D mass for the magnitude ofthe CP-tagged D

im-provesthe Umiss resolution.Since E equalsto

|

p

|

c foraneutrino, thesignalpeaksatzeroinUmiss.

TheUmissdistributionsareshownin

Fig. 3

,wherethetagged-D is required to be in the region of 1

.

855 GeV

/

c2

<

M

BC

<

1

.

875 GeV

/

c2.DTyields,obtainedbyfittingtheUmiss spectra,are listedin

Table 3

.Unbinnedmaximumlikelihoodfitsareperformed forallmodesexceptformodesincluding

ω

.Formodesincluding an

ω

, binned least-square fits are performedto the

ω

sideband-subtracted Umiss distributions.Ineach fit,the K e

ν

or K

μν

signal ismodeledbytheMC-determined shapeconvolutedwitha bifur-catedGaussianwhereallparametersareallowedtovaryinthefit. BackgroundsforK e

ν

arewelldescribedwithafirst-order polyno-mial.However,inthe K

μν

mode,backgroundsaremorecomplex and consist of three parts. The primary background comes from D

K

π π

0 decay. To better control this background, we select asample of D

K

π π

0 in databyrequiring E

extra

>

0

.

5 GeV, in whichtheUmissshapeofK

π π

0isprovedtobebasicallythesame asthatintheregionofEextra

<

0

.

2 GeV inMCsimulation.The se-lected K

π π

0 sampleis usedto extractthe resolutiondifferences in the Umiss shape of K

π π

0 inMC anddata, andto obtain the D

K

π π

0yieldsinE

extra

>

0

.

5 GeV region.Then,infitstoUmiss, theK

π π

0 isdescribedbytheresolution-correctedshapefromMC simulationsanditssizeisfixedaccordingtotherelativesimulated efficiencies ofthe Eextra

>

0

.

5 GeV and Eextra

<

0

.

2 GeV selection criteria.ThesecondbackgroundfromK e

ν

eventsismodeledbya MC-determined shape. Its ratioto thesignal yields is about3.5% based on MC studies andis fixed in the fits. Background in the thirdcategory includesallother backgroundprocesses,whichare welldescribedwithafirst-orderpolynomial.

3. Systematicuncertainties

MostsourcesofuncertaintiesfortheSTorDTefficiencies,such astracking, PID,and

π

0,

η

, K0

S reconstruction, cancelout in

de-termining yCP.The main systematicuncertainties come fromthe

background veto, modeling of the signals and backgrounds, fake tagged signals, and the CP-purity of ST events, as shown in Ta-ble 4.

The cosmic and Bhabha veto is applied only for the K K and

π π

STeventswhichhaveonlytwotracks.Theeffectofthisveto isestimatedbasedonMCsimulation.Wecomparethecaseswith andwithoutthisrequirementandtheresultantrelativechangesin

STefficienciesareabout0.3%forboththeK K and

π π

modes.The resultingsystematicuncertaintyon yCP is0.001.

Peaking backgroundsarestudied fordifferentSTmodes, espe-ciallyfor

ρπ

backgroundsintheK0

S

π

0tagmodeandK0S

π

+

π

π

0

backgroundsintheK0S

ω

tagmode.Basedonastudyofthe inclu-sive MCsamples,thefractionofpeakingbackgroundsin K0S

π

0 is 0.3%. Theuncertainties on yCP causedby thisisabout0.001.

Un-certainties fromthesidebandsubtractionofpeakingbackgrounds fortheK0S

ω

modearestudiedbychangingthesidebandandsignal regions;changesintheefficiency-correctedyieldsarenegligible.

Fits to the MBC and Umiss spectracould inducesystematic er-rorsbythemodelingofthesignalandbackgroundshape.The MC-determined signal shapesconvoluted with a Gaussian are found to describe the data well, and systematic uncertainties from the modeling ofthe signal are assumedto be negligible.Toestimate uncertaintiesfrommodelingofbackgrounds,differentmethodsare considered. For the CP ST yields, we include an additional back-groundcomponenttoaccountforthe

ψ(

3770

)

D D processwith a shapedetermined byMC simulationwhoseyieldis determined in the fit. The uncertainties in the fits to MBC are uncorrelated among different tag modes, and the obtained change on yCP is

0.001. For the DT semileptonic yields, the polynomial functions that areused todescribe backgroundsinournominalfitsare

re-placed by a shape derived from MC simulations. For the K

μν

mode,thesizeofthemainbackgroundK

π π

0 isfixedinour nom-inal fit,so the statisticaluncertainties of the numberof selected K

π π

0 eventsintroduces asystematicerror.Toestimatethe asso-ciateduncertainty,wevaryitssizeby

±

1standarddeviationbased on the selected K

π π

0 samples. Systematic uncertainties due to the Umiss fits aretreatedaspositively correlatedamongdifferent tag modes. We take the maximum change on the resultant yCP,

thatis0.006,assystematicuncertainty.

