• No results found

1. (last Friday) Introduction and Overview; Parton Showers 2. (last Saturday) Matching Issues; Multiple Interactions I

N/A
N/A
Protected

Academic year: 2022

Share "1. (last Friday) Introduction and Overview; Parton Showers 2. (last Saturday) Matching Issues; Multiple Interactions I"

Copied!
40
0
0

Loading.... (view fulltext now)

Full text

(1)

CERN–Fermilab Collider School Fermilab 9 – 18 August 2006

Theory of Hadronic Collisions

Part II: Phenomenology

Torbj ¨orn Sj ¨ostrand

Lund University

1. (last Friday) Introduction and Overview; Parton Showers 2. (last Saturday) Matching Issues; Multiple Interactions I

3. (today) Hadronization; MI II/LHC; Generators & Conclusions

(2)

Hadronization/Fragmentation models

Perturbative → nonperturbative =⇒ not calculable from first principles!

Model building = ideology + “cookbook”

Common approaches:

1) String Fragmentation (most ideological)

2) Cluster Fragmentation (simplest?)

3) Independent Fragmentation (most cookbook)

4) Local Parton–Hadron Duality (limited applicability)

Best studied in

e

+

e

→ γ

/Z

0

→ qq

DELPHI Interactive Analysis

Run: 39265 Evt: 4479

Beam: 45.6 GeV Proc: 4-May-1994

DAS : 5-Jul-1993 14:16:48 Scan: 3-Jun-1994

TD TE TS TK TV ST PA

Act

Deact 95 (145)

0 ( 0)

173 (204)

0 ( 20)

0 ( 0)

0 ( 0)

38 ( 38)

0 ( 42)

0 ( 0)

0 ( 0)

0 ( 0)

0 ( 0)

0 ( 0)

0 ( 0)

X Y Z

(3)

The Lund String Model

In QED, field lines go all the way to infinity

+

...

.... ...

...

...

... ... ... ... ...

...

...

.. ...

...

...

...

... ...

...

...

...

....

...

...

...

....

...

...

...

...

...

...

...

...

....

...

...

...

.... ...

...

...

...

... ...

...

...

...

. ... ... ...

... ...

...

...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

. ...

...

...

...

...

...

...

...

− +

since photons cannot interact with each other.

Potential is simply additive:

V ( x ) ∝

X

i

1

| x x

i

|

(4)

In QCD, for large charge separation, field lines seem to be compressed to tubelike region(s) ⇒ string(s)

r r

...

....

.. . ... ... ... ... ... ... ... ...

...

...

...

... ... ... ...

... ...

...

...

... ... ... ... ...

...

...

...

...

...

... ...

...

...

...

... .... ... ... .......... .......... ....... ..............................................

...... ...... .... ...........

...

............

...

...

......

......

......

.......

......

...

...

...

. ...

...

...

...

...

...

...

...

...

...

............................................

.... ...

...

...

...

...

......

.......

...

...

...

...

...

...

...

...

...

...

...

...

.............

...

...

...

.................

... ... ... ... ... ... ...

...

. ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ... ... ... ... ... ... ...

by self-interactions among soft gluons in the “vacuum”.

(Non-trivial ground state with quark and gluon “condensates”.

Analogy: vortex lines in type II superconductor) Gives linear confinement with string tension:

F (r) ≈ const = κ ≈ 1 GeV/fm ⇐⇒ V (r) ≈ κr Separation of transverse and longitudinal degrees of freedom

⇒ simple description as 1+1-dimensional object – string –

with Lorentz invariant formalism

(5)

Linear confimenent confirmed e.g. by quenched lattice QCD

MC for LHC 3 Mike Seymour

Interquark potential

Can measure from quarkonia spectra:

or from lattice QCD:

String tension

V (r)

r linear part

Coulomb part

total

V (r) ≈ − 4 3

α

s

r + κr ≈ − 0.13

r + r (for α

s

≈ 0.5, r in fm and V in GeV)

V (0.4 fm) ≈ 0: Coulomb important for internal structure of hadrons,

not for particle production (?)

(6)

Real world (??, or at least unquenched lattice QCD)

=⇒ nonperturbative string breakings gg . . . → qq V (r)

r quenched QCD

full QCD

Coulomb part

simplified colour representation:

r r

...

... ... ... ...

r r

...

... ... ... ...

r r

r r

. ...

... ... ... ... ...

r r

...

... ...

