• No results found

Measurement of the $B^+$ Production Cross Section in pp Collisions at $\sqrts = 7$ TeV

N/A
N/A
Protected

Academic year: 2022

Share "Measurement of the $B^+$ Production Cross Section in pp Collisions at $\sqrts = 7$ TeV"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

Measurement of the B

þ

Production Cross Section in pp Collisions at ffiffiffi p s

¼ 7 TeV

V. Khachatryan et al.*

(CMS Collaboration)

(Received 31 December 2010; published 17 March 2011)

Measurements of the total and differential cross sections d=dpBTand d=dyBfor Bþmesons produced in pp collisions at ffiffiffi

ps

¼ 7 TeV are presented. The data correspond to an integrated luminosity of 5:8 pb1 collected by the CMS experiment operating at the LHC. The exclusive decay Bþ! J=c Kþ, with J=c ! þ, is used to detect Bþ mesons and to measure the production cross section as a function of pBT and yB. The total cross section for pBT> 5 GeV and jyBj < 2:4 is measured to be 28:1  2:4  2:0  3:1 b, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.

DOI:10.1103/PhysRevLett.106.112001 PACS numbers: 13.85.Ni, 12.38.Bx, 14.40.Nd

The study of heavy-quark production in high-energy hadronic interactions plays a critical role in testing next- to-leading order (NLO) quantum chromodynamics (QCD) calculations [1]. The first such measurements were made more than two decades ago by the UA1 Collaboration at the CERN S ppS collider [2,3] operating at a center of mass energy of ffiffiffi

ps

¼ 0:63 TeV, while more recent mea- surements have been made by the CDF and D0 Collaborations at the Fermilab Tevatron for ffiffiffi

ps

¼ 1:8 and 1.96 TeV [4–11]. Substantial progress has been achieved in the understanding of heavy-quark production at Tevatron energies [12], but large theoretical uncertainties remain due to the dependence on the renormalization and factori- zation scales. Particularly important in the perturbative expansion are terms that scale as powers of lnð ffiffiffi

ps

=mbÞ at low transverse momentum pTof the b quark [13,14], or as powers of lnðpT=mbÞ when pT  mb[15], where mbis the mass of the b quark. Measurements of b-hadron production at the higher energies provided by the Large Hadron Collider (LHC) represent an important new test of theo- retical calculations [16,17].

Recently, the LHCb Collaboration measured the produc- tion cross section for b hadrons at the LHC in the forward region using partially reconstructed decays [18]. This Letter presents the first measurement of exclusive B-meson production in pp collisions at ffiffiffi

ps

¼ 7 TeV. A sample of B! J=cK decays, with J=c ! þ, is reconstructed in 5:84  0:64 pb1of data collected by the Compact Muon Solenoid (CMS) experiment operating at the LHC. Charge conjugation is assumed in the remainder of this Letter, where Bþwill be used to refer to both charge states. The signal yield in bins of transverse momentum pBT

and rapidityjyBj is measured with a maximum-likelihood fit to the reconstructed invariant mass MBand proper decay length ct of the Bþcandidates. These yields are corrected for detection efficiencies and luminosity to compute the differential production cross sections d=dpBT and d=dyB. The results are compared to theoretical predic- tions based on NLO QCD.

A detailed description of the CMS detector can be found elsewhere [19]. The main subdetectors used in this analysis are the silicon tracker and muon systems.

The tracker consists of silicon pixel and strip detector modules and is immersed in a 3.8 T magnetic field that enables the measurement of charged particle momenta over the pseudorapidity range jj < 2:5, where  ¼

 ln tanð=2Þ and  is the polar angle of the track relative to the counterclockwise beam direction. Muons are identified in the range jj < 2:4 by gas-ionization detectors embedded in the steel return yoke. The first level of the CMS trigger system consists of custom hardware processors and uses information from the cal- orimeters and muon system to select the most interesting events in less than 1 s. The high level trigger (HLT) processor farm further decreases the event rate to less than 300 Hz before data storage. The events used in the measurement reported here were collected with a trigger requiring the presence of two muons at HLT with no explicit momentum threshold.

Reconstruction of Bþ! J=cKþ candidates begins by identifying J=c ! þ decays. The muon candidates are required to have at least one reconstructed segment in the muon system that matches the extrapolated position of a track reconstructed in the tracker. Muons withinjj < 2:4 that pass the trigger are selected and further required to satisfy a kinematic threshold that depends on pseudorapid- ity: pT > 3:3 GeV for jj < 1:3; p > 2:9 GeV for 1:3 <

jj < 2:2; and pT> 0:8 GeV for 2:2 < jj < 2:4.

