• No results found

Lecture Outlines Chapter 9 Physics, 3

N/A
N/A
Protected

Academic year: 2021

Share "Lecture Outlines Chapter 9 Physics, 3"

Copied!
60
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2007 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.

Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Lecture Outlines Chapter 9

Physics, 3rd Edition James S. Walker

(2)

Chapter 9

Linear Momentum and

Collisions

(3)

Units of Chapter 9

• Linear Momentum

• Momentum and Newton’s Second Law

• Impulse

• Conservation of Linear Momentum

• Inelastic Collisions

• Elastic Collisions

(4)

• Center of Mass

• (Systems with Changing Mass: Rocket Propulsion)

Units of Chapter 9

(5)

9-1 Linear Momentum

Momentum is a vector; its direction is the same as the direction of the velocity.

(6)

9-1 Linear Momentum

Change in momentum:

(a) mv (b) 2mv

(7)

Example 9-1

Duck, Duck, Goose: Adding Momenta

(8)

9-2 Momentum and Newton’s Second Law

Newton’s second law, as we wrote it before:

is only valid for objects that have constant mass. Here is a more general form, also

useful when the mass is changing:

(9)

9-3 Impulse

Impulse is a vector, in the same direction as the average force.

(10)

9-3 Impulse

We can rewrite

as

So we see that

The impulse is equal to the change in momentum.

(11)

Figure 9-2

The average force during a collision

(12)

9-3 Impulse

Therefore, the same change in momentum may be produced by a large force acting for a short time, or by a

smaller force acting for a longer time.

p1 = - 0,145 kg • 95 mi/h p2 = 0,145 kg • 115 mi/h

I = Δp = 0,145kg•210 mi/h

= (93,6 m/s)= 13,6 kg•m/s

(13)

9-3 Impulse

Om bollen och slagträt är i kontakt under 1,20 ms blir den genomsnittliga kraften (längs x-axeln) Fav = Δp/Δt = I/Δt=

= 13,6 kg•m/s/(1,2•10-3s)=

= 11,3 kN

(14)

Active example 9-1 (p. 246) Find the Final Speed of the Ball

m = 0,144 kg

vi = - 43,0 m/s (i negativa x-riktningen, pi<0) Fav = 6,50 kN

Δt = 1,30 ms

Δp = pf – pi = I = Fav • Δt = 8,45 kg • m/s pf = FavΔt + pi (kom ihåg att pi < 0)

vf = 8,45/0,144 - vi = 58,7 + 43,0 = 15,7 (m/s)

(15)

Conceptual Checkpoint 9–1 Rain Versus Hail (Number of “drops”

and their speed remain the same.) Kraften att hålla paraplyet är den då; densamma, större eller mindre?

(16)

Example 9-2 Jumping for Joy (p.247) (m = 72 kg) a) I=? b) Före hoppet är N = mg. Om personen trycker ner golvet under 0,36 s, vilket yttterliga genomsnittlig kraft känner golvet vid hoppet?

(17)

Example 9-2 Jumping for Joy

m = 72 kg vi = 0 m/s

vf = 2,1 m/s (i positiva y-riktningen) Δt = 0,36 s

I = Δp = pf – pi = 72 kg • 2,1 m/s – 0 = 150 kg•m/s Fav = I/Δt = 420 kg • m/s2 = 420 N

(18)

9-4 Conservation of Linear Momentum

The net force acting on an object is the rate of change of its momentum:

If the net force is zero, the momentum does not change:

(19)

9-4 Conservation of Linear Momentum

Internal Versus External Forces:

Internal forces act between objects within the system.

As with all forces, they occur in action-reaction pairs. As all pairs act between objects in the

system, the internal forces always sum to zero:

Therefore, the net force acting on a system is the sum of the external forces acting on it.

(20)

9-4 Conservation of Linear Momentum

Furthermore, internal forces cannot change the momentum of a system.

However, the momenta of components of the system may change.

(21)

9-4 Conservation of Linear Momentum

An example of internal forces moving components of a system:

(22)

Example 9-3 Tippy Canoe: Compairing Velocity and

Momentum (Vad är p1 och p2? Utgångshastigheterna = 0

)

m1 = 130 kg, m2 = 250 kg, F = 46 N, t = 1,2 s a1 = - 46 N/130 kg = - 0, 35 m/s2

ger v1 = - 0,423 m/s

a2 = 46 N /250 kg = 0,184 m/s2 ger v2 = 0,221 m/s

p1 = - 55 kg•m/s och p2 = 55 kg•m/s

Ingen yttre kraft så rörelsemängden är konstant (men inte hastigheterna!)

[Checkpoint 9-3 p.252] Ki< = >Kf?)

