• No results found

Lecture Outlines Chapter 13 Physics, 3

N/A
N/A
Protected

Academic year: 2021

Share "Lecture Outlines Chapter 13 Physics, 3"

Copied!
65
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2007 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.

Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and

Lecture Outlines Chapter 13

Physics, 3rd Edition James S. Walker

(2)

Chapter 13

Oscillations about

Equilibrium

(3)

Units of Chapter 13

• Periodic Motion

• Simple Harmonic Motion

• Connections between Uniform Circular Motion and Simple Harmonic Motion

• The Period of a Mass on a Spring

• Energy Conservation in Oscillatory

Motion

(4)

Units of Chapter 13

• The Pendulum

• Damped Oscillations

• Driven Oscillations (Tvungna

svängningar) and Resonance

(5)

13-1 Periodic Motion

Period: time required for one cycle of periodic motion

Frequency: number of oscillations per unit time

This unit is

called the Hertz:

(6)

Exercise 13-1

En dator gör ett antal binära operationer per

tidsenhet (som ju är en frekvens). En pc har en 1,80 GHz processor. Hur lång tid tar en binär operation, dvs hur lång är periodtiden?

T = 1/f = 1/(1,80 • 109 s-1) = 0,556 ns

(7)

Exercise 13-2

Två tennisspelare värmer upp inför en match.

Om det tar bollen 2,3 sekunder att gå från den ene spelaren till den andre, hur lång är då

periodtiden och frekvensen för bollens rörelse?

T = (2 • 2,57 s) = 5,14 s

f = 1/T = 1/(5,14 s) = 0,195 Hz

(8)

Table 13-1

Typical Periods and Frequencies

(9)

13-2 Simple Harmonic Motion

A spring exerts a restoring force that is proportional to the displacement from equilibrium:

(10)

13-2 Simple Harmonic Motion

A mass on a spring has a displacement as a function of time that is a sine or cosine curve:

Here, A is called the amplitude of the motion.

(11)

13-2 Simple Harmonic Motion

If we call the period of the motion T – this is the time to complete one full cycle – we can write the position as a function of time:

It is then straightforward to show that the position at time t + T is the same as the position at time t, as we would expect.

[Hint: cos(A+B) = cosA•cos B – sinA•sinB]

(12)

Example 13-1 Spring Time

(13)

Example 13-1 Spring Time

En luftkuddevagn är fäst vid en fjäder och gör en

svängning på 2,4 s. Vid t = 0 släpps vagnen från vila vid x = 0,10 m från jämviktsläget. Vad är vagnens

läge efter a) 0,30 s b) 0,60 s c) 2,7 s d) 3,0 s?

En ansats är att x(t) = A cos (2πt/T)

x(t) = (0,10 m) cos(2π• 0,30 s/2,4 s) = 0,071 m x(t) = (0,10 m) cos(2π• 0,60 s/2,4 s) = 0 m

x(t) = (0,10 m) cos(2π• 2,7 s/2,4 s) = 0,701 m x(t) = (0,10 m) cos(2π• 3,0 s/2,4 s) = 0 m

(14)

13-3 Connections between Uniform Circular Motion (likformig cirkulär rörelse) and Simple Harmonic

Motion

An object in simple

harmonic motion has the same motion as one

component of an object in uniform circular

motion:

(15)

Figure 13-5

Position versus time in simple harmonic motion

(16)

13-3 Connections between Uniform Circular Motion and Simple Harmonic Motion

The position as a function of time: Periodisk funktion (OBS!!! Detta är ETT val av många!!!)

The angular frequency:

(17)

13-3 Connections between Uniform Circular Motion and Simple Harmonic Motion

The velocity as a function of time:

And the acceleration:

Both of these are found by taking

components of the circular motion quantities.

(18)

Figure 13-6

Velocity versus time in simple harmonic motion

(19)

Figure 13-7

Acceleration versus time in simple harmonic motion

(20)

Example 13-2

Velocity and Acceleration

(21)

Example 13-2 Velocity and Acceleration

En luftkuddevagn är fäst vid en fjäder och gör en svängning på 2,4 s. Vid t = 0 släpps vagnen från vila vid x = 0,10 m från jämviktsläget. Vad är vagnens hastighet och acceleration efter a) 0,30 s b) 0,60 s?

x(t) = A cos (2πt/T)

v(t) = dx/dt = - A •2π/T• sin(2πt/T)

a(t) = dv/dt = - A •(2π/T)2 • cos(2πt/T)

v(0,30s)= - (0,10 m)•2π/2,4s•sin(2π•0,30s/2,4s) = - 0,19 m/s a(0,30s)= - (0,10 m)•(2π/2,4s)2•cos(2π• 0,30s/2,4s)= - 0,48m/s2 v(0,60s)= - (0,10 m)•2π/2,4s•sin(2π•0,60s/2,4s) = - 0,26 m/s a(0,60s)= - (0,10 m)•(2π/2,4s)2•cos(2π•0,60s/2,4s) = 0 m/s2

(22)

Example 13-3 Turbulence!