Candidate J=c mesons are reconstructed by combining pairs of oppositely charged muons having an invariant mass within 150 MeV of the nominal J=c mass [20].

*Full author list given at the end of the article.

Published by American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

If more than one muon pair in an event satisfies this selection, the one closest to the J=c mass is selected.

Candidate Bþmesons are reconstructed by combining a J=c candidate with a track having pT> 0:9 GeV, at least four hits in the tracker (of which one must be in the pixel detector), and a track-fit 2less than 5 times the number of degrees of freedom. A kinematic fit is performed to the dimuon-track combination, constraining the dimuon mass to equal the J=c mass and assuming the third track to be a kaon. The selected events must have a resulting 2 con- fidence level greater than 0.1% and a reconstructed Bþ mass satisfying 4:95 < MB< 5:55 GeV. In events with at least one Bþ candidate, the average number of such can- didates is approximately 1.7. When multiple candidates exist, the one with the highest pT is retained, which results in the correct choice 95% of the time in simulated events containing a true signal decay. A total of 35 406 Bþ can- didates pass all the selection criteria.

The efficiencies corresponding to this selection range from a few percent for pBT  5 GeV, to approximately 40%

for pBT> 24 GeV, as determined in large samples of signal events generated by PYTHIA 6.422 [21], decayed by

EVTGEN [22], and processed by a detailed simulation of the CMS detector based onGEANT4[23]. The efficiencies for hadron-track reconstruction [24] and the vertex quality requirement are found to be consistent between data and simulation within the available precision, which is used to set the systematic uncertainty of these quantities.

Correction factors for trigger and muon-reconstruction efficiencies are obtained from a large sample of inclusive J=c ! þ decays using a technique similar to that described in [25], where one muon is identified with strin- gent quality requirements and the second muon is identi- fied using information separately from the tracker or from the muon system.

The proper decay length of each Bþ candidate is calcu- lated as ct ¼ ðMB=pBTÞLxy, where the transverse decay length Lxyis the vector ~s pointing from the primary vertex [26] to the secondary vertex projected onto the Bþ trans- verse momentum: Lxy¼ ð~s  ~pBTÞ=j ~pBTj. The core resolution on ct is approximately 30 m for correctly reconstructed signal decays.

Backgrounds are dominated by prompt and nonprompt inclusive J=c production. Additional backgrounds arise from misreconstructed b-hadron decays, such as B ! J=cKð892Þ, that produce a broad peaking structure in the region MB< 5:2 GeV. Contamination from muon pairs that do not originate from J=c decay is negligible after all selection criteria are applied.

The number nsigof signal decays in each pBTandjyBj bin is obtained using an unbinned extended maximum- likelihood fit to MB and ct. The likelihood for event j is obtained by summing the product of yield ni and proba- bility density Pi for each of the signal and background hypotheses i. Five individual components are considered:

signal, Bþ! J=cþ, misreconstructed b b events that peak in MB, nonprompt J=c, and prompt J=c. The extended likelihood function is then the product of like- lihoods for all events:

L ¼ exp



X

i

niY

j

X

i

niPiðMB; ~iÞPiðct; ~iÞ : (1)

The probabilities Piare the probability density functions (PDFs) with shape parameters ~i for MB, and ~i for ct, evaluated separately for each of the i fit components. The yields ni are then determined by maximizing L with respect to the yields and a subset of the PDF parameters.

The yield for J=cþis constrained to equal the J=cKþ yield times the ratio of branching fractions for the two decay modes [20].

The MB PDFs are the sum of three (two) Gaussians for the signal (J=c) with parameters obtained from simula- tion; an exponential for both prompt and nonprompt J=c; and a combination of two Gaussians and an exponential for the peaking b b background. The resolution on MB for signal decays is approximately 30 MeV. The ct PDFs are a single exponential convolved with the resolution function to describe the signal, J=c, and peaking background components, where the lifetime is allowed to be different for the latter; the sum of two exponentials convolved with the resolution function for the nonprompt J=c component;

and the pure resolution function for the prompt J=c com- ponent. The resolution function is common for signal and background, and is described by the sum of two or three Gaussian functions, depending on pBT andjyBj.