(23)

Photo 9-4 Eta Carinae

(24)

Active Example 9-2 Find the Velocity of the Bee (mb = 0,150 g, ms = 4,75 g och vs = 0,120 cm/s . Rörelsemängden bevaras (den var ursprungligen = 0) , så att vb = vs•ms/mb = 3,8 cm/s

(25)

9-5 Inelastic Collisions

Collision: two objects striking one another

Time of collision is short enough that external forces may be ignored

Inelastic collision: momentum is conserved but kinetic energy is not

Completely inelastic collision: objects stick together afterwards

(26)

9-5 Inelastic Collisions

Solving for the final momentum in terms of the initial momenta and masses:

(27)

9-5 Inelastic Collisions

A completely inelastic collision: Vad blir vf?

(28)

Exercise 9-2 En bil blir påkörd bakifrån av en lastbil. Om de rör sig tillsammans efter kollisionen vad får de för

gemensam hastighet v? (Försumma yttre krafter

)

mc = 1200 kg, mt = 2600 kg vc = 2,5 m/s

vt = 6,2 m/s

Rörelsemängden bevaras så att mcv2 + mtvt = (m1 + m2)v

v = (19120 kg•m/s)/(3800 kg) = 5,0 m/s

(29)

Conceptual checkpoint 9-3 Hur mycket rörelseenergi går förlorad? Efter kollisionen, är rörelseenergin a) ½ b) 1/3 c) ¼ av den ursprungliga.

(Kom alltid ihåg att K = mv2/2 (kan skrivas) = p2/2m)

(30)

Example 9-4 Goal-Line Stand

(31)

Example 9-4 Goal-line stand

En “running back” springer mot målområdet då en

“lineback” gör en “head-on” tackling. Om spelarna rör sig tillsammans efter kollisionen vad får de för gemensam

hastighet v? Vad är Ki och Kf ?(Standard y/x)

mrb = 95,0 kg, mlb = 111 kg

vrb = 3,75 m/s , vlb = - 4,10 m/s

Rörelsemängden bevaras så att mrbvrb + mlbvlb = (m1 + m2)v

v = - 98,85 kg•m/s/(206 kg) = - 0,480 m/s Ki = mrbvrb2/2 + mlbvlb2/2 = 668 + 933 (J) Kf = (m1 + m2)v2/2 = 23,9 (J)

(32)

9-5 Inelastic Collisions

Ballistic pendulum: the height h can be found using conservation of mechanical energy after the object is embedded in the block.

(33)

Example 9-5 Ballistic Pendulum Bestäm h(m, M, v0, g) Helt oelastisk kollision

mv0 = (m+M)vf

Kinetisk energi ger därefter lägesenergi så att

(m + M)vf2/2 = (m + M)gh

h = vf2/2g = {m/(m+M)}2v02/2g Practicle problem (p.257)

m = 7,00 g, M = 0,950 kg, h = 0,220 m

v0 = (2gh)1/2(m + M)/m = 2,08 m/s •136,7 = 284 m/s

(34)

9-5 Inelastic Collisions

For collisions in two dimensions, conservation of momentum is applied separately along each axis:

(35)

Example 9-6 (p.258) Bad Intersection: Analyzing a Traffic Accident m1 = 950 kg, v1 = 16 m/s, m2 = 1300 kg, v2 = 21 m/s

Låt m1 + m2 = M = 2250 kg (Inga yttre krafter) (Standard x/y) Efter kollisionen fastnar bilarna I varandra. Beräkna deras gemensamma hastighet v och dess riktning θ (enligt figur).

Inelastisk kollision dvs rörelsemängden bevaras (men inte K)

x: m1v1 = Mvx y: m2v2 = Mvy

v ={(m1v1/M)2 + (m2v2/M)2}1/2 = 31246/2250 = 13,9 m/s tan θ = vy/vx = m2v2/m1v1

θ = arctan(1,796) = 61°

(36)

9-6 Elastic Collisions

In elastic collisions, both kinetic energy and momentum are conserved.

One-dimensional elastic collision:

(37)

9-6 Elastic Collisions

We have two equations (conservation of

momentum and conservation of kinetic energy) and two unknowns (the final speeds). Solving for the final speeds:

(38)

Conceptual checkpoint 9-4 Speed after Collision En stillastående “hoverfly” (m2) kolliderar med en elefant (m1) i en elastisk “head-on” kollision. Om

elefanten först har hastigheten v0, vad är då flugans hastighet efter krocken? a) v0 b) 3/2 v0 c) 2 v0

(39)

9-6 Elastic Collisions

Two-dimensional collisions can only be solved if some of the final information is known, such as the final velocity of one object:

(40)

Elastisk kollisionen i två dimensioner (p.262) Curlingstenarna väger 7,00 kg (Standard x/y) v1,i = 1,50 m/s

v1,f = 0,610 m/s

Ki = mv1,i2 /2 + 0 = 7,875 J

Kf = mv1,f2/2 + mv2,f2/2 = 1,30 J + mv2,f2/2 v2,f = 1,37 m/s

y: m • v1,f • sin(66,0°) = m • v2,f sinθ θ = 24,0°

(41)

Example 9-7

Two Fruits in Two Dimensions: Analyzing an Elastic Collision

(42)

9-7 Center of Mass

The center of mass of a system is the point where the system can be balanced in a uniform

gravitational field.

