• No results found

Odd and even partial waves of ηπ − and η π − in π −p → η ( ) π −p at 191 GeV / c

N/A
N/A
Protected

Academic year: 2022

Share "Odd and even partial waves of ηπ − and η π − in π −p → η ( ) π −p at 191 GeV / c"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Odd and even partial waves of ηπ and η  π in π pη ( ) π p at 191 GeV / c

COMPASS Collaboration

C. Adolph

h

, R. Akhunzyanov

g

, M.G. Alexeev

aa

, G.D. Alexeev

g

, A. Amoroso

aa,ac

, V. Andrieux

v

, V. Anosov

g

, A. Austregesilo

j,q

, B. Badełek

ae

, F. Balestra

aa,ac

, J. Barth

d

, G. Baum

a

, R. Beck

c

, Y. Bedfer

v

, A. Berlin

b

, J. Bernhard

m

, K. Bicker

j,q

, E.R. Bielert

j

, J. Bieling

d

, R. Birsa

y

, J. Bisplinghoff

c

, M. Bodlak

s

, M. Boer

v

, P. Bordalo

l,1

,

F. Bradamante

x,y

, C. Braun

h

, A. Bressan

x,y,∗

, M. Büchele

i

, E. Burtin

v

, L. Capozza

v

, M. Chiosso

aa,ac

, S.U. Chung

q,2

, A. Cicuttin

z,y

, M.L. Crespo

z,y

, Q. Curiel

v

, S. Dalla Torre

y

, S.S. Dasgupta

f

, S. Dasgupta

y

, O.Yu. Denisov

ac

, S.V. Donskov

u

, N. Doshita

ag

, V. Duic

x

, W. Dünnweber

p

, M. Dziewiecki

af

, A. Efremov

g

, C. Elia

x,y

, P.D. Eversheim

c

, W. Eyrich

h

, M. Faessler

p

, A. Ferrero

v

, M. Finger

s

, M. Finger Jr.