The fit proceeds in several steps so that all background shapes are obtained directly from data, except for the peaking component. This technique relies on the assump- tion that in the signal-free region 5:40 < MB< 5:55 GeV (upper sideband) there are only two contributions: prompt and nonprompt J=c background (ignoring the small con- tribution from J=c). To obtain the effective lifetime of the nonprompt J=cbackground, the ct distribution is fitted for events in the inclusive Bþ sample defined by pBT>

5 GeV and jyBj < 2:4 that lie in the MB upper sideband region, allowing the resolution function parameters to vary freely. The resolution function is then fixed and the signal Bþlifetime in the inclusive sample is obtained by fitting ct and MB simultaneously. The result, c ¼ 481  22 m (statistical uncertainty only), is in good agreement with the world-average value of 491 9 m [20]. With the effective lifetime for signal and nonprompt background fixed, the resolution function parameters are then deter- mined separately in each bin of pBT andjyBj. Finally, with all ct resolution and background lifetime parameters fixed, the signal and background yields are fitted in each bin, together with the parameters describing the shape of the prompt and nonprompt J=c components in MB.

The accuracy and robustness of the fit strategy were checked with a set of 400 pseudoexperiments where signal

(3)

and background events were generated randomly from the PDFs in each bin. The fitted yields were unbiased and the uncertainties were estimated properly. The effects of cor- relations between MB and ct were studied by mixing together fully simulated signal and background events to produce 100 pseudoexperiments. No significant evidence of bias in the signal yield was found, and the observed deviations (a few percent) between fitted and generated yields are taken as the systematic uncertainty due to po- tential biases in the fit method.

TableIsummarizes the fitted signal yield in each bin of pBT andjyBj, while Fig.1shows the fit projections for MB

and ct from the inclusive sample with pBT> 5 GeV and jyBj < 2:4. The total number of signal events is 912  47, where the error is statistical only.

The differential cross sections for Bþ production as a function of pBT and yB(averaged for positive and negative rapidities) are defined as

dðpp ! Bþ

dpBT ¼ nsigðpBTÞ 2ðpBTÞBLpBT; dðpp ! Bþ

dyB ¼ nsigðjyBjÞ 2ðjyBjÞBLyB;

(2)

where nsigðpBTÞ and nsigðjyBjÞ are the fitted signal yields in the given bin, ðpBTÞ and ðjyBjÞ are the efficiencies in each bin for a Bþ meson produced with pBT > 5 GeV and jyBj < 2:4 to pass all the selection criteria, pBT is the bin size in pBT, and yB¼ 2jyBj is the bin size in yB. The total branching fractionB is the product of the individual branching fractions BðBþ ! J=cKþÞ ¼ ð1:014  0:034Þ  103 andBðJ=c ! þÞ ¼ ð5:93  0:06Þ  102[20]. The factor of 2 in the denominator of Eq. (2) takes into account the choice of quoting the cross section

for a single charge (taken to be Bþ), while nsig includes both charge states. All efficiencies, ðpBTÞ or ðjyBjÞ, are calculated separately in each bin, and account for bin-to- bin migrations (a few percent) due to the resolution on the measured momentum and rapidity.

The cross section is affected by several sources of sys- tematic uncertainty arising from the signal yields, efficien- cies, branching fractions, and luminosity. Uncertainties of the signal yields arise from potential fit biases and imperfect knowledge of the PDF parameters (2%–5%), ct resolution function (1%–2%), and the effects of final-state radiation on the signal shape in MB(< 1%). Uncertainties of the trigger (2%), muon identification (1%), and tracking (1%–4%) efficiencies are all determined directly from data. The con- tribution (1%–4%) related to the Bþ momentum spectrum is evaluated by reweighting the shape of the pBTdistribution generated withPYTHIAto match the spectrum predicted by

MC@NLO3.4 [27]. An uncertainty of 1.5% is assigned to the efficiency of the vertex quality requirement. The effect of tracker misalignment on the cross sections due to variations in the signal yields and efficiencies is estimated to be approximately 2% using samples simulated with a different alignment than the nominal one. The total systematic un- certainty of the cross section measurement in each bin is computed as the sum in quadrature of the individual un- certainties, and is summarized in TableI. In addition, there are common uncertainties of 3.5% from the branching fractions and 11% from the luminosity measurement [28].

The differential cross sections as functions of pBT and jyBj are shown in Fig.2 and TableI. They are compared with the predictions of MC@NLO using a b-quark mass of 4.75 GeV, renormalization and factorization scales

 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m2bþ p2T q

, and the CTEQ6M parton distribution TABLE I. Bin ranges for pBT and jyBj, signal yields nsig, efficiencies , and measured differential cross sections d=dpBT and d=dyB, compared to theMC@NLO [27] andPYTHIA predictions. The uncertainties in the measured cross sections are statistical and systematic, respectively, excluding the common branching fraction (3.5%) and luminosity (11%) uncertainties. The result for pBT> 30 GeV is quoted as an integrated cross section in b.

