• No results found

Lecture Outlines Chapter 8 Physics, 3

N/A
N/A
Protected

Academic year: 2021

Share "Lecture Outlines Chapter 8 Physics, 3"

Copied!
62
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2007 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.

Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Lecture Outlines Chapter 8

Physics, 3rd Edition James S. Walker

(2)

Chapter 8

Potential Energy and

Conservation of Energy

(3)

Units of Chapter 8

• Conservative and Nonconservative Forces

• Potential Energy and the Work Done by Conservative Forces

• Conservation of Mechanical Energy

• Work Done by Nonconservative Forces

• Potential Energy Curves and Equipotentials

(4)

8-1 Conservative and Nonconservative Forces

Conservative force: the work it does is stored in the form of energy that can be released at a later time

Example of a conservative force: gravity

Example of a nonconservative force: friction Also: the work done by a conservative force

moving an object around a closed path is zero;

this is not true for a nonconservative force

(5)

Figure 8-1

Work against gravity

(6)

Figure 8-2

Work against friction (hastigheten är konstant)

(7)

8-1 Conservative and Nonconservative Forces

Work done by gravity on a closed path is zero:

(Systemet sett från sidan)

(8)

8-1 Conservative and Nonconservative Forces

Work done by friction on a closed path is not zero: (Systemet sett uppifrån = fågelperspektiv)

(9)

Figure 8-5

Gravity is a conservative force

(10)

8-1 Conservative and Nonconservative Forces

The work done by a conservative force is zero on any closed path:

(11)

Table 8-1

Conservative and Nonconservative Forces

(12)

Example 8-1a (p.208) Different Paths, Different Forces (m= 4,57 kg) W1 = -mg•1,0 + 0 = -mg•1,0 ; W2 = 0 – mg•2,0 + 0 + mg•1,0 = -mg•1,0 W1 = W2 (oberoende av vägen) (mg•1,0 meter = 45 J)

(13)

Example 8-1b (p.208) Different Paths, Different Forces (m = 4,57 kg, μ = 0,63) W1= - mg•0,63•4,0= -110 J ;

W2 = - mg•0,63•12,0 = - 330 J, dvs W1 ≠ W2 (beror av vägen)

(14)

8-2 The Work Done by Conservative Forces

If we pick up a ball and put it on the shelf, we have done work on the ball. We can get that

energy back if the ball falls back off the shelf; in the meantime, we say the energy is stored as

potential energy.

(8-1)

(15)

8-2 The Work Done by Conservative Forces

Gravitational potential energy:

(16)

Exercise 8-1

Vad är potentiella energin för ett system som består av en person (m=65 kg) på en 3,0-

meters svikt? Sätt U = 0 vid vattenytan.

U = mgh = 65 kg

9,81 m/s

2

3,0 m = 1,9 kJ

(17)

Example 8-2 (p.211) Pikes Peak or Bust (m=82,0 kg)

(18)

Exercise 8-2 Pikes Peak or Bust

Vad är ändringen i den potentiella energin för systemet som består av en person (m=82,0 kg) när han klättrat de sista

100,0 meterna?

a) Sätt U = 0 vid havsytan (yf = 4301 m, yi = 4201 m)

ΔU = Uf – Ui = mgyf - mgyi = 82 kg•9,81 m/s2•(4301m - 4201 m) = 80,4 kJ

b) Sätt U = 0 på bergstoppen

ΔU = Uf – Ui = mgyf - mgyi = 0 – (82 kg•9,81 m/s2•(-100,0 m))

= 80,4 kJ

(19)

Example 8-3

Converting Food Energy to Mechanical Energy

(20)

Exemple 8-3 Converting Food Energy to Mechanical Energy

Vad skulle kunna vara ändringen i den potentiella energin för

systemet som består av en person (m=81,0 kg) om han

kunde omsätta hela sitt kaloriintag (212 Cal = 212 kcal) i en direkt “höjdvinst”?

212 kcal = 212 kcal 4,186 J/cal = 887 kJ

ΔU = Uf – Ui = mgyf - mgyi = 81,0 kg•9,81 m/s2• Δy = 887 kJ

Δy = 1120 m

(21)

8-2 The Work Done by Conservative Forces

Springs: (8-4)

(22)

Exemple 8-4 Compressing Energy (and the Jump of a Flea)

När kraften 120,0 N drar i en fjäder orsakar den en

förlängning på 2,25 cm. Vad blir den (lagrade) potentiella energin om fjädern trycks ihop 3,50 cm?

k = F/x = 120,0N/(0,0225 m) = 5330 N/m

U = kx2/2 = 5330 N/m ( - 0,035 m)2 /2 = 3,26 J

(23)

Example 8-4b

Compressed Energy and the Jump of a Flea

(24)

8-3 Conservation of Mechanical Energy

Definition of mechanical energy:

(8-6) Using this definition and considering only conservative forces, we find:

Or equivalently:

(25)

