• No results found

Lecture Outlines Chapter 15 Physics, 3

N/A
N/A
Protected

Academic year: 2021

Share "Lecture Outlines Chapter 15 Physics, 3"

Copied!
82
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2007 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.

Dissemination or sale of any part of this work (including on the World Wide Web)

Lecture Outlines Chapter 15

Physics, 3rd Edition James S. Walker

(2)

Chapter 15

Fluids

(3)

Units of Chapter 15

• Density

• Pressure

• Static Equilibrium in Fluids: Pressure and Depth

• Archimedes’ Principle and Buoyancy

[F

b

= ρ

fluid

Vg] (flytförmåga)

(4)

Units of Chapter 15

• Fluid Flow and Continuity

• Bernoulli’s Equation

• Applications of Bernoulli’s Equation

• Viscosity and Surface Tension

(5)

15-1 Density

The density of a material is its mass per unit volume:

(6)

Conceptual Checkpoint 15-1

I ett kylskåp med måtten 1,0m•0,60m•0,75m, finns förutom luft, bara ett dussin ägg (44 g/styck).

Väger luften << ≈ >> än äggen?

Vluft = 1,0m•0,60m•0,75m = 0,45 m3

mluft = ρ • V = 1,29 kg/m3 • 0,45 m3 = 0,58 kg mägg = 12 • 0,044 kg = 0,53 kg

Luften väger 10% mer än äggen dvs ≈

(7)

15-2 Pressure

Pressure is force per unit area:

(8)

15-2 Pressure

The same force applied over a smaller area results in greater pressure – think of poking a balloon with your finger and then with a needle.

(9)

Example 15-1 Popping a Balloon

Vad blir trycket på ytan av en balIong om man trycker med kraften 2,1 N och använder

fingertoppen (A = 1,0•10-4 m2)?

P = F/A = 2,1 N/(1,0•10-4 m2) = 21 kN/m2 en nål (A = 2,5•10-7m2)?

P = F/A = 2,1 N/(2,5•10-7m2) = 8,4 MN/m2

Bestäm den minsta kraften som smäller ballongen

(10)

15-2 Pressure

Atmospheric pressure is due to the weight of the atmosphere above us.

The pascal (Pa) is 1 N/m2. Pressure is often measured in pascals.

(11)

15-2 Pressure

There are a number of different ways to describe atmospheric pressure.

In pascals:

In bars:

Exercise 15-1 (p.479) The force on the palm of

(12)

Photo 15-2

Atmospheric pressure

(13)

Since atmospheric pressure acts uniformly in all directions, we don’t usually notice it.

Therefore, if you want to, say, add air to your tires to the manufacturer’s specification, you are not interested in the total pressure. What you are interested in is the gauge pressure – how much more pressure is there in the tire than in the atmosphere?

15-2 Pressure

(14)

Example 15-2

Pressuring the Ball: Estimate the Gauge Pressure

(15)

Example 15-2 Pressuring the Ball: Estimate the Gauge Pressure

”Rimliga”uppskattningar 22 N kraft och d = 2 cm?

A = π•10-4 m2

Pg = F/A = 22 N/(π •10-4 m2) = 7,0•104 N/m2

Detta är trycket, som är ”utöver” lufttrycket, så

(16)

15-3 Static Equilibrium in Fluids: Pressure and Depth

The increased pressure as an object descends through a fluid is due to the increasing mass of the fluid above it.

(17)

15-3 Static Equilibrium in Fluids: Pressure

and Depth

(18)

Example 15-3 Pressure and Depth

(19)

Example 15-3

En kub med 20,00 cm sida är helt nedsänkt i en vätska. Trycket på ovansidan är 105,0 kPa och på undersidan 106,8 kPa. Vad är vätskans täthet?

p2 = p1 + ρgh

ρgh = 1800 N/m2

ρ = 1800 N/m2 / (9,81 m/s2•0,20 m) = 920 kg/m3

(20)

Conceptual Checkpoint 15–2 The Size of Bubbles Beror deras radie/volym på djupet (> < = ) ?