pBT (GeV) nsig (%) d=dpBT (b=GeV) MC@NLO PYTHIA

5–10 223  26 1:56  0:02 4:07  0:47  0:31 3:72þ1:460:89 6.68

10–13 236  21 7:62  0:11 1:47  0:13  0:09 1:17þ0:310:24 2.66

13–17 169  17 14:6  0:2 0:412  0:041  0:026 0:47þ0:100:05 1.01

17–240 207  17 23:3  0:6 0:181  0:015  0:012 0:15þ0:040:03 0.28

24–30 56  9 31:9  1:5 0:042  0:007  0:004 0:048þ0:0290:018 0.08

>30 44  8 33:4  2:0 0:188  0:034  0:018 0:20þ0:110:02 0.27

jyBj nsig ð%Þ d=dyBðbÞ MC@NLO PYTHIA

0.00–0.60 187  17 3:01  0:06 7:39  0:65  0:53 5:98þ2:21:31 11.1

0.60–1.10 164  17 3:81  0:08 6:11  0:64  0:47 5:85þ1:781:37 10.8

1.010–1.45 207  20 5:92  0:12 7:11  0:69  0:59 5:59þ1:711:31 10.2

1.45–1.80 203  22 8:24  0:15 5:01  0:55  0:42 4:96þ1:881:10 9.5

1.80–2.40 176  22 6:31  0:12 3:31  0:42  0:28 4:29þ1:731:14 8.5

(4)

functions [29]. The uncertainty on the predicted cross section is calculated by varying the renormalization and factorization scales by a factor of 2, mb by0:25 GeV, and by using the CTEQ6.6 parton distribution set. For reference, the prediction ofPYTHIAis also included, using a b-quark mass of 4.8 GeV, CTEQ6L1 parton distributions [29], and the D6T tune [30] to simulate the underlying event. The total integrated cross section for pBT> 5 GeV andjyBj < 2:4 is calculated as the sum over all pBTbins and is found to be 28:1  2:4  2:0  3:1 b, where the first uncertainty is statistical, the second is systematic (including the branching fraction uncertainty), and the last is from the luminosity measurement. This result lies between the predictions ofMC@NLO, 25:5þ8:85:4ðscaleÞþ2:51:8 ðmassÞ  0:8ðPDFÞ b, andPYTHIA(48:1 b).

In summary, first measurements of the total and differential cross sections for charged B production in pp collisions at ffiffiffi

ps

¼ 7 TeV using the decay B ! J=cK have been presented. The measurements cover the range jyBj < 2:4 and pBT from 5 GeV to greater than 30 GeV. The result is in reasonable agreement with the

predictions of MC@NLO in terms of shape and absolute normalization.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra- tive staff at CERN and other CMS institutes, and acknowl- edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland);

[GeV]

pT

B+

5 10 15 20 25 30

b/GeV]µX; |y| < 2.4) [+ B (pp T/dpσd

10-2

10-1

1 10

PYTHIA (MSEL 1, D6T, CTEQ6L1) = 4.75 GeV) MC@NLO (CTEQ6M, mb MC@NLO total uncertainty CMS Data

= 7 TeV s CMS

L = 5.8 pb-1

BF (3.5%) and Lumi (11%) uncertainties not shown

+ y B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 b]µ > 5 GeV) [+B TX; p+ B/dy (pp σd

0 2 4 6 8 10 12

PYTHIA (MSEL 1,D6T, CTEQ6L1) = 4.75 GeV) MC@NLO (CTEQ6M, mb MC@NLO total uncertainty CMS Data

= 7 TeV s CMSL = 5.8 pb-1

BF (3.5%) and Lumi (11%) uncertainties not shown

FIG. 2 (color online). Measured differential cross sections d=dpBT (top) and d=dyB(bottom) compared with the theory predictions. The error bars are the statistical uncertainties, while the (yellow or light gray) band represents the sum in quadrature of statistical and systematic uncertainties, excluding the common branching fraction and luminosity uncertainties. The solid and dashed blue lines are theMC@NLOprediction and its uncertainty, respectively. The solid red line is thePYTHIAprediction.

[GeV]

MB

5 5.1 5.2 5.3 5.4 5.5

Events / ( 0.015 GeV)

0 50 100 150 200 250 300

5 5.1 5.2 5.3 5.4 5.5

0 50 100 150 200 250

300 CMS s = 7 TeV

L = 5.8 pb-1

µm ct > 100

ct [cm]

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Events / ( 0.0095 cm )

10-2

10-1

1 10 102

103

104

ct [cm]

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Events / ( 0.0095 cm )

10-2

10-1

1 10 102

103

104 CMS s = 7 TeV

L = 5.8 pb-1

FIG. 1 (color online). Projections of the fit results in MB(top) and ct (bottom) for pBT> 5 GeV and jyBj < 2:4. The curves in each plot are the sum of all contributions (solid blue line); signal (dashed red); prompt J=c (dotted green); and the sum of non- prompt J=c , peaking b b, and J=c þ (dot-dashed brown).

