• No results found

Lecture Outlines Chapter 10 Physics, 3

N/A
N/A
Protected

Academic year: 2021

Share "Lecture Outlines Chapter 10 Physics, 3"

Copied!
58
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2007 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.

Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Lecture Outlines Chapter 10

Physics, 3rd Edition James S. Walker

(2)

Chapter 10

Rotational Kinematics and

Energy

(3)

Units of Chapter 10

• Angular Position, Velocity, and Acceleration

• Rotational Kinematics

• Connections Between Linear and Rotational Quantities

•Rolling Motion

• Rotational Kinetic Energy and the Moment of Inertia

• Conservation of Energy

(4)

Photo 10-1 Galaxy

(5)

10-1 Angular Position, Velocity, and

Acceleration

(6)

10-1 Angular Position, Velocity, and Acceleration

Degrees and revolutions:

(7)

10-1 Angular Position, Velocity, and Acceleration

Arc length s, measured in radians:

(8)

10-1 Angular Position, Velocity, and

Acceleration

(9)

10-1 Angular Position, Velocity, and

Acceleration

(10)

Exercise 10-1(p.284) En gammal LP-skiva gjorde 33 1/3 rpm (varv [revolutions] per minut)

a) Vinkelhastigheten = ?

ω = - (!) 100/3 • 2 π rad/60 s = - 3,49 rad/s

b) Om en CD roterar 22,0 rad/s vad är det i rpm?

1 rpm = 2π rad/60 s 1 rad/s = 60/2π rpm

22 rad/s = 22 • 60/2π rpm = 210 rpm

(11)

10-1 Angular Position, Velocity, and

Acceleration

(12)

Exercise 10-2 (p.284) En någon yngre EP-skiva gjorde 45-varv per minut. T=?

ω = 45 • 2 π rad/60 s

T = 2 π/ω = 60 s/45(rad) = 1,3 s

(13)

10-1 Angular Position, Velocity, and

Acceleration

(14)

Exercise 10-3 (p.286) En väderkvarn saktar ned

med en konstant vinkelacceleration = - 0,45 rad/s2 Hur lång tid tar det för kvarnen att stanna?

Om ursprungsvinkelhastigheten 2,1 rad/s blir Δt = Δω/αav = (ωf – ωi)/αav = (0-2,1)/-0,45 = 4,7 s

(15)

10-2 Rotational Kinematics

If the angular acceleration is constant:

(16)

Exercise 10-4 ω0 = - 8,4 rad/s och α = - 2,8 rad/s2. Vad är ω, 1,5 s senare? ω = ω0 + αt ger ω = - 8,4 -2,8•1,5 = - 12,6 rad/s

(17)

10-2 Rotational Kinematics

Analogies between linear and rotational kinematics:

(18)

Example 10-1 Thrown for a Curve ω0 = 36,0 rad/s och 0,595 s senare så är ω = 34,2 rad/s på grund av luftmotståndet. a) Hur stor är

(medel)accelerationen om den antas vara konstant? b) Hur många varv hinner bollen göra i flykten?

α = (ω - ω0 )/Δt = (- 1,8 rad/s)/0,595 s = - 3,03 rad/s2

θ = θ0 + ω0t + αt2/2 ger θ - θ0 = 21,4 rad – 0,536 rad = 20,9 rad = 3,33 varv

(19)

Example 10-2 Wheel of Misfortune

(20)

Example 10-2 Wheel of Misfortune

Hjulet roterar ett och ett kvarts varv innan det stannar.

a)Vad blir α? Om ursprungsvinkelhastigheten är 3,40 rad/s ger

ωf2 = ω02 + 2α(θ – θ0)

att den konstanta vinkelaccelerationen α = - 0,736 rad/s2

a)b) Hur lång tid tar förloppet?

t = (ωf – ω0)/α = 4,62 s

(21)

Active Example 10-1 Find the Time To Rest

(22)

Active Example 10-1 Find the Time to Rest

Om ursprungsvinkelhastigheten är 5,40 rad/s och den konstanta vinkelaccelerationen = - 2,10 rad/s2 a) Vad blir t?