(21)

15-3 Static Equilibrium in Fluids: Pressure and Depth

A barometer compares the pressure due to the

atmosphere to the pressure due to a column of fluid,

typically mercury. The mercury column has a vacuum above it, so the only pressure is due to the mercury itself.

(22)

15-3 Static Equilibrium in Fluids: Pressure and Depth

This leads to the definition of atmospheric pressure in terms of millimeters of mercury:

In the barometer, the level of mercury is

such that the pressure due to the column of mercury is equal to the atmospheric

pressure.

(23)

15-3 Static Equilibrium in Fluids: Pressure and Depth

This is true in any container where the fluid can flow freely – the pressure will be the same

throughout.

(24)

Example 15-4

Oil and Water Don’t Mix

(25)

Example 15-4

Ett U-rör har vatten (med tätheten 1000 kg/m3) och olja (med tätheten 920 kg/m3) i sina skänklar,

enligt figur. Om h2 = 5,00 cm, vad är då h och h1? Öppna ändar innebär att trycket är detsamma

pA + ρvgh1 = pB + ρogh2

h1 = h2ρov = 4,60 cm och då blir h = 0,40 cm

(26)

15-3 Static Equilibrium in Fluids: Pressure and Depth

Pascal’s principle:

An external pressure applied to an enclosed fluid is transmitted unchanged to every point within the fluid.

(27)

Exercise 15-3

För att undersöka en bil med vikten 14500 N

används en hydralisk lift. Om r1 = 4,0 cm och r2 = 17 cm, vad blir då F1? Trycket är detsamma så F1 /A1 = F2 /A2

F1= F2A1/A2 = F2(r1/r2)2 = 800 N

(28)

15-4 Archimedes’ Principle and Buoyancy

A fluid exerts a net upward force on any object it surrounds, called the buoyant force.

This force is due to the increased pressure at the bottom of the object

compared to the top.

F1 = p1•A = p1•L2 p2 = p1 + ρgL

F = p •A = F + ρgL3

(29)

15-4 Archimedes’ Principle and Buoyancy

Archimedes’ Principle: An object completely immersed in a fluid experiences an upward buoyant force equal in magnitude to the

weight of fluid displaced by the object.

(30)

Figure 15-9

Buoyant force equals the weight of displaced fluid (den beror

sålunda på föremålets VOLYM och inte dess massa)

(31)

Conceptual Checkpoint 15–3 How Is the Scale Reading Affected?

Om man stoppar sitt finger i vätskan enligt figur vad händer på skalan? Ökar, minskar eller oförändrad?

(32)

15-5 Applications of Archimedes’ Principle

An object floats when it

displaces an amount of fluid equal to its weight.

(33)

Example 15-5

Measuring the Body’s Density

(34)

Example 15-5 Measuring the Body’s density

En person vars vikt (W) är 720,0 N i luft sänks ner helt och hållet i vatten. Hans vikt (Wa) mäts då till 34,3 N. Vad är a) personens volym och b) täthet?

Standardkoordinatsystem ger Wa = W - Fb

Fb = (personens volym)•(vattnets täthet)•g = 686 N Låt personens volym vara Vp och hans täthet ρp Vp= 686 N/(1000 kg m3 • 9,81 m/s2) = 0,0699 m3

(35)

Active Example 15–1

Find the Tension in the String

(36)

Active Example 15-1 Find the Tension in the String

Ett stycke trä med tätheten 706 kg/m3 och volymen 8,00 •10-6 m3 är nedsänkt i en vattentank enligt figur.

Vad är spänning i tråden?

Standardkoordinatsystem ger Fb = T + mg

Fb = (trävolymen)•(vattnets täthet)•g = 78,5 •10-3 N m = ρ V = 5,65•10-3 kg

(37)

15-5 Applications of Archimedes’ Principle

An object made of material that is denser than water can float only if it has indentations or

pockets of air that make its average density less than that of water.