For better visibility of the individual contributions, the MB

plot includes a requirement of ct > 100 m.

(5)

FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] P. Nason, S. Dawson, and R. K. Ellis,Nucl. Phys. B303, 607 (1988).

[2] C. Albajar et al. (UA1 Collaboration),Phys. Lett. B 186, 237 (1987).

[3] C. Albajar et al. (UA1 Collaboration),Phys. Lett. B 213, 405 (1988).

[4] F. Abe et al. (CDF Collaboration),Phys. Rev. Lett. 71, 500 (1993).

[5] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 75, 1451 (1995).

[6] D. E. Acosta et al. (CDF Collaboration),Phys. Rev. D 65, 052005 (2002).

[7] S. Abachi et al. (D0 Collaboration),Phys. Rev. Lett. 74, 3548 (1995).

[8] B. Abbott et al. (D0 Collaboration),Phys. Rev. Lett. 84, 5478 (2000).

[9] B. Abbott et al. (D0 Collaboration),Phys. Rev. Lett. 85, 5068 (2000).

[10] D. E. Acosta et al. (CDF Collaboration),Phys. Rev. D 71, 032001 (2005).

[11] A. Abulencia et al. (CDF Collaboration),Phys. Rev. D 75, 012010 (2007).

[12] M. Cacciari, S. Frixione, M. L. Mangano, P. Nason, and G.

Ridol,J. High Energy Phys. 07 (2004) 033.

[13] J. C. Collins and R. K. Ellis,Nucl. Phys. B360, 3 (1991).

[14] S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys.

B366, 135 (1991).

[15] M. Cacciari and M. Greco,Nucl. Phys. B421, 530 (1994). [16] M. Cacciari, M. Greco, and P. Nason, J. High Energy

Phys. 05 (1998) 007.

[17] B. A. Kniehl, G. Kramer, I. Schienbein, and H.

Spiesberger,Phys. Rev. D 77, 014011 (2008).

[18] R. Aaij et al. (LHCb Collaboration),Phys. Lett. B 694, 209 (2010).

[19] R. Adolphi et al. (CMS Collaboration),JINST 3, S08004 (2008).

[20] K. Nakamura et al. (Particle Data Group),J. Phys. G 37, 075021 (2010).

[21] T. Sjostrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[22] D. J. Lange,Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[23] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [24] CMS Collaboration, Report No. CMS-PAS-TRK-10-002,

2010.

[25] CMS Collaboration,arXiv:1011.4193[Euro. Phys. J (to be published)].

[26] CMS Collaboration, Report No. CMS-PAS-TRK-10-005, 2010.

[27] S. Frixione, P. Nason, and B. R. Webber,J. High Energy Phys. 08 (2003) 007.

[28] CMS Collaboration, Report No. CMS-PAS-EWK-10-004.

[29] J. Pumplin et al.,J. High Energy Phys. 07 (2002) 012.

[30] P. Bartalini et al. (ATLAS, CMS, and TOTEM Collaborations), in Proceedings of Multiple Parton Interactions at the LHC, 1st Workshop, Perugia, Italy, 2008 (Verlag Deutsches Elektronen-Synchrotron, Hamburg, 2009).

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2C. Hartl,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2

M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4K. Cerny,4E. A. De Wolf,4X. Janssen,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4V. Adler,5S. Beauceron,5F. Blekman,5S. Blyweert,5J. D’Hondt,5 O. Devroede,5R. Gonzalez Suarez,5A. Kalogeropoulos,5J. Maes,5M. Maes,5S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6 G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wickens,6S. Costantini,7 M. Grunewald,7B. Klein,7A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7

P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8 J. De Favereau De Jeneret,8C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8 V. Lemaitre,8J. Liao,8O. Militaru,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9 T. Caebergs,9E. Daubie,9G. A. Alves,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11

E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11 W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11F. A. Dias,12M. A. F. Dias,12

T. R. Fernandez Perez Tomei,12E. M. Gregores,12,cF. Marinho,12S. F. Novaes,12Sandra S. Padula,12 N. Darmenov,13,bL. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13 G. Sultanov,13V. Tcholakov,13R. Trayanov,13I. Vankov,13M. Dyulendarova,14R. Hadjiiska,14V. Kozhuharov,14

(6)