(7)

Repeat for large system ⇒ Lund model which neglects Coulomb part:

dE dz

=

dp

z

dz

=

dE dt

=

dp

z

dt

= κ

Motion of quarks and antiquarks in a qq system:

z q t

q

gives simple but powerful picture of hadron production

(with extensions to massive quarks, baryons, . . . )

(8)

How does the string break?

q q

0

q

0

q

m

⊥q0

= 0

q q

0

q

0

q

d = m

⊥q

/κ m

⊥q0

> 0

String breaking modelled by tunneling:

P ∝ exp

− πm

2⊥q

κ

= exp

− πp

2⊥q

κ

exp − πm

2q

κ

!

1) common Gaussian p

spectrum

2) suppression of heavy quarks uu : dd : ss : cc ≈ 1 : 1 : 0.3 : 10

−11

3) diquark ∼ antiquark ⇒ simple model for baryon production

Hadron composition also depends on spin probabilities, hadronic wave functions, phase space, more complicated baryon production, . . .

⇒ “moderate” predictivity (many parameters!)

(9)

Fragmentation starts in the middle and spreads outwards:

z q t

q m

2

m

2

2 1

but breakup vertices causally disconnected

⇒ can proceed in arbitrary order

left–right symmetry

P(1, 2) = P(1) × P(1 → 2)

= P(2) × P(2 → 1)

⇒ Lund symmetric fragmentation function

f (z) ∝ (1 − z)

a

exp(−bm

2

/z)/z

0

0.5 1 1.5 2 2.5 3

0 0.2 0.4 0.6 0.8 1 f(z), a = 0.5, b= 0.7

mT2 = 0.25 mT2 = 1 mT2 = 4

(10)

The iterative ansatz

q

1

q

1

q

2

q

2

q

3

q

3

q

0

, p

⊥0

, p

+

q

0

q

1

, p

⊥0

− p

⊥1

, z

1

p

+

q

1

q

2

, p

⊥1

p

⊥2

, z

2

(1 − z

1

)p

+

q

2

q

3

, p

⊥2

p

⊥3

, z

3

(1 − z

2

)(1 − z

1

)p

+

and so on until joining in the middle of the event

Scaling in lightcone p

±

= E ± p

z

(for qq system along z axis) implies flat central rapidity plateau + some endpoint effects:

y dn/dy

hn

ch

i ≈ c

0

+ c

1

ln E

cm

, ∼ Poissonian multiplicity distribution

(11)

The Lund gluon picture

q (r)

g (rb) The most characteristic feature of the Lund model

q (b)

snapshots of string position

strings stretched

from q (or qq) endpoint via a number of gluons to q (or qq) endpoint

Gluon = kink on string, carrying energy and momentum

Force ratio gluon/ quark = 2, cf. QCD N

C

/C

F

= 9/4, → 2 for N

C

→ ∞ No new parameters introduced for gluon jets!, so:

• Few parameters to describe energy-momentum structure!

• Many parameters to describe flavour composition!

(12)

Independent fragmentation

Based on a similar iterative ansatz as string, but

q

q g

= q +

q

+ g

+

minor

corrections in middle

String effect (JADE, 1980)

≈ coherence in nonperturbative context

Further numerous and detailed tests at LEP favour string picture . . .

. . . but much is still uncertain when moving to hadron colliders.

(13)

The HERWIG Cluster Model

“Preconfinement”:

colour flow is local

in coherent shower evolution

subprocess

underlying event p

jet jet

p hard

+

Z0

e

e

 

   

   

   

   

   

       

   

   

   

   

   

         

         

         

         

         

         

         

         

         

              

    

    

    

    

    

    

    

 

 

 

    

  

  

  

  

  

  

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

     ! !" "

# #

# #

$ $

$ $

%%&&

''((

)*

++,,

1) Introduce forced g → qq branchings 2) Form colour singlet clusters

3) Clusters decay isotropically to 2 hadrons according to phase space weight ∼ (2s

1

+ 1)(2s

2

+ 1)(2p

/m)

simple and clean, but . . .