s

, H. Fischer

i

, C. Franco

l

,

N. du Fresne von Hohenesche

m,j

, J.M. Friedrich

q

, V. Frolov

j

, F. Gautheron

b

,

O.P. Gavrichtchouk

g

, S. Gerassimov

o,q

, R. Geyer

p

, I. Gnesi

aa,ac

, B. Gobbo

y

, S. Goertz

d

, M. Gorzellik

i

, S. Grabmüller

q

, A. Grasso

aa,ac

, B. Grube

q

, T. Grussenmeyer

i

, A. Guskov

g

, F. Haas

q

, D. von Harrach

m

, D. Hahne

d

, R. Hashimoto

ag

, F.H. Heinsius

i

, F. Herrmann

i

, F. Hinterberger

c

, Ch. Höppner

q

, N. Horikawa

r,4

, N. d’Hose

v

, S. Huber

q

, S. Ishimoto

ag,5

, A. Ivanov

g

, Yu. Ivanshin

g

, T. Iwata

ag

, R. Jahn

c

, V. Jary

t

, P. Jasinski

m

, P. Jörg

i

, R. Joosten

c

, E. Kabuß

m

, B. Ketzer

q,6

, G.V. Khaustov

u

, Yu.A. Khokhlov

u,7

, Yu. Kisselev

g

, F. Klein

d

, K. Klimaszewski

ad

, J.H. Koivuniemi

b

, V.N. Kolosov

u

, K. Kondo

ag

, K. Königsmann

i

, I. Konorov

o,q

, V.F. Konstantinov

u

, A.M. Kotzinian

aa,ac

, O. Kouznetsov

g

, M. Krämer

q

, Z.V. Kroumchtein

g

, N. Kuchinski

g

, F. Kunne

v,∗

, K. Kurek

ad

, R.P. Kurjata

af

, A.A. Lednev

u

, A. Lehmann

h

, M. Levillain

v

, S. Levorato

y

, J. Lichtenstadt

w

, A. Maggiora

ac

, A. Magnon

v

, N. Makke

x,y

, G.K. Mallot

j

, C. Marchand

v

, A. Martin

x,y

, J. Marzec

af

, J. Matousek

s

, H. Matsuda

ag

, T. Matsuda

n

, G. Meshcheryakov

g

, W. Meyer

b

, T. Michigami

ag

, Yu.V. Mikhailov

u

, Y. Miyachi

ag

, A. Nagaytsev

g

, T. Nagel

q

, F. Nerling

m

, S. Neubert

q

, D. Neyret

v

, J. Novy

t

, W.-D. Nowak

i

, A.S. Nunes

l

, A.G. Olshevsky

g

, I. Orlov

g

, M. Ostrick

m

, R. Panknin

d

, D. Panzieri

ab,ac

, B. Parsamyan

aa,ac

, S. Paul

q

, D.V. Peshekhonov

g

,

S. Platchkov

v

, J. Pochodzalla

m

, V.A. Polyakov

u

, J. Pretz

d,8

, M. Quaresma

l

, C. Quintans

l

, S. Ramos

l,1

, C. Regali

i

, G. Reicherz

b

, E. Rocco

j

, N.S. Rossiyskaya

g

, D.I. Ryabchikov

u

, A. Rychter

af

, V.D. Samoylenko

u

, A. Sandacz

ad

, S. Sarkar

f

, I.A. Savin

g

, G. Sbrizzai

x,y

, P. Schiavon

x,y

, C. Schill

i

, T. Schlüter

p,

, K. Schmidt

i,3

, H. Schmieden

d

, K. Schönning

j

, S. Schopferer

i

, M. Schott

j

, O.Yu. Shevchenko

g,19

, L. Silva

l

, L. Sinha

f

, S. Sirtl

i

,

M. Slunecka

g

, S. Sosio

aa,ac

, F. Sozzi

y

, A. Srnka

e

, L. Steiger

y

, M. Stolarski

l

, M. Sulc

k

, R. Sulej

ad

, H. Suzuki

ag,4

, A. Szabelski

ad

, T. Szameitat

i,3

, P. Sznajder

ad

, S. Takekawa

aa,ac

, J. ter Wolbeek

i,3

, S. Tessaro

y

, F. Tessarotto

y

, F. Thibaud

v

, S. Uhl

q

, I. Uman

p

, M. Virius

t

,

*

Correspondingauthors.

E-mailaddresses:Andrea.Bressan@cern.ch(A. Bressan),Fabienne.Kunne@cern.ch(F. Kunne),tobias.schlueter@physik.uni-muenchen.de(T. Schlüter).

http://dx.doi.org/10.1016/j.physletb.2014.11.058

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(2)

L. Wang

b

, T. Weisrock

m

, M. Wilfert

m

, R. Windmolders

d

, H. Wollny

v

, K. Zaremba

af

, M. Zavertyaev

o

, E. Zemlyanichkina

g

, M. Ziembicki

af

, A. Zink

h

aUniversitätBielefeld,Germany bUniversitätBochum,Germany

cUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany9 dUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany9

eInstituteofScientificInstruments,ASCR,61264Brno,CzechRepublic10

fMatrivaniInstituteofExperimentalResearch&Education,Calcutta700030,India11 gJointInstituteforNuclearResearch,141980Dubna,MoscowRegion,Russia12 hUniversitätErlangen–Nürnberg,PhysikalischesInstitut,91054Erlangen,Germany9 iUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany9,16 jCERN,1211Geneva23,Switzerland

kTechnicalUniversityinLiberec,46117Liberec,CzechRepublic10 lLIP,1000-149Lisbon,Portugal13

mUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany9 nUniversityofMiyazaki,Miyazaki889-2192,Japan14

oLebedevPhysicalInstitute,119991Moscow,Russia

pLudwig-Maximilians-UniversitätMünchen,DepartmentfürPhysik,80799Munich,Germany9,15 qTechnischeUniversitätMünchen,PhysikDepartment,85748Garching,Germany9,15

rNagoyaUniversity,464Nagoya,Japan14

sCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic10 tCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic10

uStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia vCEAIRFU/SPhNSaclay,91191Gif-sur-Yvette,France16

wTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel17 xUniversityofTrieste,DepartmentofPhysics,34127Trieste,Italy

yTriesteSectionofINFN,34127Trieste,Italy zAbdusSalamICTP,34151Trieste,Italy

aaUniversityofTurin,DepartmentofPhysics,10125Turin,Italy abUniversityofEasternPiedmont,15100Alessandria,Italy acTorinoSectionofINFN,10125Turin,Italy

adNationalCentreforNuclearResearch,00-681Warsaw,Poland18 aeUniversityofWarsaw,FacultyofPhysics,00-681Warsaw,Poland18

afWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland18 agYamagataUniversity,Yamagata,992-8510,Japan14

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received21August2014

Receivedinrevisedform24November2014 Accepted30November2014

Availableonline3December2014 Editor:M.Doser

Exclusive production of ηπ and ηπ has been studied with a 191 GeV/c π beam impinging on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular momentum(L)characteristicsintheinspectedinvariantmassrangeupto3 GeV/c2.Astrikingsimilarity betweenthetwosystemsisobservedfortheL=2,4,6 intensities(scaledbykinematicalfactors)andthe relativephases.Theknownresonancesa2(1320)anda4(2040)areinlinewiththissimilarity.Incontrast, a strongenhancementofηπoverηπisfoundfortheL=1,3,5 waves,whichcarrynon-qq quantum¯ numbers.TheL=1 intensitypeaksat1.7 GeV/c2inηπandat1.4 GeV/c2inηπ,thecorresponding phasemotionswithrespecttoL=2 aredifferent.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.

2 AlsoatDepartmentofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKoreaandatPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973, USA.