L. Litov,14E. Marinova,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15M. Xu,15M. Yang,15J. Zang,15 Z. Zhang,15Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16L. Zhang,16B. Zhu,16W. Zou,16 A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18

D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20 S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21H. Rykaczewski,21Y. Assran,22,eM. A. Mahmoud,22,fA. Hektor,23M. Kadastik,23K. Kannike,23 M. Mu¨ntel,23M. Raidal,23L. Rebane,23V. Azzolini,24P. Eerola,24S. Czellar,25J. Ha¨rko¨nen,25A. Heikkinen,25 V. Karima¨ki,25R. Kinnunen,25J. Klem,25M. J. Kortelainen,25T. Lampe´n,25K. Lassila-Perini,25S. Lehti,25

T. Linde´n,25P. Luukka,25T. Ma¨enpa¨a¨,25E. Tuominen,25J. Tuominiemi,25E. Tuovinen,25D. Ungaro,25 L. Wendland,25K. Banzuzi,26A. Korpela,26T. Tuuva,26D. Sillou,27M. Besancon,28S. Choudhury,28M. Dejardin,28

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28F. X. Gentit,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28M. Marionneau,28L. Millischer,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28P. Verrecchia,28S. Baffioni,29F. Beaudette,29L. Bianchini,29M. Bluj,29,g C. Broutin,29P. Busson,29C. Charlot,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29

P. Mine´,29C. Mironov,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Thiebaux,29 B. Wyslouch,29,hA. Zabi,29J.-L. Agram,30,iJ. Andrea,30A. Besson,30D. Bloch,30D. Bodin,30J.-M. Brom,30 M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,iF. Drouhin,30,iC. Ferro,30J.-C. Fontaine,30,iD. Gele´,30

U. Goerlach,30S. Greder,30P. Juillot,30M. Karim,30,iA.-C. Le Bihan,30Y. Mikami,30P. Van Hove,30F. Fassi,31 D. Mercier,31C. Baty,32N. Beaupere,32M. Bedjidian,32O. Bondu,32G. Boudoul,32D. Boumediene,32H. Brun,32 N. Chanon,32R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32A. Falkiewicz,32J. Fay,32S. Gascon,32 B. Ille,32T. Kurca,32T. Le Grand,32M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32 P. Verdier,32H. Xiao,32V. Roinishvili,33D. Lomidze,34G. Anagnostou,35M. Edelhoff,35L. Feld,35N. Heracleous,35

O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35A. Ostapchuk,35A. Perieanu,35F. Raupach,35 J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35B. Wittmer,35M. Ata,36W. Bender,36 M. Erdmann,36J. Frangenheim,36T. Hebbeker,36A. Hinzmann,36K. Hoepfner,36C. Hof,36T. Klimkovich,36 D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aC. Magass,36G. Masetti,36M. Merschmeyer,36A. Meyer,36P. Papacz,36

H. Pieta,36H. Reithler,36S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36D. Teyssier,36M. Bontenackels,37 M. Davids,37M. Duda,37G. Flu¨gge,37H. Geenen,37M. Giffels,37W. Haj Ahmad,37D. Heydhausen,37T. Kress,37

Y. Kuessel,37A. Linn,37A. Nowack,37L. Perchalla,37O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37 M. Thomas,37D. Tornier,37M. H. Zoeller,37M. Aldaya Martin,38W. Behrenhoff,38U. Behrens,38M. Bergholz,38,j K. Borras,38A. Cakir,38A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38

G. Flucke,38A. Geiser,38I. Glushkov,38J. Hauk,38H. Jung,38M. Kasemann,38I. Katkov,38P. Katsas,38 C. Kleinwort,38H. Kluge,38A. Knutsson,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38W. Lohmann,38,j R. Mankel,38M. Marienfeld,38I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38A. Mussgiller,38J. Olzem,38

A. Parenti,38A. Raspereza,38A. Raval,38R. Schmidt,38,jT. Schoerner-Sadenius,38N. Sen,38M. Stein,38 J. Tomaszewska,38D. Volyanskyy,38R. Walsh,38C. Wissing,38C. Autermann,39S. Bobrovskyi,39J. Draeger,39

H. Enderle,39U. Gebbert,39K. Kaschube,39G. Kaussen,39R. Klanner,39J. Lange,39B. Mura,39 S. Naumann-Emme,39F. Nowak,39N. Pietsch,39C. Sander,39H. Schettler,39P. Schleper,39M. Schro¨der,39 T. Schum,39J. Schwandt,39A. K. Srivastava,39H. Stadie,39G. Steinbru¨ck,39J. Thomsen,39R. Wolf,39C. Barth,40