(23)

Example 13-3 Turbulence

Den 29:e december 1997, råkade en 747:a ut för kraftig

turbulens. Amplituden på upp- och nedåtrörelsen var 30,0 m och den maximala accelerationen var 1,8 g.

Bestäm a) T och b) maximal hastighet (i “y-led”) [800 kmIh ≈ 220m/s]

y(t) = A cos (2πt/T)

v(t) = dy/dt = - A •2π/T•sin(2πt/T)

a(t) = dv/dt = - A •(2π/T)2 • cos(2πt/T)

│amax= (30,0 m)•(2π/T)2 = 1,89,81 m/s2

T = 2π(A/amax)1/2 = 8,2 s

v = 2πA/T = 23 m/s

(24)

Active Example 13-1

Bobbing for Apples: Find the Position, Velocity, and Acceleration

(25)

Active Example 13-1 Bobbing for Apples: Find the Position, Velocity, and Acceleration [bob = hoppa, guppa]

Om man lyfter upp (CM av) ett äpple (Red Delicious) som flyter i en hink vatten, 2,00 cm över vattenytan och sedan släpper det så guppar det upp och ned, med en periodtid av 0,750 s. Om svängningen är harmonisk, vad är då äpplets läge, hastighet och acceleration efter tiden a) T/4 b) T/2?

x(t) = A cos (2πt/T)

v(t) = dx/dt = - A •2π/T• sin(2πt/T)

a(t) = dv/dt = - A •(2π/T)2 • cos(2πt/T)

x(T/4) = Acos(π/2) = 0 ; x(T/2) = Acos(π) = - 2,00 cm

v(T/4) = - A•2π/0,750 s•sin(π/2) = - 0,168 m/s ; v(T/2) = 0 a(T/4) = - A•(2π/0,750 s)2•cos(π/2) = 0

a(T/2) = - A•(2π/0,750 s)2•cos(π) = 1,40 m/s2

(26)

13-4 The Period of a Mass on a Spring

Since the force on a mass on a spring is

proportional to the displacement, and also to the acceleration, we find that . Substituting the time dependencies of a and x gives

(27)

13-4 The Period of a Mass on a Spring

Therefore, the period is

(28)

Example 13-4 Spring into Motion

En 0,120 kg massa är fäst vid en fjäder och oscillerar med en amplitud av 0,0750 m och en maximal hastighet av 0,524 m/s. Bestäm a) fjäderkonstanten b) periodtiden T

Eftersom

v(t) = dx/dt = - A •2π/T• sin(2πt/T) så blir maxhastigheten vmax = A •2π/T = A • ω

ω = 0,524 m/s /0,0750 m = 6,99 rad/s ω = (k/m)1/2

k = m ω2 = 0,120 kg • (6,99 rad/s)2 = 5,86 N/m T = 2π/ω = 0,899 s

(29)

Active Example 13-2 Mass on a Spring:

Find k and m

När en 0,420 kg massa är fäst vid en fjäder, oscillerar den med en periodtid av 0,350 s. När man, i stället fäster massan m2, oscillerar den med periodtiden 0,700 s. Bestäm k och m2. T = 2π/ω

ω = (k/m)1/2

k = m • (2π/T)2 = 0,420 kg • (2π/0,350 s)2 = 135 N/m

Eftersom T ~ √m betyder det att periodtiden fördubblades när m2 = 4 m1 = 1,68 kg

(30)

Example 13-5 It’s a Stretch

(31)

Example 13-5 It is a Stretch

När en 0,260 kg massa är fäst vid en vertical fjäder,

oscillerar den med en periodtid av 1,12 s. Hur mycket drar massan ut fjädern från dess jämviktsposition?

T = 2π/ω ω = (k/m)1/2

k = m • (2π/T)2 = 0,260 kg • (2π/1,12 s)2 = 8,18 N/m Eftersom F ~ Δy betyder det att

Δy = mg/k = 0,260 kg • 9,81 m/s2 /8,18 N/m = 0,312 m

(32)

Conceptual Checkpoint 13-1 Compare Periods När en massa m fästs på en vertikal fjäder blir perioden T. Vad blir periodtiden T* om fjäderns längd halveras men belastas med samma massa? a) > b) = c) < T?