The DT yields are obtainedfrom the fit to the Umiss spectra. However,onealsohastoconsidereventsthatpeakatUmissbutare backgroundsintheMBCspectra,theso-calledfaketaggedsignals. This issue is examined by fitting to the MBC versus Umiss two-dimensionalplots.Fromthisstudy,thefaketaggedsignal compo-nentisprovedtobeverysmall.Theresultingdifferenceon yCP is

0.002andassignedasasystematicuncertainty.

WestudytheCP-puritiesofSTmodesbysearchingforsame-CP DTsignalsindata.AssumingCP conservationinthecharmsector, the same-CP process is prohibited, unless the studied CP modes are notpure ortheinitial C -odd D0D0 systemisdiluted. TheCP modes involving K0S are not pure due to the existence of small CPV in K0–K0 mixing[6].However, thissmalleffectisnegligible

(7)

Fig. 3. FittotheUmissdistributionsforselectedDTeventsfromdata.Ineachplot,thesolidlineisthetotalfit,thedashedlineinK eνshowsthecontributionofpolynomial backgrounds,andthedash-dottedlineinKμνshowsthecontributionofthemainKπ π0backgrounds.

Table 4

Summaryofsystematicuncertainties.Relativesystematicuncertaintiesarelistedforeachtagmodeinpercent,whiletheresultingabsoluteuncertaintiesonycpareshown

inthelastcolumn.Negligibleuncertaintiesaredenotedby“–”.

K+Kπ+πK0 0π0 K00 K0 K0 ycp Background 0.3 0.3 – 0.3 – – 0.001 MBCfit 0.4 0.1 2.4 0.4 0.1 1.4 0.001 Umissfit (K eν) 1.8 1.3 2.4 1.6 8.1 1.2 0.006 Umissfit (Kμν) 3.2 7.0 4.6 2.5 1.7 1.7 Fake tag (K eν) 0.2 1.4 0.9 1.2 3.1 0.4 0.002 Fake tag (Kμν) 1.0 0.7 0.5 0.9 4.8 0.4 CP-purity – – 0.4 – 0.2 0.2 0.001

withourcurrentsensitivity.Hence, K0S

π

0isassumedtobeaclean CP mode, as its background level is very low. As a conservative treatment,westudyDTyieldsof(K0

S

π

0, K0S

π

0) toverifyits pure

CP-oddeigenstatenatureandtheCP-oddenvironmentoftheD0D0 pair.TheobservednumbersofthisDTsignalsarequitesmall,and weestimatethedilutionofthe C -oddinitialstatetobelessthan 2%at90%confidencelevel.ThisaffectsourmeasurementofyCP by

lessthan0.001.Thepurityofthe KS0

π

0modeisfoundtobelarger than99%.Duetothecomplexityoftheinvolvednon-resonantand resonantprocessesin K0

S

π

0

π

0 and K0S

ω

,theCP-purities ofthese

tagmodescouldbe contaminated.Wetakethemode K+K− asa cleanCP-eventagtotestK0S

π

0

π

0,andtake K0

S

π

0totest KS0

ω

and

K0

S

η

. TheCP-purities of K0S

π

0

π

0, K0S

ω

andK0S

η

areestimatedto

belarger than89.4%, 93.3%and93.9%,respectively. Based onthe

obtained CP purities, the corresponding maximum effect on the determined yCP isassignedassystematicuncertainty.

Systematicuncertainties fromdifferentsourcesareassumedto

be independent and are combined in quadrature to obtain the

overall yCP systematic uncertainties. The resultant total yCP

sys-tematicuncertaintiesis0.007.

4. Results

ThebranchingratiosofKe±

ν

andK

μ

±

ν

aresummedto ob-tain

BD

CPl

=

BD

CP∓→K eν

+

BD

CP∓→Kμν .Tocombineresultsfrom differentCP modes,thestandardweightedleast-squaremethodis utilized[6].Theweightedsemileptonicbranchingfraction

BD

˜

CP±l

(8)

Table 5

ValuesofbranchingratioofDCP±→l obtainedfromdifferenttagmodesandthe

combinedbranchingratio.Theerrorsshownarestatisticalonly.