J. Bauer,40V. Buege,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40M. Feindt,40J. Gruschke,40 C. Hackstein,40F. Hartmann,40S. M. Heindl,40M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40T. Kuhr,40 D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40O. Oberst,40A. Oehler,40J. Ott,40T. Peiffer,40D. Piparo,40 G. Quast,40K. Rabbertz,40F. Ratnikov,40M. Renz,40C. Saout,40A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40

G. Schott,40H. J. Simonis,40F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40M. Zeise,40V. Zhukov,40,k E. B. Ziebarth,40G. Daskalakis,41T. Geralis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41I. Manolakos,41 A. Markou,41C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41L. Gouskos,42T. J. Mertzimekis,42

A. Panagiotou,42,bI. Evangelou,43C. Foudas,43P. Kokkas,43N. Manthos,43I. Papadopoulos,43V. Patras,43 F. A. Triantis,43A. Aranyi,44G. Bencze,44L. Boldizsar,44G. Debreczeni,44C. Hajdu,44,bD. Horvath,44,lA. Kapusi,44

K. Krajczar,44,mA. Laszlo,44F. Sikler,44G. Vesztergombi,44,mN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45 V. Veszpremi,45P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46S. Bansal,47S. B. Beri,47V. Bhatnagar,47N. Dhingra,47

(7)

R. Gupta,47M. Jindal,47M. Kaur,47J. M. Kohli,47M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47 R. Sharma,47A. P. Singh,47J. B. Singh,47S. P. Singh,47S. Ahuja,48S. Bhattacharya,48B. C. Choudhary,48P. Gupta,48

S. Jain,48S. Jain,48A. Kumar,48R. K. Shivpuri,48R. K. Choudhury,49D. Dutta,49S. Kailas,49S. K. Kataria,49 A. K. Mohanty,49,bL. M. Pant,49P. Shukla,49T. Aziz,50M. Guchait,50,nA. Gurtu,50M. Maity,50,oD. Majumder,50

G. Majumder,50K. Mazumdar,50G. B. Mohanty,50A. Saha,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51 S. Dugad,51N. K. Mondal,51H. Arfaei,52H. Bakhshiansohi,52S. M. Etesami,52A. Fahim,52M. Hashemi,52

A. Jafari,52M. Khakzad,52A. Mohammadi,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52 B. Safarzadeh,52M. Zeinali,52M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53bA. Colaleo,53a D. Creanza,53a,53cN. De Filippis,53a,53cM. De Palma,53a,53bA. Dimitrov,53aL. Fiore,53aG. Iaselli,53a,53c L. Lusito,53a,53b,bG. Maggi,53a,53cM. Maggi,53aN. Manna,53a,53bB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53b

N. Pacifico,53a,53bG. A. Pierro,53aA. Pompili,53a,53bG. Pugliese,53a,53cF. Romano,53a,53cG. Roselli,53a,53b G. Selvaggi,53a,53bL. Silvestris,53aR. Trentadue,53aS. Tupputi,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a

D. Bonacorsi,54aS. Braibant-Giacomelli,54a,54bL. Brigliadori,54aP. Capiluppi,54a,54bA. Castro,54a,54b F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a P. Giacomelli,54aM. Giunta,54aS. Marcellini,54aM. Meneghelli,54a,54bA. Montanari,54aF. L. Navarria,54a,54b

F. Odorici,54aA. Perrotta,54aF. Primavera,54aA. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54b R. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b,bS. Costa,55a,55bA. Tricomi,55a,55b C. Tuve,55aG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56b

E. Gallo,56aC. Genta,56aP. Lenzi,56a,56bM. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,b L. Benussi,57S. Bianco,57S. Colafranceschi,57,pF. Fabbri,57D. Piccolo,57P. Fabbricatore,58R. Musenich,58 A. Benaglia,59a,59bF. De Guio,59a,59b,bL. Di Matteo,59a,59bA. Ghezzi,59a,59b,bM. Malberti,59a,59bS. Malvezzi,59a

A. Martelli,59a,59bA. Massironi,59a,59bD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bV. Tancini,59a,59bS. Buontempo,60a

C. A. Carrillo Montoya,60aA. Cimmino,60a,60bA. De Cosa,60a,60bM. De Gruttola,60a,60bF. Fabozzi,60a,q A. O. M. Iorio,60aL. Lista,60aM. Merola,60a,60bP. Noli,60a,60bP. Paolucci,60aP. Azzi,61aN. Bacchetta,61a P. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61aR. Carlin,61a,61bP. Checchia,61aE. Conti,61aM. De Mattia,61a,61b