(43)

9-7 Center of Mass

For two objects:

The center of mass is closer to the more massive object.

(44)

Exercise 9-4 Balancing a mobile Δx = 0,500 m m1 = 0,260 kg, m2 = 0,170 kg, M = m1 + m2 = 0,430 kg. Hur lång är (hävarmen) x1?

m1x1 = (0,500 - x1) m2

x1 = m2/M • 0,500 = 0,198 (m)

(45)

9-7 Center of Mass

The center of mass need not be within the object:

(46)

Example 9-8

Center of Mass of the Arm

(47)

Example 9-8 Centre of Mass of the Arm (p.265)

X

cm

= (m

1

x

1

+ m

2

x

2

+ …) = ∑m

i

x

i

/M 9-14 Y

cm

= (m

1

v

y

+ m

2

v

y

+ …) = ∑ m

i

y

i

/M 9-15

Xcm = 1,6 kg • 0,12 m + 0,64 kg • 0,40 m + 2,5 kg • 0 m Ycm = 1,6 kg • 0 m + 0,64 kg • 0 m + 2,5 kg • 0,18 m M = 4,74 kg

Xcm = 0,095 m Ycm = 0,095 m

dvs tyngpunkten är “utanför” kroppen (Fosbury flop)

(48)

9-7 Center of Mass

Motion of the center of mass:

(49)

Example 9-9a

Crash of the Air Carts

(50)

Example 9-9b

Crash of the Air Carts

(51)

Example 9-9 Crash of the Air Carts (p.267)

Vad är tyngdpunkten för CM-hastigheten före och efter (den fullständigt inelastiska) kollisionen

Före

vcm = (m1v1 + m2v2 + …) = ∑mivi/M = v0/2 Rörelsemängden bevaras vid kollisionen mv0 = (m+m)vf

Efter

vcm = (mvf + mvf)/M = v0/2

Hastigheten för de inblandade vagnarna ändras, men inte hastigheten för tyngpunktsystemet

(52)

Active Example 9-3 Find the Velocity of the Centre of Masss

Bee (mb = 0,150 g, ms = 4,75 g och vs = - 0,120 cm/s, vb = 3,8 cm/s)

vcm = (m1v1 + m2v2 + …) = ∑mivi/M = ?

(53)

Figure 9-12

Motion of the center of mass

(54)

9-7 Center of Mass

The total mass multiplied by the acceleration of the center of mass is equal to the net external force:

The center of mass accelerates just as

though it were a point particle of mass M

acted on by

(55)

(9-8 Systems with Changing Mass:

Rocket Propulsion)

If a mass of fuel Δm is ejected from a rocket with speed v, the change in momentum of the rocket is:

The force, or thrust, is

(56)

Summary of Chapter 9

• Linear momentum:

• Momentum is a vector

• Newton’s second law:

• Impulse:

• Impulse is a vector

• The impulse is equal to the change in momentum

• If the time is short, the force can be quite large

(57)

Summary of Chapter 9

• Momentum is conserved if the net external force is zero

• Internal forces within a system always sum to zero

• In collision, assume external forces can be ignored

• Inelastic collision: kinetic energy is not conserved

• Completely inelastic collision: the objects stick together afterward

(58)

Summary of Chapter 9

• A one-dimensional collision takes place along a line

• In two dimensions, conservation of

momentum is applied separately to each

• Elastic collision: kinetic energy is conserved

• Center of mass:

(59)

Summary of Chapter 9

• Center of mass:

(60)

Summary of Chapter 9

• Motion of center of mass:

• (Rocket propulsion

References

Related documents

Subtracting Vectors: The negative of a vector is a vector of the same magnitude pointing in the opposite direction... 3-4

An object moving with constant velocity continues to move with the same speed and in the same direction as long as no net force acts on it.. If the net force on an object is

Some algebra gives us the magnitude of the acceleration, and therefore the force, required to keep an object of mass m moving in a circle of radius r. The magnitude of the force

Work-Energy Theorem: The total work done on an object is equal to its change in kinetic

Conservative force: the work it does is stored in the form of energy that can be released at a later time.. Example of a conservative

kinetic energy of a rolling object is a multiple of the kinetic energy of translation... Example 10-5 Like a Rolling Disk. Bestäm a) translationsenergin b)

Gravitational potential energy of an object of mass m a distance r from the Earth’s center:.. 12-4 Gravitational

13-3 Connections between Uniform Circular Motion (likformig cirkulär rörelse) and Simple