ω = ω0 + αt

t = (ωf – ω0)/α = 2,57 s

b) Hur stor vinkel har då blocket roterat?

θ = θ0 + ω0t + αt2/2

θ - θ0 = 13,88 rad – 6,94 rad = 6,94 rad

(23)

10-3 Connections Between Linear and

Rotational Quantities

(24)

Exercise 10-5

Vilken vinkelhastighet måste en CD ha för att ge en linjär hastighet = 1,25 m/s när lasern belyser skivan a) 2,50 cm b) 6,00 cm från centrum?

ω = v/r

a) ω(r) = 50,0 rad/s b) ω(r) = 20,8 rad/s

(25)

Conceptual Checkpoint 10–1 Compare the Speeds Är vinkelhastigheten för barn1 > = < barn2?

(26)

10-3 Connections Between Linear and

Rotational Quantities

(27)

Vilken centripetalacceleration känner ett barn i en karusell om r = 4,25 m och vinkelhastigheten är

= 0,838 rad/s?

acp = rω2 = 4,25 m • (0,838 rad/s)2 = 2,96 m/s2 (0,3 g)

(28)

Example 10-3

The Microhematocrit

(29)

Exemple 10-3 The Microhematocrit

Vinkelhastigheten ω = 11 500 rpm och r = 9,07 cm.

a)Hur stor är v?

v = rω = 0,0907 m • 11500 • 2π rad/60 s = 109 m/s b) Hur stor är centripetalacceleration?

acp = rω2 = 0,0907 m • (1200 rad/s)2 = 1,32 •105 m/s2

(30)

10-3 Connections Between Linear and Rotational Quantities

This merry-go-round

has both tangential and centripetal

acceleration.

(31)

10-3 Connections Between Linear and

Rotational Quantities

(32)

Active Example 10-2 (p.293) Find the Acceleration

(33)

Active example 10-2

at = r • Δω/Δt = r • α = 0,0907 m • 95,0 rad/s2 = 8,62 m/s2

acp = r • ω2 = 0,0907 m • (8,00 rad/s)2 = 5,80 m/s2

Storleken av totala accelerationen blir då a = (at2 + acp2)1/2 = 10,4 m/s2

och vinkeln blir

Φ = arctan acp/at = 33,9º

(34)

10-4 Rolling Motion

If a round object rolls without slipping, there is a fixed relationship between the

translational and rotational speeds:

(35)

10-4 Rolling Motion

We may also consider rolling motion to be a combination of pure rotational and pure

translational motion:

(36)

Exercise 10-6

En bil med hjulradien 32 cm kör med hastigheten 24,6 m/s (55 mi/h).

a) Hur stor är vinkelhastigheten?

ω = v/r = 24,6 m/s/ 0,32 m = 77 rad/s

b) Vad är hastigheten i en punkt på däckets ovansida?

vovansida = 2ωr = 59,2 m/s

(37)

10-5 Rotational Kinetic Energy and the Moment of Inertia

For this mass,

(38)

10-5 Rotational Kinetic Energy and the Moment of Inertia

We can also write the kinetic energy as

Where I, the moment of inertia, is given by

(39)

Figure 10-13

Kinetic energy of a rotating object of arbitrary shape

(40)

Exercise 10-7 A dumbbell(=hantel)-shaped object rotating about its

(mass)center, figure 10-14. Massorna kan behandlas som punktmassor.

I=?, I = ∑miri2 = mr2 + mr2 = 2mr2

(41)

Example 10-4 Nose to the Grindstone Om K = 13,0 J vad är då I?

K = Iω2/2 så I = 2K/ω2 = 2Kr2/v2 = 4,30 kg•m2

(42)

10-5 Rotational Kinetic Energy and the Moment of Inertia

Moments of inertia of various regular objects can be

calculated: (hoop = rull/tunnband, rim = rand, kant, [fälg])

(43)

Conceptual Checkpoint 10–2 Compare the Moments of Inertia

(44)

10-6 Conservation of Energy

The total kinetic energy of a rolling object is the sum of its linear and rotational kinetic energies:

The second equation makes it clear that the

kinetic energy of a rolling object is a multiple of the kinetic energy of translation.