T. Dorigo,61aU. Dosselli,61aF. Fanzago,61aF. Gasparini,61a,61bU. Gasparini,61a,61bP. Giubilato,61a,61b A. Gresele,61a,61cS. Lacaprara,61a,qqI. Lazzizzera,61a,61cM. Margoni,61a,61bM. Mazzucato,61a

A. T. Meneguzzo,61a,61bL. Perrozzi,61a,bN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61a M. Tosi,61a,61bS. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bP. Baesso,62a,62bU. Berzano,62aC. Riccardi,62a,62b P. Torre,62a,62bP. Vitulo,62a,62bC. Viviani,62a,62bM. Biasini,63a,63bG. M. Bilei,63aB. Caponeri,63a,63bL. Fano`,63a,63b P. Lariccia,63a,63bA. Lucaroni,63a,63b,bG. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bA. Santocchia,63a,63b

L. Servoli,63aS. Taroni,63a,63bM. Valdata,63a,63bR. Volpe,63a,63b,bP. Azzurri,64a,64cG. Bagliesi,64a J. Bernardini,64a,64bT. Boccali,64a,bG. Broccolo,64a,64cR. Castaldi,64aR. T. D’Agnolo,64a,64cR. Dell’Orso,64a

F. Fiori,64a,64bL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64cT. Lomtadze,64aL. Martini,64a A. Messineo,64a,64bF. Palla,64aF. Palmonari,64aS. Sarkar,64a,64cG. Segneri,64aA. T. Serban,64aP. Spagnolo,64a R. Tenchini,64aG. Tonelli,64a,64b,bA. Venturi,64a,bP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65b

E. Di Marco,65a,65bM. Diemoz,65aD. Franci,65a,65bM. Grassi,65aE. Longo,65a,65bG. Organtini,65a,65b A. Palma,65a,65bF. Pandolfi,65a,65b,bR. Paramatti,65aS. Rahatlou,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66c S. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aC. Botta,66a,66b,bN. Cartiglia,66aR. Castello,66a,66bM. Costa,66a,66b N. Demaria,66aA. Graziano,66a,66b,bC. Mariotti,66aM. Marone,66a,66bS. Maselli,66aE. Migliore,66a,66bG. Mila,66a,66b V. Monaco,66a,66bM. Musich,66a,66bM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66a,66b,bA. Romero,66a,66b

M. Ruspa,66a,66cR. Sacchi,66a,66bV. Sola,66a,66bA. Solano,66a,66bA. Staiano,66aD. Trocino,66a,66b A. Vilela Pereira,66a,66b,bF. Ambroglini,67a,67bS. Belforte,67aF. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67a

D. Montanino,67a,67bA. Penzo,67aS. G. Heo,68S. Chang,69J. Chung,69D. H. Kim,69G. N. Kim,69J. E. Kim,69 D. J. Kong,69H. Park,69D. Son,69D. C. Son,69Zero Kim,70J. Y. Kim,70S. Song,70S. Choi,71B. Hong,71M. Jo,71

H. Kim,71J. H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71H. B. Rhee,71E. Seo,71S. Shin,71 K. S. Sim,71M. Choi,72S. Kang,72H. Kim,72C. Park,72I. C. Park,72S. Park,72G. Ryu,72Y. Choi,73Y. K. Choi,73

J. Goh,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74D. Martisiute,74 P. Petrov,74T. Sabonis,74H. Castilla Valdez,75E. De La Cruz Burelo,75R. Lopez-Fernandez,75 A. Sa´nchez Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76F. Vazquez Valencia,76

References

Related documents

Resultaten visar att en stor del av eleverna har stora svårigheter med taluppfattning (uppgift 2) när det gäller sambandet mellan del av helhet i en delvis skuggad figur

Samtidigt hävdade intervjupersonerna att ​ det flexibla arbetet möjliggjorde egenkontroll och självständighet vilket ansågs leda till en ökad balans mellan fritid och arbete

In order to probe the rSAMs with respect to their a ffinity for the influenza lectin hemagglutinin (HA) we compared the adsorption of three proteins, the target lectin HA, concanavalin

There are increasing scientific evidences that most of this warming can be attributed to the emission of greenhouse gases (GHG) and aerosols by human activities (Volger,

Hossain (2017) menar att med hjälp av historia kan eleverna lära sig hur siffrorna idag inte såg ut som förr, det menar även Ramarajan och Runell (2007) att det kan vara nyttigt

förståelse skapas av individerna tillsammans i dialog. Med detta menas att i diskussioner behöver inte individerna vara överens, tvärtom lär individen bättre i det sammanhang

Through a collection of data and a comparison using the metrics speedup and efficiency, conclusions were derived that shed light on the ways in which a typical part of a game loop

34 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia. 35 RWTH Aachen