3 SupportedbytheDFGResearchTrainingGroupProgramme1102“PhysicsatHadronAccelerators”.

4 AlsoatChubuUniversity,Kasugai,Aichi,487-8501,Japan.

5 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki,305-0801,Japan.

6 Presentaddress:UniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany.

7 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia.

8 Presentaddress:RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany.

9 SupportedbytheGermanBundesministeriumfürBildungundForschung.

10 SupportedbyCzechRepublicMEYSGrantsME492andLA242.

11 SupportedbySAIL(CSR),Govt.ofIndia.

12 SupportedbyCERN-RFBRGrants08-02-91009and12-02-91500.

13 SupportedbythePortugueseFCTFundaçãoparaaCiênciaeTecnologia,COMPETEandQREN,GrantsCERN/FP/109323/2009,CERN/FP/116376/2010and CERN/FP/123600/2011.

14 SupportedbytheMEXTandtheJSPSundertheGrantsNos.18002006,20540299and18540281;DaikoFoundationandYamadaFoundation.

15 SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe-cluster.de).

16 SupportedbyEUFP7(HadronPhysics3,GrantAgreementnumber283286).

17 SupportedbytheIsraelScienceFoundation,foundedbytheIsraelAcademyofSciencesandHumanities.

18 SupportedbythePolishNCNGrantDEC-2011/01/M/ST2/02350.

19 Deceased.

(3)

The

ηπ

and

η



π

mesonic systems are attractive for spectro- scopicstudies becauseany statewithodd angularmomentum L, whichcoincideswiththetotalspin J ,hasnon-qq (“exotic”)¯ quan- tumnumbers JPC=1−+,3−+,5−+,. . .. The 1−+ state has been theprincipalcasestudiedsofar[1,2].

A comparison of

ηπ

and

η



π

should illuminate the role of flavoursymmetry.Since

η

and

η

aredominantlyflavouroctetand singletstates,respectively, differentSU(3)flavour configurationsare formed by

ηπ

and

η



π

. These configurations are linked to odd or even L by Bose symmetry [3–5]. Indeed, experimentally the diffractivelyproduced P -wave(L= J=1) in

η



π

was found to bemorepronouncedthanin

ηπ

[6].Amoresystematicstudyof thetwosystemsintheoddandevenpartialwavesisdesirable.

Diffractive productionof

ηπ

and

η



π

was studied by pre- vious experiments with

π

beams in the 18 GeV/c–37 GeV/c range[6–9].Apartfromthewell-knownresonancesa2(1320) and a4(2040),resonancefeatureswereobservedfortheexotic P -wave inthe 1.4 GeV/c2–1.7 GeV/c2 mass range.It has quantum num- bers JPG=1−−, where G-parity is used forthe charged system, correspondingtoC= +1 sincetheisospinis1.Resultsforcharge- exchangeproductionof

η

()

π

0aredifficulttorelatetotheseobser- vations[1].Criticaldiscussionsoftheresonancecharacterconcern apossibledynamicaloriginofthebehaviourofthe L=1 wavein thesesystems[10,11,1].

The present study is performed with a 191 GeV/c

π

beam andin the region 0.1 (GeV/c)2<t<1 (GeV/c)2, where t de- notesthe squaredfour-momentum transfer to the proton target.

This is within the range of Reggeon-exchange processes [12,13], wherediffractiveexcitationandmid-rapidity(“central”)production coexist.Theformercaninduceexclusiveresonanceproduction.The latterwill leadto a systemofthe leading andthe centrallypro- ducedmesonswith(almost)nointeractioninthefinalstate.

InthisLetter,thebehaviourofallpartialwaveswithL=1–6 in the

η

()

π

invariantmassrangeupto 3 GeV/c2 isstudied.A pe- culiardifference between

ηπ

and

η



π

in theeven andodd-L wavesisobserved.

ThedatawerecollectedwiththeCOMPASSapparatusatCERN.

COMPASSisatwo-stagemagneticspectrometer withtrackingand calorimetryin both stages[14,15]. A beamofnegatively charged hadronsat191 GeV/c wasimpinging ona liquidhydrogentarget of40 cm lengthand35 mm diameter.Usingtheinformationfrom beamparticleidentificationdetectors,itwascheckedthat K and

¯

p admixtures to the 97%

π

beam are insignificant in the final sampleanalysed here. Recoilingtarget protonswere identified by theirtimeofflightandenergylossinadetector(RPD)whichcon- sistedoftwocylindricalringsofscintillatingcountersatdistances of12 cm and 78 cm fromthebeam axis,covering thepolar an- gle rangeabove 50 as seen fromthe target centre.The angular rangebetween the RPDand the openingangle of the spectrom- eter of about ±10 was covered mostly by a large-area photon andcharged-particle veto detector (SW), thus enriching the data recordingwithkinematicallycompleteevents[16].Thetriggerfor takingthe presentdatarequiredcoincidencebetweenbeamdefi- nitioncountersandtheRPD, andno vetofromtheSWnorfrom a small counter telescope for non-interacting beam particles far downstream(32 m)fromthetarget.Asampleof4.109events wasrecordedwiththistriggerin2008.