(45)

Example 10-5 Like a Rolling Disk

Bestäm a) translationsenergin b) rotationsenergin och

c) totala rörelseenergin, då skivan rullar utan att slira (m=1,20 kg)

(46)

Example 10-5

a) Translationsenergin är mv

2

/2 =

= 1,20 kg • (1,41 m/s)

2

/2 = 1,19 J b) Rotationsenergin är Iω

2

/2 =

= (I

skiva

)•(v/r)

2

/2 = (mr

2

/2)•(v/r)

2

/2 = 0,596 J

c) E

tot

= 1,19 J + 0,596 J = 1,79 J

(47)

Figure 10-17 An object rolls down an incline

Punch line: Ju större tröghetsmoment, desto större del “bundet” i större rotationsenergi, desto lägre hastighet efter rullningen.

(48)

Conceptual Checkpoint 10–4 Which Object Wins the Race?

(49)

10-6 Conservation of Energy

If these two objects, of the same mass and radius, are released

simultaneously, the disk will reach the bottom first – more of its gravitational potential energy becomes translational kinetic energy, and less rotational.

(50)

Conceptual Checkpoint 10–5 Compare Heights

(51)

Example 10-6 Spinning Wheel

(52)

Example 10-6

Translationsenergin är mv

2

/2

Rotationsenergin är I•ω

2

/2 = I•(v/R)

2

/2 Denna (totala) energi mv

2

/2(1 + I/mR

2

) har blivit lägesenergin = mgh

h = v

2

/[2g(1+I/mR

2

)]

(53)

Active Example 10-3 Find the Yo-Yo’s Speed

(54)

Active Example 10-3 Find the Yo-Yo´s speed m = 0,056 kg

I = 2,9 •10-5 kg m2 r = 0,0064 m

h = 0,50 m Ei = mgh

Ef består dels av translationsenergin mv2/2 och dels av rotationsenergin I•ω2/2 = I•(v/r)2/2

Denna energi, [mv2/2](1 + I/mr2) är lika stor som lägesenergin, så att

v2 = 2gh/(1+I/mr2)

v = ((2•9,81•0,50)/(1+2,9•10-5/(0,056(0,0064)2))1/2 = = [9,81/(1 + 12,6)]1/2 = 0,85 (m/s)

(55)

Summary of Chapter 10

• Describing rotational motion requires analogs to position, velocity, and acceleration

• Average and instantaneous angular velocity:

• Average and instantaneous angular acceleration:

(56)

Summary of Chapter 10

• Period:

• Counterclockwise rotations are positive, clockwise negative

• Linear and angular quantities:

(57)

Summary of Chapter 10

• Linear and angular equations of motion:

Tangential speed:

Centripetal acceleration:

Tangential acceleration:

(58)

Summary of Chapter 10

• Rolling motion:

• Kinetic energy of rotation:

•Moment of inertia:

• Kinetic energy of an object rolling without slipping:

• When solving problems involving conservation of energy, both the rotational and linear kinetic

energy must be taken into account.

References

Related documents

Subtracting Vectors: The negative of a vector is a vector of the same magnitude pointing in the opposite direction... 3-4

Launch angle: direction of initial velocity with respect to horizontal... 4-3 Zero

An object moving with constant velocity continues to move with the same speed and in the same direction as long as no net force acts on it.. If the net force on an object is

Some algebra gives us the magnitude of the acceleration, and therefore the force, required to keep an object of mass m moving in a circle of radius r. The magnitude of the force

Work-Energy Theorem: The total work done on an object is equal to its change in kinetic

Conservative force: the work it does is stored in the form of energy that can be released at a later time.. Example of a conservative

The total mass multiplied by the acceleration of the center of mass is equal to the net external force:. The center of mass accelerates

Gravitational potential energy of an object of mass m a distance r from the Earth’s center:.. 12-4 Gravitational