(14)

1) Tail to very large-mass clusters (e.g. if no emission in shower);

if large-mass cluster → 2 hadrons then

incorrect hadron momentum spectrum, crazy four-jet events

=⇒ split big cluster into 2 smaller along “string” direction;

daughter-mass spectrum ⇒ iterate if required;

∼ 15% of primary clusters are split, but give ∼ 50% of final hadrons 2) Isotropic baryon decay inside cluster

=⇒ splittings g → qq + qq

3) Too soft charm/bottom spectra

=⇒ anisotropic leading-cluster decay 4) Charge correlations still problematic

=⇒ all clusters anisotropic (?) 5) Sensitivity to particle content

=⇒ only include complete multiplets

(15)

String vs. Cluster

c g g b

Ds Λ0

n η

π+ K∗−

φ K+ π B0

e+e Event Generator

• hard scattering

• (QED) initial/final state radiation

partonic decays, e.g.

t → bW

parton shower evolution

nonperturbative gluon splitting

colour singlets

colourless clusters

cluster fission

cluster→ hadrons

hadronic decays

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004 2

program PYTHIA HERWIG

model string cluster

energy–momentum picture powerful simple

predictive unpredictive

parameters few many

flavour composition messy simple

unpredictive in-between

parameters many few

“There ain’t no such thing as a parameter-free good description”

(16)

Local Parton–Hadron Duality

Analytic approach:

Run shower down to to Q ≈ Λ

QCD

(or m

hadron

, if larger)

“Hard Line”: each parton ≡ one hadron

“Soft Line”: local hadron density

∝ parton density

describes momentum spectra dn/dx

p

and semi-inclusive particle flow, but fails for identified particles + “renormalons” (power corrections) h1 − T i = a α

s

(E

cm

) + b α

2s

(E

cm

)

+c/E

cm

arbitrary units

Ecm [GeV]

<1-T>

<ρ>

<BW>

<BT>

<C>

O(α2s)+1/Q O(αs2)*MC corr.

TASSO PLUTO JADE CELLO HRS MARKII

AMY TOPAZ L3 DELPHI

ALEPH

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

25 50 75 100 125 150 175 200

Not Monte Carlo, not for arbitrary quantities

(17)

Decays

Unspectacular/ungrateful but necessary:

this is where most of the final-state particles are produced!

Involves hundreds of particle kinds and thousands of decay modes.

e.g.

B

∗0

γ

B

0

→ B

0

D

∗+

ν

e

e

π

+

D

0

K

ρ

+

π

+

π

0

e

+

e

γ

• B

∗0

→ B

0

γ : electromagnetic decay

• B

0

→ B

0

mixing (weak)

• B

0

→ D

∗+

ν

e

e

: weak decay, displaced vertex, |M|

2

∝ (p

B

p

ν

)(p

e

p

D

)

• D

∗+

→ D

0

π

+

: strong decay

• D

0

→ ρ

+

K

: weak decay, displaced vertex, ρ mass smeared

• ρ

+

→ π

+

π

0

: ρ polarized, |M|

2

∝ cos

2

θ in ρ rest frame

• π

0

→ e

+

e

γ : Dalitz decay, m(e

+

e

) peaked

Dedicated programs, with special attention to polarization effects:

• EVTGEN: B decays

• TAUOLA: τ decays

(18)

Jet Universality

Question: are jets the same in all processes?

Answer 1: no, at LEP mainly quarks jets, often b/c,

at LHC mainly gluons, if quarks then mainly u/d.

Answer 2: no, perturbative evolution gives calculable differences.

(19)

Answer 3: (string) hadronization mechanism assumed universal, but is not quite.

E d

3

σ /d

3

p : Dependence on proton P

T

LEP value

Preferred HERA value

DIS2002 Krakow. Strange particle production at HERA, Stewart Boogert 18

ZEUS

0 0.2 0.4 0.6

2 4 6

(a)

pT(φ) (GeV) dσ / dpT (φ) (nb/ GeV)

0 0.1 0.2 0.3 0.4

-1 0 1

(b)

η (φ)

dσ / dη (φ) (nb)

0.01 0.02

20 40 60 80 100

(c)

Q2 (GeV2) dσ / d Q2 (nb / GeV2 )

ZEUS (prel.) 1995-97 LEPTOλs =0.3 LEPTOλs =0.2 ARIADNEλs =0.3 ARIADNEλs =0.2

Differential cross sections

• Differential cross sections as functions of pT(I), K(I) and Q2

Compared with LEPTO & ARIADNE using CTEQ5D (Os=0.3 and 0.2)

• Reasonable shape agreement with predictions from Monte Carlo

Os=0.3 (LEP default) overestimates measured cross section

Better normalisation with Os=0.2;

favoured by previous ZEUS and H1 measurements with KS and /

so discrepancies P

qq

/P

q

= 0.1 at LEP, = 0.05 at HERA P

s

/P

u

= 0.3 at LEP, = 0.2 at HERA Reasons? HERA dominated by “beam jets”, so

• Less perturbative evolution ⇒ strings less “wrinkled”?