For the analysis of the exclusively produced

π

η

and

π

η



mesonicsystems,the

η

wasdetected by itsdecay

η

π

π

+

π

0

(

π

0

γ γ

),andthe

η

 byitsdecay

η



π

π

+

η

(

η

γ γ

).The preselectionforthecommonfinalstate

π

π

π

+

γ γ

required:

(a) three tracks withtotal charge −1 reconstructedin the spec- trometer,

(b) avertex,locatedinsidethetargetvolume,withoneincoming beamparticletrackandthethreeoutgoingtracks,

(c) exactlytwo“eligible”clustersintheelectromagneticcalorime- tersofCOMPASS(ECAL1,ECAL2),and

(d) thetotalenergyEtotoftheoutgoingparticleswithina10 GeV wide windowcentredon the6 GeV FWHM peak at191 GeV inthe Etotdistribution.

Clusterswereconsidered“eligible”iftheywerenotassociatedwith a reconstructedtrack, ifthecluster energywas above 1 GeVand 4 GeVin ECAL1andECAL2, respectively, andiftheir timing with respecttothebeamwaswithin±4 ns.

Sharp

η

(

η

) peaks of widths 3 MeV/c2–4 MeV/c2 were ob- tainedinthe

π

π

+

π

0 and

π

π

+

η

massspectraafterkinematic fittingofthe

γ γ

systemswithin ±20 MeV/c2 windowsaboutthe respective

π

0 and

η

masses. For the present four-body analyses of the systems

π

π

π

+

π

0 and

π

π

π

+

η

, broad windows of 50 MeV/c2 widthaboutthe

η

and

η

 masseswereapplied tothe three-body

π

π

+

π

0 and

π

π

+

η

systems, respectively. In this way,acommontreatmentof

η

() andthesmallnumberofnon-

η

()

eventsbecomes possible inthe subsequentlikelihood fit.No sig- nificantdeviationsfromcoplanarity(required toholdwithin13) areobservedforthemomentumvectorsofbeamparticle,mesonic systemandrecoilproton,whichconfirmstheexclusivityofthere- action.DetailsarefoundinRefs.[17,18].

Inordertoaccountfortheacceptanceofthespectrometerand theselectionprocedure,MonteCarlosimulations[15,19]wereper- formed for four-body phase-space distributions. The latter were weighted withthe experimental t distributions, approximatedby d

σ

/dt∝ |t|exp(−b|t|) with slope parameter b=8.0 (GeV/c)2 andb=8.45(GeV/c)2 for

η



π

and

ηπ

,respectively. Theob- served weakmass-dependenceofthe slopeparameterwas found notto affectthe presentresults.Theoverall acceptancesfor

ηπ

and

η



π

in the present kinematic range and decay channels amountedto10% and14%,respectively.Duetothelargecoverage of forwardsolid angle by the COMPASS spectrometer, the accep- tancesvarysmoothlyovertherelevantregionsofphasespace,see Ref. [20].A test ofthe Monte Carlodescription was provided by comparison to a five-charged-track sample where

η

 decays via

π

+

π

η

(

η

π

+

π

π

0). The known branching ratioof

η

decay into

γ γ

and

π

π

+

π

0 was reproduced [18] leading toa conser- vativeestimateof8%fortheuncertaintyoftherelativeacceptance ofthetwochannelsdiscussedhere.

To visualise the gross features of the two channels, subsam- ples ofeventswereselectedwithtight ±10 MeV/c2 windows on the

η

and

η

 masses. These contain 116 000 and 39 000 events, respectively,including5% backgroundfromnon-

η

() events.These subsamplesareshownasfunctionofthe

ηπ

and

η



π

masses in Figs. 1(a)and(b),andadditionallyinthescatterplotsFigs. 2 (a) and (b) as a function of these invariant masses and of cosϑGJ, whereϑGJ istheanglebetweenthedirectionsofthe

η

() andthe beamas seenin the centreof massof the

η

()

π

system (polar anglein the Gottfried–Jackson frame). Thesedistributions are in- tegratedover |t|from0.1(GeV/c)2 to1.0(GeV/c)2 andover the azimuth

ϕ

GJ (measured withrespect to the reaction plane). The

ϕ

GJ distributionsare observedto followcloselyasin2

ϕ

GJ pattern throughoutthemassrangescoveredinbothchannels[18,20].