Photo 8-4

Mormon Flat Dam

(26)

8-3 Conservation of Mechanical Energy

Energy conservation can make kinematics problems much easier to solve:

(27)

8-3 Conservation of Mechanical Energy

Eftersom vi är i ett konservativt kraftfält så gäller att energin är bevarad, det vill säga

Ei = Ef

vilket är detsamma som Ui + Ki = Uf + Kf

som skrivs (i ett ”standard y/x-system”) mgyi + mvi2/2 = mgyf + mvf2/2

som lätt kan omformas till vf2 = vi2 + 2g(yi –yf)

(28)

Example 8-5 (p.216) Graduation Fling (m = 0,120 kg, vy0 = 7,85 m/s) a) Använd rörelseekvationerna för att bestämma vy då y = 1,18 m b) Visa att E(y=0) = E(y=1,18) Friktionskrafter försummas.

(29)

8-5 Graduative fling

a)

vy2 = vi2 + 2ayΔy dvs

vy2 = (7,85)2 + 2 (-9,81) (1,18) = (6,20)2

b)

Ui + Ki = 0 + 0,120 (7,85)2/2 = 3,70 (J)

Uy + Ky = 0,120 • 9,81 •1,18 + 0,120 •(6,20)2/2 =

= 1,39 + 2,31 = 3,70 (J)

(30)

Figure 8-9 Speed is independent of path (Inga friktionskrafter)

(31)

Example 8-6a (p.218) Catching a Home Run (m=0,15 kg, v0 = 36 m/s, h = 7,2 m inga friktionskrafter) Beräkna Kf och vf

(32)

Example 8-6 Catching a Home Run a)

Ui + Ki = 0 + 0,15•(36)2/2 = 97 (J) Uf + Kf = 0,15•9,81•7,2 + Kf

Kf = 97 – 11 = 86 (J) b)

mvf2/2 = 86 (J) vf = 34 (m/s)

(33)

Example 8-6b

Catching a Home Run

(34)

Conceptual Checkpoint 8–1 Compare the Final Speeds (Först ned?)

(35)

Example 8-7a Skateboard Exit Ramp (m = 55 kg, vi = 6,5 m/s, vf = 4,1 m/s, h = ?, no energy losses due to friction)

(36)

Example 8-7 Skateboard Exit Ramp Ei = Ef

Ui + Ki = 0 + 55•(6,5)2/2 ≈ 1160 J

Uf + Kf = 55•9,81•h + 55•(4,1)2/2 (J) Uf = 1160 – 460 ≈ 700 (J)

h = 700/(55•9,81) = 1,3 (m)

{Practical problem p.220 Maximal höjd?

Då Uf = 1200 J → h = 2,2 m}

(37)

Example 8-7b

Skateboard Exit Ramp

(38)

Conceptual Checkpoint 8–2 What is the Final Speed?

(Ingen friktion) a) 1 m/s b) 2 m/s c) 3 m/s

(39)

Example 8-8 (p.221) Spring Time (m=1,70 kg, k = 955 N/m, d = 4,60 cm Om friktionen kan försummas, vad hade blocket för

begynnelsehastighet?

(40)

Example 8-8 Spring Time

mvf2/2 = kx2/2 = 955•(0,046)2/2 = 1,01 (J) vf = 2•1,01/1,70 = 1,09 (m/s)

(41)

Active Example 8-1 Find the Speed of the Block when x= x0

(42)

Aktive Example 8-1 Find the speed of the block Energin lagrad i fjädern ger både kinetisk och potentiell energi. Då x = x0 gäller att

mvf2/2 + mgd = kd2/2 = 955 • (0,046)2/2 mvf2/2 = 1,01 – 1,7•9,81•0,046 = 0,24 (J) vf = [2 • 0,24/1,70]1/2 = 0,535 (m/s)

(43)

8-4 Work Done by Nonconservative Forces

In the presence of nonconservative forces, the total mechanical energy is not conserved:

Solving,

(8-9)

(44)

Example 8-9a

A Leaf Falls in the Forest: Find the Nonconservative Work

(45)

Example 8-9 A leaf Falls in the Forest Find the Nonconservative Work

Energi finns lagrad som potentiell energi (h = 5,30 m, m = 17,0•10-3 kg) där

Ui = mgh = 17,0•10-3 •9,81•5,30 = 0,884 J Ki =0

Uf = 0

Kf = mvf2/2 = 17,0 10-3 • (1,3)2/2 = 0,0143 J Wnc = ΔE = Ef - Ei = - 0,870 J

(46)

Example 8-9b

A Leaf Falls in the Forest: Find the Nonconservative Work

(47)

8-4 Work Done by Nonconservative Forces

In this example, the

nonconservative force is water resistance:

(48)

8-4 Work Done by Nonconservative Forces

Eftersom hastigheten är noll i de två tillstånden gäller att

Ei = mgh Ef = mg(-d)

Wnc = ΔE = Ef – Ei = -mg(h+d) = -5120 (J) som då h = 3,00 m ger

d = 5120/mg – h = 5,49 – 3,00 = 2,49 (m)

(49)

Conceptual Checkpoint 8–3 Judging a Putt Initial speed a) 2v0 b) 3v0 c) 4v0? Friktionskraften antas konstant.