• Many overlapping strings ⇒ collective phenomena?

(20)

MC4LHC Workshop

July 17-26, 2006

Rick Field – Florida/CDF Page 5

Distribution of Particles Distribution of Particles in Quark and Gluon Jets in Quark and Gluon Jets

Momentum distribution of charged particles ingluon jets. HERWIG 5.6 predictions are in a good agreement with CDF data. PYTHIA 6.115 produces slightly more particles in the region around the peak of distribution.

x = 0.37 0.14 0.05 0.02 0.007

Momentum distribution of charged particles inquark jets. Both HERWIG and PYTHIA produce more particles in the central region of distribution.

pchg= 2 GeV/c

Both PYTHIA and HERWIG predict more charged particles

than the data for quark jets!

CDF Run 1 Analysis

(21)

MC4LHC Workshop

July 17-26, 2006

Rick Field – Florida/CDF Page 10

Run 1 Fragmentation Function Run 1 Fragmentation Function

CDF Run 1 data from on the momentum distribution of charged particles (pT > 0.5 GeV and |η| < 1) within chgjet#1 (leading charged jet) for PT(chgjet#1) > 5 GeV compared with the QCD “hard scattering” Monte-Carlo predictions of HERWIG, ISAJET, and

PYTHIA. The points are the charged number density, F(z) = dNchg/dz, where z

= pchg/P(chgjet#1) is the ratio of the charged particle momentum to the charged momentum of chgjet#1.

Charged Momentum Distribution Jet#1

0.1 1.0 10.0 100.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z = p(charged)/P(charged jet#1) Herwig

Isajet Pythia 6.115 CDF Min-Bias Density F(z)=dNchg/dz

1.8 TeV |eta|<1.0 PT>0.5 GeV

CDF

data uncorrected theory corrected PT(jet#1) > 5 GeV

CDF Run 1 Analysis

PYTHIA does not agree at high z!

(22)

MC4LHC Workshop

July 17-26, 2006

Rick Field – Florida/CDF Page 18

Shows the data on the towerETsum density, dETsum/dηdφ, in the

“transMAX” and “transMIN” region (ET

> 100 MeV, |η| < 1) versus PT(jet#1) for

“Leading Jet” and “Back-to-Back”

events.

Compares the (corrected) data with PYTHIA Tune A (with MPI)and

HERWIG (without MPI) at the particle level (all particles, |η| < 1).

Jet #1 Direction

∆φ

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

∆φ

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away”

“Leading Jet” “Back-to-Back” "TransMAX" ETsum Density: dET/dηdφ

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Transverse"ETsumDensity(GeV)

"Back-to-Back"

MidPoint R = 0.7 |η(jet#1) < 2

CDF Run 2 Preliminary

data corrected to particle level

1.96 TeV "Leading Jet"

PY Tune A

HW

Particles (|η|<1.0, all PT)

"TransMIN" ETsum Density: dET/dηdφ

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Transverse"ETsumDensity(GeV)

"Back-to-Back"

MidPoint R = 0.7 |η(jet#1) < 2

CDF Run 2 Preliminary

data corrected to particle level

Particles (|η|<1.0, all PT) 1.96 TeV

"Leading Jet"

PY Tune A

HW

Neither PY Tune A or HERWIG fits the ETsum density in the

“transferse” region!

HERWIG does slightly better than Tune A!

TransMAX/MIN” ETsum Density TransMAX/MIN” ETsum Density

PYTHIA Tune A vs HERWIG

PYTHIA Tune A vs HERWIG

(23)

Energy dependence of p ⊥min and p ⊥0

Larger collision energy

⇒ probe parton (≈ gluon) density at smaller x

⇒ smaller colour screening length d

⇒ larger p

⊥min

or p

⊥0

Post-HERA PDF fits steeper at small x

⇒ stronger energy dependence

Current PYTHIA default (Tune A, old model), tied to CTEQ 5L, is

p

⊥min

(s) = 2.0 GeV s

(1.8 TeV)

2

!0.08

(24)

5thNovember 2004 Minimum-bias and the Underlying Event at the LHC

A. M. Moraes

LHC predictions: pp collisions at ¥s = 14 TeV

0 2 4 6 8 10

102 103 104 105

PYTHIA6.214 - tuned PYTHIA6.214 - default PHOJET1.12

pp interactions-

UA5 and CDF data

dN chg/dȘatȘ=0

¥s (GeV)

•PYTHIAmodels favour ln2(s);

•PHOJETsuggests a ln(s)dependence.

