• No results found

Lecture Outlines Chapter 7 Physics, 3

N/A
N/A
Protected

Academic year: 2021

Share "Lecture Outlines Chapter 7 Physics, 3"

Copied!
47
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2007 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.

Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Lecture Outlines Chapter 7

Physics, 3

rd

Edition

James S. Walker

(2)

Chapter 7

Work and Kinetic Energy

(3)

Units of Chapter 7

• Work Done by a Constant Force

• Kinetic Energy and the Work-Energy Theorem

• Work Done by a Variable Force

• Power

(4)

7-1 Work Done by a Constant Force

The definition of work, when the force is parallel to the displacement:

(7-1)

SI unit: newton-meter (N·m) = joule, J

(5)

7-1 Work Done by a Constant Force

Om F = 82,0 N, d= 3,00 m (och eftersom kraften är parallell med förflyttningen) så blir det

uträttade arbetet

W = Fd = 82,0 N • 3,00 m = 246 Nm = 246 J (7-1)

Exercise 7-1 Darwin’s fink och hårt fröskal

F=205 N, d=0,40 cm, ger W = 0,82 J

(6)

7-1 Work Done by a Constant Force

(7)

Example 7-1 (p.181) Heading for the ER (mp=72,0 kg, mgurney = 15 kg, if d=2,5 m, W =?

Anta att vagnen rör sig friktionslöst)

(8)

7-1 Work Done by a Constant Force

If the force is at an angle to the displacement:

(7-3)

(9)

Figure 7-3

Force at an angle to direction of motion: another look

(10)

7-1 Work Done by a Constant Force

The work can also be written as the dot

product of the force and the displacement:

(11)

Example 7-2 (p.183) Gravity Escape System (d = 5,0 m, m = 4970 kg Wg = ?)

(Lägg märke till att θ är inte definierad på det vanliga sättet )

(12)

Conceptual Checkpoint 7-1(p.184)

Path Dependence of Work (W1>W2?, W1>W2?, W1=W2? (Lådan glider friktionlöst)

(13)

7-1 Work Done by a Constant Force

The work done may be positive, zero, or

negative, depending on the angle between the

force and the displacement:

(14)

7-1 Work Done by a Constant Force

If there is more than one force acting on an

object, we can find the work done by each force, and also the work done by the net force:

(7-5)

(15)

Example 7-3 A Coasting Car I

(16)

Example 7-3 A Coasting Car I

WN = Nd(cos90º) =0 Wmg = mg(sinΦ)d

Wair = Fair (cos180º)d = - Fair d

Wtotal = WN + Wmg + Wair = 0 + mgsin(Φ) d - Fair

(17)

Example 7-4 A Coasting Car II

(18)

Example 7-4 A Coasting Car II

Nu skall vi beräkna arbetet genom att beräkna skalärprodukten mellan Ftotal och förflyttningen d. Då blir

Wtotal = (mgsin(Φ) - Fair)d

Eftersom Ftotal ärgiven på föregående bild.

Vilket förstås är det uttryck som vi erhöll i Example 7-3

(19)

7-2 Kinetic Energy and the Work-Energy Theorem

When positive work is done on an object, its

speed increases; when negative work is done,

its speed decreases.

(20)

7-2 Kinetic Energy and the Work-Energy Theorem

Med hjälp av rörelseekvationen v

f2

=v

i2

+2ad och Newton’s lag a=F

tot

/m fås v

f2

=v

i2

+2(F

tot

/m)d

Rörelseenergin definieras nedan och är ALLTID positiv (eller = 0)

(7-6)

(21)

Table 7-2

Typical Kinetic Energies

(22)

Exercise 7-2 (p.188) A truck moving at 15 m/s has a kinetic energy of 420 000 J a) What is the mass of the truck?

b) If the speed is doubled? K → (factor)K?

a)m = (2K/v

2

) = 2 • 420 000 J/(15 m/s)

2

= 3700 kg b) v → 2v då går K → 4 K

(7-6)

(23)

7-2 Kinetic Energy and the Work-Energy Theorem

Work-Energy Theorem: The total work done on an object is equal to its change in kinetic energy.

(7-7)

(24)

Example 7-5(p.188) Hit the Books (m=4,10 kg, Fapp= 52,7 N) a) Hur stort arbete uträttar Fapp? b) Hur stort arbete uträttar gravitationen? c) vf = ?

(25)

Example 7-5 Hit the books

a) Wapp = Fapp Δy = 52,7 N 1,60 m = 84,3 J

b) Wg = mg(cos180)Δy = 4,10 kg 9,81 m/s2 (-1) 1,60 m

= - 64,4 J

c) may = Fapp - mg

= 52,7 N - 4,10 kg 9,81 m/s2 = 12,5 N

vf2 = vi2 + 2Δy ay = 0 + 2 1,60 m 12,5N/(4,10 kg) vf= 3,12 m/s

(26)

Example 7-6 (p.189) Pulling a Sled

(m = 6,40 kg, vi = 0,50 m/s, ingen friktion, W = ?, vf = ?)