Tag mode BDCP−→K eν(%) BDCP−→Kμν(%) BDCP−→l(%) K+K− 3.44±0.12 3.33±0.12 6.77±0.17 π+π− 3.29±0.18 3.35±0.20 6.64±0.27 K0 0π0 3.40±0.18 3.48±0.18 6.89±0.26 ˜ BDCP−→l 3.40±0.09 3.37±0.09 6.77±0.12 Tag mode BDCP+→K eν(%) BDCP+→Kμν(%) BDCP+→l(%) K0 0 3.62±0.10 3.33±0.10 6.96±0.15 K0 3.32±0.21 3.81±0.21 7.14±0.30 K0 3.68±0.26 3.84±0.29 7.52±0.40 ˜ BDCP+→l 3.58±0.09 3.46±0.09 7.04±0.13

χ

2

=



α

˜

BD

CP±→l

B

αDCP±l

2

σ

α CP±

2

,

(10)

where

α

denotesdifferentCP-tagmodesand

σ

α

CP±isthestatistical

errorof

B

αD

CP±→l forthegiventag mode.The branchingfractions

of

BD

CP±→l andtheobtained

BD

˜

CP±→l arelistedin

Table 5

.Finally,

yCP iscalculatedusingEq.(3),with

BD

CP±→l replacedby

BD

˜

CP±→l.

Weobtain yCP

= (−

2

.

0

±

1

.

3

±

0

.

7

)

%, wherethefirst uncertainty

isstatisticalandthesecondissystematic.

5. Summary

Using quantum-correlated D0D0 pairs produced at

s

=

3

.

773 GeV, we employ a CP-tagging technique to obtain the yCP

parameterof D0–D0 oscillations.Underthe assumptionofno di-rect CPV in the D sector, we obtain yCP

= (−

2

.

0

±

1

.

3

(

stat

.)

±

0

.

7

(

syst

.))

%. Thisresultiscompatiblewiththeprevious measure-ments[18,33–35]withinabouttwostandarddeviations.However, theprecision isstill statisticallylimitedandlessprecise thanthe currentworldaverage[6].Futureeffortsusingaglobalfit[36]may betterexploittheBESIIIdata,leadingtoamorepreciseresult.

Acknowledgements

TheBESIIICollaboration thanksthestaffofBEPCIIandtheIHEP computingcenterfortheirstrongsupport.Thisworkissupported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; Joint Funds of the National Natu-ral Science Foundation of China under Contracts Nos. 11079008, 11179007,U1232201,U1332201;NationalNaturalScience Founda-tion of China (NSFC) under Contracts Nos. 11125525, 11235011,

11275266,11322544,11335008, 11425524;the ChineseAcademy

ofSciences (CAS) Large-ScaleScientific Facility Program; CAS

un-der Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents

Program of CAS;INPAC andShanghai Key Laboratory forParticle

Physics andCosmology; GermanResearch Foundation DFG under

ContractNo.CollaborativeResearchCenterContractNo. CRC-1044; IstitutoNazionalediFisicaNucleare,Italy;MinistryofDevelopment

of Turkey under Contract No. DPT2006K-120470; Russian

Foun-dation for Basic Research under Contract No. 14-07-91152; U.S. Department ofEnergy under Contracts Nos.DE-FG02-04ER41291,

DE-FG02-05ER41374,DE-FG02-94ER40823,DESC0010118;U.S.

Na-tionalScience Foundation;UniversityofGroningen(RuG)andthe HelmholtzzentrumfuerSchwerionenforschungGmbH(GSI), Darm-stadt;WCUProgramofNationalResearchFoundationofKorea un-derContractNo.R32-2008-000-10155-0.

References

[1]S.Bianco,F.Fabbri,D.Benson,I.Bigi,Riv.NuovoCimento26 (7)(2003)1. [2]Z.-Z.Xing,Phys.Rev.D55(1997)196.

[3]E.Boldt,D.O.Caldwell,Y.Pal,Phys.Rev.Lett.1(1958)150. [4]H.Albrecht,etal.,ARGUSCollabration,Phys.Lett.B192(1987)245. [5]A.Abulencia,etal.,CDFCollaboration,Phys.Rev.Lett.97(2006)242003. [6]K.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001. [7]M.Staric,etal.,BelleCollaboration,Phys.Rev.Lett.98(2007)211803. [8]B.Aubert,etal.,BaBarCollaboration,Phys.Rev.Lett.98(2007)211802. [9]T.Aaltonen,etal.,CDFCollaboration,Phys.Rev.Lett.100(2008)121802. [10]R.Aaij,etal.,LHCbCollaboration,Phys.Rev.Lett.111(2013)251801. [11]T.A.Aaltonen,etal.,CDFCollaboration,Phys.Rev.Lett.111(2013)231802. [12]B.Ko,etal.,BelleCollaboration,Phys.Rev.Lett.112(2014)111801.