(33)

13-5 Energy Conservation in Oscillatory Motion

In an ideal system with no nonconservative forces, the total mechanical energy is

conserved. For a mass on a spring:

Since we know the position and velocity as functions of time, we can find the maximum kinetic and potential energies:

(34)

Figure 13-10

Energy as a function of position in simple harmonic motion

(35)

13-5 Energy Conservation in Oscillatory Motion

As a function of time,

So the total energy is constant; as the kinetic energy increases, the potential energy decreases, and vice versa.

(36)

13-5 Energy Conservation in Oscillatory Motion

This diagram shows how the energy

transforms from potential to kinetic and back, while the total energy remains the same.

(37)

Example 13-6 Stop the Block

(38)

Example 13-6 Stop the Block

En 0,980 kg block glider på ett friktionsfritt, horisontalt golv med hastigheten 1,32 m/s. Det träffar en horisontal fjäder (i jämvikt) med fjäderkonstanten 245 N/m. a) Hur mycket

pressas fjädern ihop från sin jämviktsposition? b) Hur lång tid t är blocket i kontakt med fjädern innan hastigheten = 0?

mv2/2 = kA2/2

A = v • (m/k)1/2 = 1,32 m/s • (0,980 kg/245 N/m)1/2 = 0,0835 m När blocket kommit till vila har fjädern och blocket gjort en fjärdedel av en hel svängning. Eftersom

T = 2π(m/k)1/2 = 0,397 s t = T/4 = 0,0993 s

{Observera att a inte är konstant under förloppet som

förutses i många ”användbara” ekvationer som förstås ger rätt storleksordning men inte korrekt resultat.}

(39)

Active Example 13-3

Bullet–Block Collision: Find the Compression and Compression Time

(40)

Active Example 13-3 Bullet-Block Collision: Find the Compression and the Compression Time

En kula med massan m skjuts in i ett block med massan M som är fäst vid en fjäder med fjäderkonstanten k. Om

ursprungshastigheten på kulan är v0, bestäm hur mycket fjädern pressas ihop. Hur lång tid är kula-blocket i kontakt med fjädern innan deras gemensamma hastighet = 0?

mv0 = (m+M)v

(m+M)v2/2 = kA2/2 = m2v02/(2[m+M]) A = mv0/(k[m+M])1/2

Som tidigare visats (Ex.13-6) har blocket+kulan kommit till vila när fjädern har gjort en fjärdedel av en hel svängning.

t = T/4 = π([m+M]/k)1/2/2

(41)

13-6 The Pendulum

A simple pendulum consists of a mass m (of

negligible size) suspended by a string or rod of length L (and of negligible mass).

The angle it makes with the vertical varies with time as a sine or cosine.

(42)

Figure 13-13

The potential energy of a simple pendulum

(43)

13-6 The Pendulum

Looking at the forces on the pendulum bob (tyngd), we see that the restoring force is proportional to sin θ, whereas the restoring force for a spring is proportional to the displacement (which is θ in this case).

(44)

13-6 The Pendulum

However, for small angles, sin θ and θ are approximately equal.

(45)

13-6 The Pendulum

Substituting θ for sin θ allows us to treat the pendulum in a mathematically identical way to the mass on a spring. Therefore, we find that the period of a pendulum depends only on the

length of the string (kx=mgsinθ≈mgθ=mgx/L):

(46)

Exercise 13-4 (p.415)+Conceptual Checkpoint 13-2

Ett golvur är konstruerat för att göra ett utslag (en halv period) på en sekund. Vad har det för pendellängd?

T = 2π(L/g)1/2

L = g • (T/2π)2 = 9,81 m/s2 • (2s/2π)2 = 0,994 m

Conceptual checkpoint 13-2 Raise or lower the weight?

Ovanstående golvur går efter, hur skall pendellängden justeras?

Periodtiden T måste minskas och det görs genom att pendellängden minskas något (dvs ”raise the weight”)

(47)

Example 13–7 Drop Time

(48)

Exemple 13-7 Drop Time

Ett pendelur är konstruerat med en pendellängd = 0,627 m och en massa på 0,250 kg. Den får då periodtiden 1,59 s.

Om pendel är i vila och pendellinan plötsligt skärs av, hur lång tid tar det för massan att falla 1,00 m?