Several salientfeatures of the intensity distributions in Fig. 2 are noted before proceeding to the partial-wave analysis. In the

ηπ

data, the a2(1320) with its two-hump D-wave angular distribution is prominent, see also Fig. 1 (a). The D-wave pat- tern extends to 2 GeV/c2 where interference with the a4(2040) can be discerned. For higher masses, increasingly narrow for- ward/backward peaks are observed. This feature corresponds to the emergence of a rapidity gap. In terms of partial waves it

(4)

Fig. 1. Invariant mass spectra (not acceptance corrected) for (a)ηπand (b)ηπ. Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data(notacceptancecorrected)asafunctionoftheinvariantηπ(a)andηπ(b)masses andofthecosineofthedecayangleintherespectiveGottfried–Jackson frameswherecosϑGJ=1 correspondsη()emissioninthebeamdirection.Two-dimensionalacceptancescanbefoundinRef.[20].

indicates coherent contributions from larger angular momenta.

Forward/backward asymmetries (only weakly affected by accep- tance) occur for all masses in both channels, which indicates interferenceofoddandevenpartialwaves.Inthe

η



π

data,the a2(1320)isclosetothethresholdenergyofthischannel(1.1 GeV), andthesignalisnotdominant,seealsoFig. 1(b).Aforward/back- wardasymmetricinterferencepattern,indicatingcoherent D- and P -wave contributions with mass-dependent relative phase, gov- ernsthe

η



π

massrangeupto2 GeV/c2.Inthea4(2040)region, well-localisedinterferenceisrecognised. As for

ηπ

,narrow for- ward/backwardpeakingoccursathighermass,butinthiscasethe forward/backwardasymmetryisvisiblylargeroverthewholemass rangeof

η



π

.

Thedataweresubjectedtoapartial-waveanalysis(PWA)using aprogramdevelopedatIllinoisandVES[21–23].Independentfits were carried out in 40 MeV/c2 wide bins of thefour-body mass fromthresholdupto3 GeV/c2 (so-calledmass-independentPWA).

Momentumtransferswerelimitedtotherangegivenabove.

An

η

()

π

partial-wave is characterised by the angular mo- mentum L, theabsolute value ofthe magnetic quantum number M= |m|andthereflectivity



= ±1,whichistheeigenvalueofre- flectionabouttheproductionplane.Positive(negative)



ischosen tocorrespondto natural(unnatural)spin-parity oftheexchanged Reggeonwith JtrP=1or 2+or 3. . .(0 or1+or2. . . )trans- fertothebeamparticle[18,24].Thesetwoclassesareincoherent.

Ineachmassbin,thedifferentialcrosssectionasafunctionof four-body kinematic variables

τ

is taken to be proportional to a modelintensity I(

τ

)which isexpressedinterms ofpartial-wave amplitudesψLM (

τ

),

I

( τ ) = 



  

L,M

ALM

ψ

LM

( τ ) 



2

+

non-

η

()background

.

(1)

The magnitudesandphasesofthecomplexnumbers ALM consti- tutethefreeparametersofthefit.Theexpectednumberofevents inabinis

N

¯ ∝



I

( τ )

a

( τ )

d

τ ,

(2)

where d

τ

is the four-body phase spaceelement and a(

τ

) desig- nates the efficiency of detector and selection. Following the ex- tended likelihoodapproach [25,24], fits are carriedout maximis- ing

lnL

∼ − ¯

N

+



n

k=1

ln I

( τ

k

),

(3)

where the sum runs over all observed events in the mass bin.

Inthisway,theacceptance-correctedmodelintensityisfittothe data.

Thepartial-waveamplitudesarecomposedoftwoparts:afac- tor fη ( fη)that describesboth theDalitzplotdistributionofthe successive

η

(

η

) decay [26] and the experimental peak shape, anda two-bodypartial-wave factorthat dependson theprimary

η

()

π

decay angles. In this way, the four-body analysis is re- ducedtoquasi-two-body.Thepartial-wavefactorforthetwospin- less mesons is expressed by spherical harmonics. Thus, the full

η

(

π

π

+

π

0)

π

partial-waveamplitudesread

ψ

LM

( τ ) =

fη

(

pπ

,

pπ+

,

pπ0

) ×

YLM

GJ

,

0

)

×



sin M

ϕ

GJ for

 = +

1

cos M

ϕ

GJ for

 = −

1 (4)

and analogously for

η

(

π

π

+

η

)

π

. There are no M=0, and therefore no L=0 waves for



= +1. The fits require a weak

(5)

L=M=0,



= −1 amplitude which contributes 0.5% (1.1%) to thetotal

ηπ

(

η



π

)intensity.Thisisotropicwaveisattributedto incoherentbackgroundcontaining

η

(),whereasthenon-

η

() back- groundamplitudeinEq.(1)isisotropicinfour-bodyphasespace.

An independent two-body PWA was carried out not taking intoaccount the decays ofthe

η

(), butusing tight windowcuts (±10 MeV/c2) onthe

η

() peakintherespectivethree-bodyspec- tra.Theresultswerefoundtobeconsistentwiththepresentanal- ysis[18].