LHC

2 4 6 8 10 12

0 10 20 30 40 50

CDF data

PYTHIA6.214 - tuned

PHOJET1.12 LHC

Tevatron

x1.5 x 3

dNchg/dȘ ~ 30

dNchg/dȘ ~ 15

Central Region

(min-bias dNchg/dȘ ~ 7)

Transverse < N chg>

Pt(leading jet in GeV)

(25)

5thNovember 2004 Minimum-bias and the Underlying Event at the LHC

A. M. Moraes

LHC predictions: JIMMY4.1 Tunings A and B vs.

PYTHIA6.214 – ATLAS Tuning (DC2)

5 10 15 20

0 10 20 30 40 50

CDF data

JIMMY4.1 - Tuning A JIMMY4.1 - Tuning B

PYTHIA6.214 - ATLAS Tuning

Transverse < N chg>

Pt (leading jet in GeV)

Tevatron LHC

x 4

x 5

x 3

(26)

18 PTJIM=4.9

PTJIM=4.9

= 2.8

= 2.8 x (14 / 1.8)x (14 / 1.8)0.270.27

x3

x2.7 LHC

Tevatron

•energy dependent PTJIM energy dependent PTJIM generates UE predictions generates UE predictions similar to the ones

similar to the ones generated by PYTHIA6.2 generated by PYTHIA6.2 – ATLAS.

ATLAS.

UE tunings: Pythia vs. Jimmy

(27)

MC4LHC Workshop

July 17-26, 2006

Rick Field – Florida/CDF Page 33

15.0 2.1

1 2.5 0.2 1.25 0.16 1.96 TeV

1.0 1.0 0.4 0.5 1.9409 GeV

4 1 CTEQ5L Tune DWT

CTEQ6.1 CTEQ5L

CTEQ5L PDF

5.0 1.0 1 4.0 1.0 1.0 0.25 1.8 TeV

0.95 0.9 0.4 0.5 2.0 GeV

4 1 Tune A

1.25 1.25

PARP(62)

0.2 0.2

PARP(64)

15.0 15.0

PARP(93)

2.1 2.1

PARP(91)

1 1

MSTP(91)

2.5 0.25 1.8 TeV

1.0 1.0 0.4 0.5 1.1 GeV

4 1 Tune QW

0.5 PARP(83)

0.4 PARP(84)

0.25 PARP(90)

1.0 PARP(86)

1.8 TeV PARP(89)

2.5 1.0 1.9 GeV

4 1 Tune DW

PARP(67) PARP(85) PARP(82) MSTP(82) MSTP(81) Parameter

"Transverse" Charged Particle Density: dN/dηdφ

0.0 0.5 1.0 1.5 2.0 2.5

0 250 500 750 1000 1250 1500 1750 2000

PT(particle jet#1) (GeV/c)

"Transverse"ChargedDensity RDF Preliminary

generator level

Leading Jet (|η|<2.0)

Charged Particles (|η|<1.0, PT>0.5 GeV/c) 14 TeV

PY Tune DWT

PY Tune QW

PY Tune DW

PYTHIA 6.2 Tunes PYTHIA 6.2 Tunes

PYTHIA 6.2

Shows the “ transverse” charged particle

density, dN/dηdφ, versus PT(jet#1) for “ leading jet” events at 1.96 TeV for Tune A, DW, and Tune QW (CTEQ6.1M).

829.1 mb 351.7 mb

Tune DWT

568.7 mb 296.5 mb

Tune QW

549.2 mb 351.7 mb

Tune DW

484.0 mb 309.7 mb

Tune A

σ(MPI) at 14 TeV σ(MPI) at 1.96 TeV

Shows the “ transverse” charged PTsum density, dPT/dηdφ, versus PT(jet#1) for

“ leading jet” events at 1.96 TeV forTune A, DW, and Tune QW (CTEQ6.1M).

Uses LOαswithΛ= 192 MeV!