T = 2π(L/g)1/2

g = L • (2π/T)2 = 0,627 m • (2π/1,59s)2 = 9,79 m/s2

x = x0 + v0t + gt2/2

t = (2•1,00/9,79)1/2 = 0,452 s

(49)

Photo 13-4

Gravitational strength for the state of Ohio

(50)

13-6 The Pendulum

A physical pendulum is a solid mass that oscillates around its center of mass, but cannot be modeled as a point mass suspended by a massless string. Examples:

(51)

13-6 The Pendulum

In this case, it can be shown that the period depends on the moment of inertia (tröghetsmomentet I):

Substituting the moment of inertia of a point mass a distance l from the axis of rotation gives, as expected,

(52)

Figure 13-17

The leg as a physical pendulum

(53)

Figure 13-17 The leg as a physical pendulum*

Om benet aproximeras som en homogen cylinder med tröghetsmomentet I = mL2/3 med pendellängden λ=L/2.

Om benets längd L ≈ 1,0 m

T = 2π(λ/g)1/2 (I/mλ2)1/2 = 2π(L/g)1/2 (2/3)1/2 = 2,0•0.82 ≈ 1,6 s På en halv periodtid flyttas foten ungefär sträckan s = Lθ där vinkeln är ungefär en radian.

Därför är en människas gånghastighet ungefär v = 1,0 m •1,0 rad/0,8 s = 1,25 m/s (4,5 km/h)

(54)

13-7 Damped Oscillations

In most physical situations, there is a

nonconservative force of some sort, which will tend to decrease the amplitude of the

oscillation, and which is typically proportional to the speed:

This causes the amplitude (för en oscillerande massa m) to decrease exponentially with time:

(55)

13-7 Damped Oscillations

This exponential decrease is shown in the figure:

(56)

13-7 Damped Oscillations

The previous image shows a system that is underdamped – it goes through multiple

oscillations before coming to rest. A critically damped system is one that relaxes back to the equilibrium position without oscillating and in minimum time; an overdamped system will

also not oscillate but is damped so heavily that it takes longer to reach equilibrium.

(57)

13-8 Driven Oscillations and Resonance

An oscillation can be driven by an oscillating driving force; the frequency of the driving force may or may not be the same as the natural

frequency of the system.

(58)

13-8 Driven Oscillations and Resonance

If the driving frequency is close to the natural frequency (systemets egenfrevens, som tex f = 1/T där T = 2π(L/g)1/2 pendel T = 2π(k/m)1/2 fjäder)

the amplitude can become quite large, especially if the

damping is small. This is called resonance.

(59)

Summary of Chapter 13

• Period: time required for a motion to go through a complete cycle

• Frequency: number of oscillations per unit time

• Angular frequency:

• Simple harmonic motion occurs when the restoring force is proportional to the

displacement from equilibrium.

(60)

Summary of Chapter 13

• The amplitude is the maximum displacement from equilibrium.

• Position as a function of time:

• Velocity as a function of time:

(61)

Summary of Chapter 13

• Acceleration as a function of time:

• Period of a mass on a spring:

• Total energy in simple harmonic motion:

(62)

Summary of Chapter 13

• Potential energy as a function of time:

• Kinetic energy as a function of time:

• A simple pendulum with small amplitude exhibits simple harmonic motion

(63)

Summary of Chapter 13

• Period of a simple pendulum:

• Period of a physical pendulum*:

(64)

Summary of Chapter 13

• Oscillations, where there is a nonconservative force, are called damped.

• Underdamped: the amplitude decreases exponentially with time:

• Critically damped: no oscillations; system relaxes back to equilibrium in minimum time

• Overdamped: also no oscillations, but slower than critical damping

(65)

Summary of Chapter 13

• An oscillating system may be driven by an external force

• This force may replace energy lost to friction, or may cause the amplitude to increase greatly at resonance

• Resonance occurs when the driving frequency is equal to the natural frequency of the system

References

Related documents

Work-Energy Theorem: The total work done on an object is equal to its change in kinetic

Conservative force: the work it does is stored in the form of energy that can be released at a later time.. Example of a conservative

The total mass multiplied by the acceleration of the center of mass is equal to the net external force:. The center of mass accelerates

kinetic energy of a rolling object is a multiple of the kinetic energy of translation... Example 10-5 Like a Rolling Disk. Bestäm a) translationsenergin b)

Gravitational potential energy of an object of mass m a distance r from the Earth’s center:.. 12-4 Gravitational

Archimedes’ Principle: An object completely immersed in a fluid experiences an upward buoyant force equal in magnitude to the?. weight of fluid displaced by

That is, temperature is the only factor that determines whether two objects in thermal contact are in thermal equilibrium or not.... 16-1 Temperature and the Zeroth Law of

The heat required to convert from one phase to another is called the latent heat. The latent heat, L, is the heat that must be added to or removed from one kilogram of a substance