• No results found

Nuclear power as a solution to climate change? Potential consequences of global up-scaling

N/A
N/A
Protected

Academic year: 2022

Share "Nuclear power as a solution to climate change? Potential consequences of global up-scaling"

Copied!
21
0
0

Loading.... (view fulltext now)

Full text

(1)

Fredrik Hedenus, PhD

Department of Energy and Environment Chalmers University of Technology

Hedenus@chalmers.se

Nuclear power as a solution to climate change?

Potential consequences of global up-scaling

(2)

Some notes on my perspective and background

I am not a nuclear engineer I will not focus on waste

Climate mitigation perspective An energy system perspective A global perspective

Main focus on nuclear proliferation and resource base

(3)

Nuclear energy as climate mitigation option

Fossile Non-fossile

Weisser, 2007

(4)

-5000 0 5000 10000 15000 20000 25000 30000

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Mton CO2

ROW MIC OECD

Meeting the 2 degree target with 70% probability

(5)

Final energy demand

0 50 100 150 200 250

OECD MIC ROW OECD MIC ROW

2000 2050

Engergy demand (EJ)

Transport Residential Industry Electrcity

(6)

Energy technology Developed Main advantages Main problems

Nuclear Yes Base load Waste, proliferation,

public acceptance Coal with CCS Demonstration

level Base load, can be applied to many emissions sources

Public acceptance, storage capacity

Bioenergy Yes Fuel, cheap Land scarcity

Wind and solar PV Yes Large resource

base, renewable Intermittency Concentrated

solar power

Demonstration level

Large resource base, renewable

Only in sunny regions, costly

(7)

Cost of nuclear energy

(8)

Resources

Price and Blaise, 2002

Uranium resources

0 5000 10000 15000

Reserves Secondary sources

Undiscovered Speculative Phosphates Sea water Oil reserves

(EJ)

2400 ZJ

(9)

The GET model

Cost-minimizing model

Covers the global energy system 3 regions – OECD

- Middle income countries (MIC) - Rest of the world (ROW)

Time-perspective 2000-2100

Technology costs and resource constraints

(10)

Emission cap

(11)

Nuclear options in GET

LWR

LWR with MOX fuel FBR from 2030.

Helium cooled reactors that could produce H2 with high efficiency

(12)

Electricity generation, without carbon constraint

0 50 100 150 200 250 300 350 400

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

(EJ)

FBR LWR Hydrogen Solar

Wind + hydro Bioenergy CCS Bioenergy Gas CCS Gas

Coal and Oil CCS Coal and Oil

(13)

Electricity supply, 400 ppm CO2, no nuclear

0 50 100 150 200 250 300 350 400 450

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

(EJ)

FBR LWR Hydrogen Solar

Wind + hydro Bioenergy CCS Bioenergy Gas CCS Gas

Coal and Oil CCS Coal and Oil

(14)

Electricity supply, 400 ppm, all nuclear

0 50 100 150 200 250 300 350 400 450

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

(EJ)

FBR LWR

Wind + hydro Bioenergy Gas CCS Gas

Coal and Oil CCS Coal and Oil

(15)

400 ppm, all nuclear

0 200 400 600 800 1000 1200 1400

EJ

Primary energy supply

FBR LWR Solar

wind and hydro Biomass

Gas Coal Oil

(16)

Electricity supply, 400 ppm, no nuc in ROW

0 50 100 150 200 250 300 350 400 450

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

(EJ)

FBR LWR Solar

Wind + hydro Gas CCS Gas

Coal and Oil CCS Coal and Oil

(17)

Electricity supply, 400 ppm, no sea water uranium and no FBR

0 50 100 150 200 250 300 350 400 450

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

(EJ)

FBR LWR Hydrogen Solar

Wind + hydro Bioenergy CCS Bioenergy Gas CCS Gas

Coal and Oil CCS Coal and Oil

(18)

0 50 100 150 200 250 300 350

Full nuc No nuc No sea, no FBR No ROW

$2010/ton CO2

2050 2070

Carbon price

Number of reactors

0 1000 2000 3000 4000 5000 6000 7000

Full nuc No nuc No sea, no No ROW

Number of nuclear reactors

2050 2070

(19)

Climate mitigation and nuclear energy

A 2 degree target is technically feasible also without nuclear energy

A full nuclear scenario reduces the cost of reaching stringent targets, and about ten-fold the number of reactors by 2050 Breeders or sea water uranium is required for nuclear to make

large scale climate mitigation effort

(20)

Risk of nuclear proliferation

For the mitigation effort to be large scale, nuclear knowledge and technology must be spread globally

Proliferation risk will depend on

– Diffusion of enrichment and reprocessing among states with weak institution and/or nuclear weapon ambitions.

- Demand for nuclear knowledge - Level of international safeguards

Even if breeders are proliferation resistant, LWR and enrichment will be present in a long transient phase (50 years)

(21)

References

Related documents

Bilderna av den tryckta texten har tolkats maskinellt (OCR-tolkats) för att skapa en sökbar text som ligger osynlig bakom bilden.. Den maskinellt tolkade texten kan

Jörg Hiengers bok utgör därför ett välkommet bidrag till den allvarligt syf­ tande forskningen på Science fictionområdet, där vedertagna litteraturvetenskapliga

Bilderna av den tryckta texten har tolkats maskinellt (OCR-tolkats) för att skapa en sökbar text som ligger osynlig bakom bilden.. Den maskinellt tolkade texten kan

Bilderna av den tryckta texten har tolkats maskinellt (OCR-tolkats) för att skapa en sökbar text som ligger osynlig bakom bilden.. Den maskinellt tolkade texten kan

Det egendomliga spänningsförhållande mellan imperialism och innerlighet som är typiskt för nittiotalet avlöstes av en allt aggressivare självkänsla, betonar

En radikal koncentration av stoffet skulle för­ modligen — och det är i sammanhanget det vä­ sentliga — ha kunnat möjliggöra en teknisk och

Den inledande essän av Frederick Pottle be­ handlar ämnet Synchrony and Diachrony och plä­ derar för att Saussures begrepp och språkbruk bör komma till

(Parentetiskt kan nämnas här, att för­ slaget nr i i , som jag vill se attribuerat till Heijkensköld, är undertecknat Baldur. På­ ståendet är emellertid helt