The above-mentioned azimuthal sin2

ϕ

GJ dependence is in agreement with a strong M=1 dominance, as was experienced earlier[6–9].NoM>1 contributionsareneededtofitthedatain thepresentt range,withtheexceptionofthe

ηπ

D-wavewhere statisticsallowstheextractionofasmallM=2 contribution.The final fit modelis restrictedto the coherent L=1–6, M=1 plus L=2, M=2 partialwavesfrom naturalparitytransfer (



= +1) andtheincoherentbackgroundsintroducedabove.

Incoherenceofpartialwavesofthesamenaturality,leading to additionaltermsinEq.(1),couldarisefromcontributionswithand withoutprotonhelicityflip,orfromdifferentt-dependencesofthe amplitudesoverthebroadt range.However,fortwopseudoscalars, incoherenceorpartialincoherence ofanytwopartialwaveswith M=1 canbe accommodated by full coherence with appropriate choice ofphase [7]. ComparingPWA results fort above and be- low 0.3 (GeV/c)2, no significant variation of the relative M=1 amplitudeswitht isobserved[18].TheL=2,M=2 contribution showsadifferentt-dependencebutdoesnotintroducesignificant incoherence.

Ingeneral,atwo-pseudoscalarPWAsuffersfromdiscreteambi- guities[27,28,24].The observedinsignificanceofunnatural-parity transfercruciallyreducestheambiguities.Inthecaseof

ηπ

,the remainingambiguitiesareresolved whenthe M=2 D-waveam- plitudeisintroduced.For

η



π

,ambiguitiesoccurwhenthePWA is extended beyond the dominant L=1,2 and 4 waves. We re- solvethisbyrequiringcontinuousbehaviourofthedominantpar- tialwavesandoftheBarreletzeros[24].Theacceptablesolutions agreewithinthestatisticaluncertaintieswiththesolutionselected here,whichistheonewiththesmallestL=3 contribution.

The results ofthe PWA are presented asintensities of all in- cluded partial waves in Figs. 3, 4, and as relative phases with respect to the L=2, M=1 wavein Fig. 5. The plotted intensi- tiesaretheacceptance-correctednumbersofeventsineachmass bin,asderivedfromthe|ALM|2ofEq.(1).Feedthroughoftheorder of3%fromthedominanta2(1320)signalisobservedinthe L=4

ηπ

distribution,asshowninlightcolourinFig. 3.Relativeinten- sitiesintegratedovermassupto3 GeV/c2,takingintoaccountthe respective

η

() decaybranchings,aregiveninTable 1.Theratioof thesummedintensitiesis I(

ηπ

)/I(

η



π

)=4.0.3.Thisratio isnot affected by luminosity,its erroris estimatedfromthe un- certaintyoftheacceptance.The

ηπ

yieldislargerforalleven-L waves.Conversely,theodd-L yieldsarelargerinthe

η



π

data.

The

ηπ

P -wave intensity shows a compact peak of 400 MeV/c2 width, centred at a mass of 1.4 GeV/c2. Beyond 1.8 GeV/c2 it disappears. The D-wave intensity is a factor of twenty larger than the P -waveintensity. These observations re- semblethose atlower beamenergy[7,9].Asimilar P -wavepeak was observed in pn annihilation¯ at rest, where it appears with an intensitycomparableto that of the D-wave [29]. The present D-waveischaracterisedbyadominanta2(1320)peakandabroad shoulderthat extendstohighermassesandpossiblycontains the a2(1700). An M=2 D-wave intensity is found at the 5% level.

The G-wave shows a peak consistent with the a4(2040) and a broadbump centredatabout2.7 GeV/c2. The F , H and I-waves (L=3,5,6)adopteachlessthan1%oftheintensityinthepresent

massrangebutaresignificantinthelikelihoodfitascanbejudged fromtheuncertaintiesgiveninTable 1.

The

η



π

P and D-waves have comparable intensities. The former peaks at 1.65 GeV/c2, drops to almost zero at 2 GeV/c2 and displays a broad second maximum around 2.4 GeV/c2. The D-waveshowsatwo-partstructure similar to

ηπ

butwithrel- atively larger intensity of the shoulder. The G-wave distribution showsana4(2040)plusbumpshapeasobservedfor

ηπ

.Incon- trasttotheG and I-waves,theodd F and H -waveshaveafactor of2–3moreintensitythaninthe

ηπ

channel.Relativetotheto- talintensities observedinthetwochannels, theodd-L wavesare enhancedbyanorderofmagnitudein

η



π

.TheF -wavedistribu- tionfeaturesabroadpeakaround2.6 GeV/c2.

Phasemotionsinbothsystemscanbestbestudiedwithrespect totheD-wave,whichispresentwithsufficientintensityinthefull massrange.Therapidphaserotationscausedbythea2(1320)and a4(2040)resonancesarediscernible.The P versus D-wavephases inbothsystemsarealmostthesamefromthe

η



π

thresholdup to 1.4 GeV/c2 where a branching takes place. Giventhe similar- ity of the D-wave intensities after applying a kinematical factor (seebelow),itissuggestiveto ascribethedifferentrelativephase motionsin the1.4 GeV/c2–2.0 GeV/c2 rangetothe P -wave.It is notedthatthe P -waveintensitiesdropdramaticallywithinthisre- gion,almost vanishingat1.8 GeV/c2 in

ηπ

andat2 GeV/c2 in

η



π

.Incontrast,theG- versusD-phasemotionsarealmostiden- tical.Allphasedifferencestendtoconstantvaluesathighmasses, which is a wave-mechanical condition for narrow angular focus- ing.