[13]S.Bergmann,Y.Grossman,Z.Ligeti,Y.Nir,A.A.Petrov,Phys.Lett.B486(2000) 418.

[14]N.Cabibbo,Phys.Rev.Lett.10(1963)531.

[15]M.Kobayashi,T.Maskawa,Prog.Theor.Phys.49(1973)652. [16]S.L.Glashow,J.Illiopoulos,L.Maiani,Phys.Rev.D2(1970)1285. [17]T.Browder,S.Pakvasa,Phys.Lett.B383(1996)475.

[18] Y.Amhis,et al.,HeavyFlavorAveragingGroup,arXiv:1412.7515,andonline updateathttp://www.slac.stanford.edu/xorg/hfag/,2014.

[19]M.Gronau,Y.Grossman,J.L.Rosner,Phys.Lett.B508(2001)37. [20]D.Atwood,A.A.Petrov,Phys.Rev.D71(2005)054032. [21]X.-D.Cheng,etal.,Phys.Rev.D75(2007)094019. [22]D.Asner,W.Sun,Phys.Rev.D73(2006)034024.

[23]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C37(2013)123001. [24]M.Ablikim,etal.,BESIIICollaboration,Nucl.Instrum.MethodsPhys.Res.,Sect.

A,Accel.Spectrom.Detect.Assoc.Equip.614(2010)345. [25]C.Zhang,Sci.China,Ser.G,Phys.Mech.Astron.53(2010)2084.

[26]S.Agostinelli,etal.,GEANT4 Collaboration,Nucl.Instrum.MethodsPhys.Res., Sect.A,Accel.Spectrom.Detect.Assoc.Equip.506(2003)250.

[27]S.Jadach,etal.,Phys.Rev.D63(2001)113009.

[28]D.J.Lange,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect. Assoc.Equip.462(2001)152.

[29]R.G.Ping,etal.,Chin.Phys.C32(2008)599. [30]J.C.Chen,etal.,Phys.Rev.D62(2000)034003. [31]E.Richter-Was,Phys.Lett.B303(1993)163.

[32]H.Albrecht,etal.,ARGUSCollaboration,Phys.Lett.B241(1990)278. [33]J.Lees,etal.,BaBarCollaboration,Phys.Rev.D87(2013)012004. [34]M.Stari˘c,BaBarCollaboration,arXiv:1212.3478,2012.

[35]R.Aaij,etal.,LHCbCollaboration,Phys.Rev.Lett.112(2014)041801. [36]Y.Guan,X.-R.Lu,Y.Zheng,Y.-Z.Zhu,Chin.Phys.C37(2013)106201.

Figure

Fig. 1. Fit to the invariant mass M π + π − π 0 for events reconstructed from data. The solid line is the total fit and the dashed line shows the polynomial background
Fig. 2. The M BC distributions for ST D candidates from data. The solid line is the total fit and the dashed line shows the background contribution described by an ARGUS function.
Fig. 3. Fit to the U miss distributions for selected DT events from data. In each plot, the solid line is the total fit, the dashed line in K e ν shows the contribution of polynomial backgrounds, and the dash-dotted line in K μν shows the contribution of th

References

Related documents

In the present study, when the participant teachers direct the students’ at- tention to metalinguistic knowledge as well as metacognitive reading strategies, I regard it as a

Möjligheten finns också att förflytta fokus från den vuxnes styrande och stöttande roll till att mer detaljerat belysa hur eleverna laborerar med olika roller, tar olika resurser

For example, the online resource from which the teacher excerpted texts used early in the course (Clio, 2020) contains separate sections for contrasting sources representing

” Den peda- gogiska kommunikationen framstår så långt som fortsatt starkt in- ramad, präglad av triadisk dialog med läraren i en expertroll (se 2.1.3.2) tillsammans med en

Även i arbetet med att lagra kunskap har vi dock kunnat visa inslag av kommunikativt handlande, genom hur läraren och eleverna i öppen dialog sökte en gemensam

Restricted to cir- cularly symmetric Gaussian distributed processes, we have obtained (i) a formula for LSPs for the optimal spectral es- timation kernel in the ambiguity

överdrift, som han själv uttryckte sig: “Analysen går primärt ut på att följa upp att jag       ligger rätt vad gäller träning, vikt och blodtryck, ex att inte träna för

Exempelvis kan ett konkret material (Doverborg &amp; Emanuelsson (2006:82) som leksaksdjur användas då de ofta är storleksmässigt fördelaktiga att arbeta med. Här kan