(27)

Example 7-6 Pulling a sled

a) Wboy = F(cos 29,0º)d = 11,0 N (cos 29,0º) 2,00 m = 19,2 J

b) ΔK =m(vf2 - vi2)/2 = 19,2 J

vf2 = vi2 + 2 19,2J/(6,40 kg) = (0,5 m/s)2 + 6,00 m2/s2 vf= 2,50 m/s

(28)

Conceptual Checkpoint 7-2 (p.190) Compare the Work a) W2 = W1 b) W2 = 2W1 c) W2 = 3W1 d) W2 = 4W1 ?

(29)

7-3 Work Done by a Variable Force

If the force is constant, we can interpret the

work done graphically:

(30)

7-3 Work Done by a Variable Force

If the force takes on several successive constant

values:

(31)

7-3 Work Done by a Variable Force

We can then approximate a continuously varying

force by a succession of constant values.

(32)

Figure 7-9

Stretching a spring

(33)

7-3 Work Done by a Variable Force

The force needed to stretch a spring an amount x is F = kx.

Therefore, the work done in stretching the spring is

(7-8)

(34)

Example 7-7a+b (p.192-3) Flexing an AFM (atomic-force microscopy) Cantilever (kiselkonsol, 250 μm lång) Till att förlänga fjädern 0,10 nm krävs arbetet 1,2 10-20 J. a) Hur stor är fjäderkonstanten k? b) Hur stort arbete krävs för att öka x till 0,20 nm från 0,10 nm?

a) k = 2W/x2 = 2 1,2 10-20 J/(0,10 10-9 m)2 = 2,4 N/m

b) W(0 → 0,2 nm) = kx2/2 = 4 W(0 → 0,1 nm) + W(0,1 nm → 0,2 nm) = = 4 W(0 → 0,1 nm) = 4,8 10-20 J dvs W(0,1 nm → 0,2 nm)= 3,6 10-20 J

(35)

Figure 7-11

Work done in stretching a spring: average force

(36)

Example 7-7b Flexing an AFM Cantilever Fixeringsbild! Allt OK??

(37)

Figure 7-12

The work done by a spring can be positive or negative

(38)

Active example 7-1 (p.194) A block

compresses a string. (m=1,5 kg, v

0

=2,2 m/s, k = 475 N/m Vad blir x (<0) då v=0?

K

i

= mv

02

/2 = 3,6 J och K

f

= 0

Dvs fjädern utför ett negativt arbete på blocket eftersom ΔK < 0

Då blir - kx

2

/2 = - 3,6 J

x = ((2•3,6 J)/(475 N/m))

1/2

= 0,12 m

(39)

7-4 Power

Power is a measure of the rate at which work is done:

(7-10)

SI unit: J/s = watt, W

1 (engelsk) horsepower = 1 hp = 746 W

1 (svensk) hästkraft = 75 kp m/s = 736 W

(40)

7-4 Power

(41)

Example 7-8 Passing Fancy

(42)

Example 7-8 (p.196) Passing Fancy

m

car

= 1300 kg , v

i

= 13,4 m/s till v

f

= 17,9 m/s på t = 3,00 s. P=?

W = ΔK = mv

f2

/2 – mv

i2

/2 = 91,6 kJ

P = W/t = 91,6 kJ/3,00 s = 30,5 kW

(43)

Figure 7-13 Driving up a hill

(44)

Active Example 7-2 (p.197) Find the maximum (constant) speed.

F = 1280 N (m

car

= 1500 kg, θ = 5,00°) P = 50,0 hp = 50,0 • 746 W = 37,3 kW

P = W/t = F • d /t = F v (om hastigheten är konstant)

v = P/F = 37,3 kW/1280 N = 29,1 m/s

(45)

Summary of Chapter 7

• If the force is constant and parallel to the displacement, work is force times distance

• If the force is not parallel to the displacement,

• The total work is the work done by the net

force:

(46)

Summary of Chapter 7

• SI unit of work: the joule, J

• Total work is equal to the change in kinetic energy:

where

(47)

Summary of Chapter 7

• Work done by a spring force:

• Power is the rate at which work is done:

• SI unit of power: the watt, W

References

Related documents

Some algebra gives us the magnitude of the acceleration, and therefore the force, required to keep an object of mass m moving in a circle of radius r. The magnitude of the force

Conservative force: the work it does is stored in the form of energy that can be released at a later time.. Example of a conservative

The total mass multiplied by the acceleration of the center of mass is equal to the net external force:. The center of mass accelerates

kinetic energy of a rolling object is a multiple of the kinetic energy of translation... Example 10-5 Like a Rolling Disk. Bestäm a) translationsenergin b)

Gravitational potential energy of an object of mass m a distance r from the Earth’s center:.. 12-4 Gravitational

13-3 Connections between Uniform Circular Motion (likformig cirkulär rörelse) and Simple

Archimedes’ Principle: An object completely immersed in a fluid experiences an upward buoyant force equal in magnitude to the?. weight of fluid displaced by

That is, temperature is the only factor that determines whether two objects in thermal contact are in thermal equilibrium or not.... 16-1 Temperature and the Zeroth Law of