Fits of resonance and background amplitudes to these PWA results (so-called mass-dependent fits) lead to strongly model- dependent resonance parameters. If these fits are restricted to massesbelow1.9 GeV/c2,comparabletopreviousanalyses,asim- plemodelincorporatingonly P and D-waveBreit–Wignerampli- tudes and a coherent D-wave background yields

π

1(1400)

ηπ

resonance parameters and

π

1(1600)

η



π

resonance parameters consistent with those of Refs. [7–9]. However, the inclusion of highermassesdemandsadditionalmodelamplitudes,inparticular additional D-waveresonancesandcoherent P -wavebackgrounds.

ThepresenceofacoherentbackgroundintheP -waveissuggested by the PWA resultsin Figs. 3, 4, 5 (a): The vanishing of the in- tensitiesaround2.0 GeV/c2 isascribedtodestructiveinterference within this partial wave, and the relatively slow phase motion across the

η



π

P -wavepeak demands the additionalamplitude in order to dampen the

π

1(1600) phase rotation. Fitted P -wave resonance masses in both channels are found to be shifted up- wards by typically 200 MeV/c2 whenintroducing constant-phase model backgrounds as in Ref. [23]. In the present Letter, we re- frainfromproposingresonanceparameters fortheexotic P -wave oreventheexoticF and H -wavesobservedhere.Thepresentob- servations at massesbeyondthe a2(1320) andthe

π

1 structures mightstimulateextensionsofresonance-productionmodels,ase.g.

multi-Reggemodels[13].

For the distinct a2(1320) and a4(2040) resonances, mass- dependent fits using a standard relativistic Breit–Wigner param- eterisation, which for the a2 includes also the

ρπ

decay in the parameterisationofthetotalwidth[6],givethefollowingresults:

m

(

a2

) =

1315

±

12 MeV

/

c2

, Γ (

a2

) =

119

±

14 MeV

/

c2

,

m

(

a4

) =

1900+8020MeV

/

c2

, Γ (

a4

) =

300+80100MeV

/

c2

,

B2

N

(

a2

η



π

)

N

(

a2

ηπ ) = (

5

±

2

)

%

,

B4

N

(

a4

η



π

)

N

(

a4

ηπ ) = (

23

±

7

)

%

.

(5)

(6)

Fig. 3. IntensitiesoftheL=1–6,M=1 andL=2,M=2 partialwavesfromthepartial-waveanalysisoftheηπdatainmassbinsof40 MeV/c2width.Thelight-coloured partoftheL=4 intensitybelow1.5 GeV/c2isduetofeedthroughfromtheL=2 wave.Theerrorbarscorrespondtoachangeofthelog-likelihoodbyhalfaunitanddo notincludeMCfluctuationswhichareontheorderof5%.

Here, N stands forthe integratedBreit–Wigner intensities ofthe given decay branches. The errors given above are dominated by the systematicuncertainty, which is estimatedby comparing fits

with and without coherent backgrounds, a2(1700) or

π

1(1400). The masses and B2 agree with the PDG values [26]. The decay branchingratioB4 isextractedhereforthefirsttime.

(7)

Fig. 4. IntensitiesoftheL=1–6,M=1 partialwavesfromthepartial-waveanalysisoftheηπdatainmassbinsof40 MeV/c2 width(circles).Shownforcomparison (triangles)aretheηπresultsscaledbytherelativekinematicalfactorgiveninEq.(7).

For a detailed comparison of the results from the mass- independent PWA of both channels, their different phase spaces andangular-momentum barriers are taken into account. For the decay of pointlike particles, transition rates are expected to be proportionalto

g

(

m

,

L

) =

q

(

m

) ×

q

(

m

)

2L (6) withbreak-upmomentumq(m)[30–32].Overlaid onthePWAre- sultsfor

η



π

inFig. 4arethosefor

ηπ

,multipliedineachbin bytherelativekinematicalfactor

c

(

m

,

L

) =

b

×

g

(

m

,

L

)

g

(

m

,

L

) ,

(7)

whereg() refersto

η

()

π

withbreak-upmomentumq(),andthe factorb=0.746 accountsforthedecaybranchingsof

η

and

η

into

π

π

+

γ γ

[26].

Byintegratingtheinvariant massspectraofeach partialwave, scaledby[g()(m,L)]1,fromthe

η



π

thresholdupto3 GeV/c2, weobtainscaledyields I(L) andderivetheratios

RL

=

b

×

IL

/

IL

.