"Transverse" PTsum Density: dPT/dηdφ

0.0 2.0 4.0 6.0 8.0

0 250 500 750 1000 1250 1500 1750 2000

PT(particle jet#1) (GeV/c)

"Transverse"PTsumDensity(GeV/c)

RDF Preliminary

generator level

14 TeV

Leading Jet (|η|<2.0)

Charged Particles (|η|<1.0, PT>0.5 GeV/c) PY Tune DWT

PY Tune DW

PY Tune QW

(28)

MC4LHC Workshop

July 17-26, 2006

Rick Field – Florida/CDF Page 26

Jet Jet - - Jet Correlations (D Jet Correlations (D Ø) Ø)

Jet#1-Jet#2 ∆φ Distribution

∆φ Jet#1-Jet#2

MidPoint Cone Algorithm (R = 0.7, fmerge= 0.5) L = 150 pb-1(Phys. Rev. Lett. 94 221801 (2005)) Data/NLO agreement good. Data/HERWIG agreement good.

Data/PYTHIA agreement good provided PARP(67)

= 1.0?4.0 (i.e. like Tune A,best fit 2.5).

(29)

MC4LHC Workshop

July 17-26, 2006

Rick Field – Florida/CDF Page 47

PYTHIA Tune A and Tune DW predict about 6 charged particles per unit η at η = 0, while the ATLAS tune predicts around 9.

Shows the predictions of PYTHIA Tune A, Tune DW, Tune DWT, and the ATLAS tune for the charged particle density dN/dη and dN/dY at 14 TeV (all pT).

PYTHIA Tune DWT is identical to Tune DW at 1.96 TeV, but extrapolates to the LHC using the ATLAS energy dependence.

Charged Particle Density: dN/dη

0 2 4 6 8 10

-10 -8 -6 -4 -2 0 2 4 6 8 10

PseudoRapidityη

ChargedParticleDensity

pyA pyDW pyDWT ATLAS

Charged Particles (all pT) Generator Level

14 TeV

Charged Particle Density: dN/dY

0 2 4 6 8 10 12

-10 -8 -6 -4 -2 0 2 4 6 8 10

Rapidity Y

ChargedParticleDensity

pyA pyDW pyDWT ATLAS Generator Level

14 TeV

Charged Particles (all pT)

PYTHIA 6.2 Tunes PYTHIA 6.2 Tunes

LHC Min-Bias Predictions

LHC Min-Bias Predictions

(30)

Event Generators

text

(31)

The Monte Carlo method

Want to generate events in as much detail as Mother Nature

=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σ

final state

= σ

hard process

P

tot,hard process→final state

(appropriately summed & integrated over non-distinguished final states) where P

tot

= P

res

P

ISR

P

FSR

P

MI

P

remnants

P

hadronization

P

decays

with P

i

=

Qj

P

ij

=

Qj Qk

P

ijk

= . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices, (flavour, mass, momentum, spin, production vertex, lifetime, . . . ) LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)

=⇒ several thousand choices

(of O(100) different kinds)

(32)

Generator Landscape

Hard Processes

Resonance Decays

Parton Showers Underlying Event

Hadronization

Ordinary Decays

General-Purpose

HERWIG

PYTHIA

ISAJET

SHERPA

Specialized a lot

HDECAY, . . .

Ariadne/LDC, NLLjet

DPMJET

none (?)

TAUOLA, EvtGen

specialized often best at given task, but need General-Purpose core

(33)

The Bigger Picture

Process Selection Resonance Decays

Parton Showers Multiple Interactions

Beam Remnants

Hadronization Ordinary Decays

Detector Simulation ME Generator

ME Expression

SUSY/. . . spectrum calculation

Phase Space Generation

PDF Library

τ Decays

B Decays

=⇒ need standardized interfaces (LHA, LHAPDF, SUSY LHA, . . . )

(34)

On To C++

Currently HERWIG and PYTHIA are successfully being used, also in new LHC environments, using C++ wrappers

Q: Why rewrite?

A1: Need to clean up!

A2: Fortran 77 is limiting Q: Why C++?