(50)

Conceptual Checkpoint 8-3 Judging a Putt

Energi finns lagrad som kinetisk energi som går åt till arbetet som friktionskraften F utför på

sträckan d.

Wnc = - F•d

ΔE = Ef - Ei = 0 - mv02/2 Wnc = ΔE ger

v0 ~ d så att om d = 4d måste v = 2v0, rätt svar a)

(51)

Example 8-10 Landing with a Thud

(m1 = 2,40 kg, m2 = 1,80 kg, d= 0,500 m, μk = 0,450) Vad är hastigheten när blocket slår i golvet?

(52)

Example 8-10 Landing with a Thud

Energi finns lagrad som potentiell energi som går åt till arbetet som friktionskraften F utför på

sträckan d.

Wnc = - F•d

F = μkN = μkm1g Ei = m1gh + m2gd

Ef = m1gh + (m1+ m2)vf2/2

ΔE = Ef - Ei = (m1+m2)vf2/2 – m2gd = Wnc = -F•d vf = [2gd(m2 – μkm1)/(m1+m2)]1/2 = 1,30 m/s

(53)

Active Example 8-3

Marathon Man: Find the Height of the Hill

(54)

Active Example 8-3 Marathon Man

Joggaren (m= 80,0 kg) har utfört ett ickekonservativt (positivt) (muskel)arbete

Wnc1 = 18,0 kJ

Luftmotståndet har utfört ett ickekonservativt (neg.) Wnc2 = - 4,42 kJ

Joggarens fart på backens krön är = 3,50 m/s Bestäm backens höjd h

Ei = 0

Ef = mgh + mvf2/2 = mgh + 490 J

ΔE = Ef - Ei = Wnc = (18,0 – 4,42) kJ

h = [(18,0 – 4,42 – 0,49)kJ/(80,0 kg•9,81 m/s2)= 16,7 m

(55)

8-5 Potential Energy Curves and Equipotentials

The curve of a hill or a roller coaster is itself essentially a plot of the gravitational

potential energy:

(56)

8-5 Potential Energy Curves and Equipotentials

The potential energy curve for a spring:

(57)

Example 8-11 A Potential Problem Partikeln rör sig i ett konservativt kraftfält längs banan enligt figur. Om hastigheten är 2,30 m/s för

x = 0, vad är hastigheten i punkten x = 2,00 m?

(58)

Example 8-11 A potential problem

Ei = Ki + Ui = 1,60 • (2,30)2/2 + 9,35 J = 13,58 J Ef = Kf + Uf = 1,60 • vf2/2 + 4,15 J

vf = [2(13,58 – 4,15)/(1,6)]1/2 = 3,43 m/s

(59)

8-5 Potential Energy Curves and Equipotentials

Contour maps are also a form of potential energy curve:

(60)

Summary of Chapter 8

• Conservative forces conserve mechanical energy

• Nonconservative forces convert mechanical energy into other forms

• Conservative force does zero work on any closed path

• Work done by a conservative force is independent of path

• Conservative forces: gravity, spring

(61)

Summary of Chapter 8

• Work done by nonconservative force on closed path is not zero, and depends on the path

• Nonconservative forces: friction, air resistance, tension

• Energy in the form of potential energy can be converted to kinetic or other forms

• Work done by a conservative force is the

negative of the change in the potential energy

• Gravity: U = mgy

• Spring: U = ½ kx2

(62)

Summary of Chapter 8

• Mechanical energy is the sum of the kinetic and potential energies; it is conserved only in

systems with purely conservative forces

• Nonconservative forces change a system’s mechanical energy

• Work done by nonconservative forces equals change in a system’s mechanical energy

• Potential energy curve: U vs. position

References

Related documents

An object moving with constant velocity continues to move with the same speed and in the same direction as long as no net force acts on it.. If the net force on an object is

Some algebra gives us the magnitude of the acceleration, and therefore the force, required to keep an object of mass m moving in a circle of radius r. The magnitude of the force

Work-Energy Theorem: The total work done on an object is equal to its change in kinetic

The total mass multiplied by the acceleration of the center of mass is equal to the net external force:. The center of mass accelerates

kinetic energy of a rolling object is a multiple of the kinetic energy of translation... Example 10-5 Like a Rolling Disk. Bestäm a) translationsenergin b)

Gravitational potential energy of an object of mass m a distance r from the Earth’s center:.. 12-4 Gravitational

13-3 Connections between Uniform Circular Motion (likformig cirkulär rörelse) and Simple

Archimedes’ Principle: An object completely immersed in a fluid experiences an upward buoyant force equal in magnitude to the?. weight of fluid displaced by