(8)

Asanalternativetotheangular-momentumbarrierfactorsq(m)2L ofEq.(6),we havealsoused Blatt–Weisskopfbarrierfactors[33].

For the range parameter involved there, an upper limit of r= 0.4 fm wasdeducedfromsystematicstudies oftensormesonde- cays,includingthepresentchannels[30,31],whereasforr=0 fm Eq.(6) is recovered.To demonstratethe sensitivityof RL on the barrier model, the rangeof values corresponding to these upper andlowerlimitsisgiveninTable 1.

ThecomparisoninFig. 4revealsaconspicuousresemblanceof theeven-L partialwavesofbothchannels. Thisfeatureremainsif r=0.4 fm, but the values of RL increase with increasing r (Ta- ble 1). This similarity is corroborated by the relative phases as observedinFigs. 5(d)and(f).Theobservedbehaviourisexpected fromaquark-linepicturewhereonlythenon-strangecomponents nn (n¯ =u,d)oftheincoming

π

andtheoutgoingsystemarein- volved. The similar values of RL for L=2,4,6 suggest that the respectiveintermediate statescoupletothe sameflavourcontent oftheoutgoingsystem.

(8)

Fig. 5. PhasesΦLoftheM=1 partialwaveswithangularmomentumL relativetotheL=2,M=1 waveofηπ(triangles)andηπ(circles)systems.Forηπ,thephase betweenthe P andD-wavesisill-definedintheregionofvanishing P -waveintensitybetween1.8and2.05 GeV/c2(shaded).Panel(b)showstherelativeM=2 versus M=1 phaseoftheηπ D-wave.

Table 1

Intensities(yields),integratedover themassrangeupto3 GeV/c2, forthe par- tialwaveswith M=1 (and M=2 for L=2)relativetoL=2,M=1 inηπ (setto100).Theseyieldstakeintoaccountthedecaybranchingratiosofη()into ππ+γ γ.Errorsarederivedfrom thelog-likelihoodfit anddonotincludethe commonuncertainty(8%)oftheacceptanceratioofthetwochannels.Thelastcol- umnlistsηπoverηπyieldratiosderivedfromthescaledintensities(seetext, Eq.(8)).Thefirst(second)valueofRL correspondstorangeparameterr=0 fm (r=0.4 fm).

L yield(ηπ) yieldπ) RL

1 5.4±0.3 12.8±0.4 0.08–0.12

2 100 (fixed) 13.0±0.3 0.84–1.18

2, M=2 5.4±0.2

3 0.39±0.07 1.14±0.13 0.14–0.19

4 10.0±0.3 2.57±0.18 0.80–0.97

5 0.12±0.04 0.28±0.10 0.13–0.15

6 0.87±0.08 0.36±0.05 0.66–0.74

The quark-line estimate (see Eq. (3) in[31]) for thea2(1320) decaybranchingusingr=0.4 fm andtheisoscalarmixinganglein thequarkflavour basis,φ=39.3 [32],is B2=3.9% for ourmass

value. Thisisinreasonableagreementwiththepresentmeasure- ment.Ananalogouscalculationforthea4(2040)yieldsB4=11.8%, whichisbelowtheexperimentalvalue.Alargerrangeparameterr wouldimprovetheagreement.

On the other hand, the odd-L

η



π

intensities are enhanced by a factor 5–10 as compared to

ηπ

, see Fig. 4, Table 1. The P -wavefits wellinto thetrendobservedforthe F and H -waves, which alsocarry exotic quantumnumbers. Itis suggestive toas- cribetheseobservationstothedominant88 and18 charac- terofthe

ηπ

and

η



π

SU(3)flavour configurations,respectively.

Whentheformercouplestoanoctetintermediatestate,Bosesym- metrydemandsevenL,whereasthelattermaycoupletothenon- symmetric odd-L configurations. The importance of this relation was alreadypointedout inprevious discussions oftheexotic

π

1, whereinparticularthehybrid(gqq)¯ orthelowestmolecularstate (qqq¯ q)¯ has 18 character[3–5].

A P -wave peak, consistent with quoted resonance parame- ters [26], appears in each channel. In the

η



π

channel, its rel- atively large contribution is directly visible in Fig. 2 (b). The

References

Related documents

Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People i ’s Republic of China.. Also

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

Detta projekt utvecklar policymixen för strategin Smart industri (Näringsdepartementet, 2016a). En av anledningarna till en stark avgränsning är att analysen bygger på djupa

The conclusion here is that the results from using the different bin sizes all agree with the input values, however using a bin size of 0.02 gives identical uncertainties and using

This contribution is not direct, but the results presented in this thesis, the most precise measurement of the Dalitz plot distribution of the η → π + π − π 0 decay to date, can

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating

The ambiguous space for recognition of doctoral supervision in the fine and performing arts Åsa Lindberg-Sand, Henrik Frisk &amp; Karin Johansson, Lund University.. In 2010, a