A1: All the reasons for ROOT, Geant4, . . . (“a better language”, industrial standard, . . . )

A2: Young experimentalists will expect C++

(educational and professional continuity) A3: Only game in town! Fortran 90

So far mixed experience:

• Conversion effort: everything takes longer and costs more (as for LHC machine, detectors and software)

• The physics hurdle is as steep as the C++ learning curve

(35)

C++ Players

PYTHIA7 project =⇒ ThePEG

Toolkit for High Energy Physics Event Generation (L. L ¨ onnblad; S. Gieseke, A. Ribon, P. Richardson)

HERWIG++: complete reimplementation

(S. Gieseke, D. Grellscheid, A. Ribon, P. Richardson,

M.H. Seymour, P. Stephens, B.R. Webber; M. B ¨ ahr, M. Gigg, K. Hamilton, S. Latunde-Dada, S. Pl ¨ atzer, A. Sherstnev) ARIADNE/LDC: to do ISR/FSR showers, multiple interactions

(L. L ¨ onnblad; N. Lavesson)

SHERPA: partly wrappers to PYTHIA Fortran; has CKKW (F. Krauss; T. Fischer, T. Gleisberg, S. Hoeche, T. Laubrich,

R. Matyszkiewicz, A. Schaelicke, C. Semmling, F. Siegert, S. Schumann, J. Winter)

PYTHIA8: restart to write complete event generator

(T. Sj ¨ ostrand, (S. Mrenna, P. Skands))

(36)

MCnet

• EU Marie Curie training network •

• Approved for four years starting 1 Jan 2007 •

• Involves HERWIG, THEPEG/ARIADNE, PYTHIA and SHERPA • (CERN, Durham, Lund, Karlsruhe, UC London; leader: Mike Seymour)

• 4 postdocs & 2 graduate students: generator development and tuning •

• short-term studentships: 33 @ 4 months each • theory or experiment

• Annual Monte Carlo school: • first in Durham (UK), ∼Easter 2007

• non-EU participation up to 30% •

(37)

Outlook

Generators in state of continuous development:

? better & more user-friendly general-purpose matrix element calculators+integrators ?

? new libraries of physics processes, also to NLO ?

? more precise parton showers ?

? better matching matrix elements ⇔ showers ?

? improved models for underlying events / minimum bias ?

? upgrades of hadronization and decays ?

? moving to C++ ?

⇒ always better, but never enough

But what are the alternatives, when event structures are complicated

and analytical methods inadequate?

(38)

Event Physics Overview

Repetition: from the “simple” to the “complex”,

or from “calculable” at large virtualities to “modelled” at small

Matrix elements (ME):

1) Hard subprocess:

|M|

2

, Breit-Wigners, parton densities.

q

q Z0 Z0

h0

2) Resonance decays:

includes correlations.

Z0

µ+ µ

h0

W W+

ντ

τ s c

Parton Showers (PS):

3) Final-state parton showers.

q → qg g → gg g → qq q → qγ

4) Initial-state parton showers.

g q

Z0

(39)

5) Multiple parton–parton interactions.

6) Beam remnants, with colour connections.

p p

b b

ud ud

u u







5) + 6) = Underlying Event

7) Hadronization

c g g b

Ds Λ0

n η

π+ K∗−

φ K+ π B0

8) Ordinary decays:

hadronic, τ , charm, . . .

ρ+

π0

π+

γ γ

(40)

Read More

These lectures (and more):

http://www.thep.lu.se/ ∼torbjorn/ and click on “Talks”

Peter Richardson, CTEQ Summer School lectures, July 2006:

http://www.ippp.dur.ac.uk/∼richardn/talks/

Steve Mrenna, CTEQ Summer School lectures, June 2004:

http://www.phys.psu.edu/∼cteq/schools/summer04/mrenna/mrenna.pdf

Mike Seymour, Academic Training lectures July 2003:

http://seymour.home.cern.ch/seymour/slides/CERNlectures.html

The “Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics”, hep-ph/0403045

http://arxiv.org/pdf/hep-ph/0403045

References

Related documents

The aim of the work is to point out the possibilities of adapting the teaching process according to individual needs of pupils in a mixed-ability class and to propose strategies

Eskilstuna kommun har inga synpunkter på remiss

[r]

Kommunen har valt att inte avge yttrande över remissen.. Hälsningar Kristian Egstedt

[r]

Växjö kommun vil meddela att vi avstår från yttrande över departementsskrivelsen Långsiktighet och stadga i arbetet framåt - en myndighet för romska frågor (DS 2019:15). Med

[r]

För åren 2015–2018 uppgår de planerade omstruktureringskostnaderna inom ramen för framtidens hälso- och sjukvård till 3,5 miljarder kronor. Omställningskostnaderna är