(38)

Active Example 15-2 Floating a Block of Wood

Ett kubiskt stycke trä har tätheten 655 kg/m3 och sidan 15,0 cm. Hur mycket vatten undantrycks för att stycket skall

flyta?

Trävolymen V är 3,375 •10-3 m3

m = ρ V = 2,21 kg (så dess vikt är 21,7 N)

Den (undanträngda) vattenvolym som krävs är den som precis kompenserar föremålets vikt dvs

ρf Vsub g = 21,7 N

Vsub = 2,21 kg/(1000 kg/m3) = 2,2110-3 m3

(39)

Conceptual Checkpoint 15-4 The Plimsoll Mark

Vilken av markeringarna gäller “Maximum load for saltwater”?

(40)

15-5 Applications of Archimedes’ Principle

The fraction of an object that is submerged when it is floating depends on the densities of the

object and of the fluid.

(41)

Example 15-6

The Tip of the Iceberg

(42)

Tip of Iceberg (p.492)

Hur mycket av ett flytande föremål är nedsänkt i en vätska?

Anta att föremålet har tätheten ρs och flyter i en vätska med tätheten ρf. Om föremålet har volymen Vs är dess totala vikt Ws = ρs Vs g

På samma sätt är den undantryckta vätskans vikt Wf = ρf Vf g

om de sätts lika så att den (undanträngda) vattenvolym Vsub som krävs precis kompenserar föremålets vikt gäller 15-10

(43)

Tip of Iceberg (p.492)

Hur stor del av ett flytande isberg är ovan vattenytan? Isens tätheten (ρs) är 917 kg/m3 och den flyter i vatten med tätheten f) 1000kg/m3.

Ekvation 15-10 ger direkt

(volymen)•(tätheten) = (vätskans täthet)•(vätskevolymen) ρs Vs = ρf Vsub

(44)

Conceptual Checkpoint 15–5 The New Water Level I (> = <)?

(45)

Conceptual Checkpoint 15–6 The New Water Level II (>=<)?

(46)

15-6 Fluid Flow and Continuity

Continuity tells us that whatever the volume of fluid in a pipe passing a particular point per

second, the same volume must pass every other point in a second. The fluid is not accumulating or vanishing along the way.

This means that where the pipe is narrower, the flow is faster, as everyone who has played with the spray from a drinking fountain well knows.

(47)

15-6 Fluid Flow and Continuity (Δm=ρΔV=ρAvΔt)

(48)

15-6 Fluid Flow and Continuity

Most gases are easily compressible; most

liquids are not. Therefore, the density of a liquid may be treated as constant, but not that of a gas.

(49)

Example 15-7 Spray I

(50)

Example 15-7 Spray I

Vatten går genom en brandspruta, 9,6 cm i diameter med hastigheten 1,3 m/s. I änden på slangen passerar vattnet genom ett munstycke med diametern 2,5 cm. Vad är

vattnets hastighet genom munstycket?

Ekvation 15-12 ger direkt v2 A2 = v1A1

v2 = v1A1/A2

eftersom A = πd2/4 v2 = v1(d1/d2)2

(51)

15-7 Bernoulli’s Equation

When a fluid moves from a wider area of a pipe to a narrower one, its speed increases;

therefore, work has been done on it.

(52)

Figure 15-15 Work done on a fluid element

ΔW1 = F1Δx1 = P1A1Δx1 på samma sätt fås ΔW2= - P2A2Δx2

Volymen ändras inte på en inkompressibel vätska så att V1 = V2 = V Detta innebär att det totala arbetet på ett volymselement V är

ΔWtotal = ΔW1 + ΔW2 = P1ΔV – P2ΔV = (P1- P2)ΔV som ju är lika stort som ändringen i kinetisk energi dvs K2 –K1

(53)

15-7 Bernoulli’s Equation

The kinetic energy of a fluid element is:

Equating the work done to the increase in kinetic energy gives: (15-14)

(54)

Example 15-8 Spray II

(55)

Example 15-8 Spray II

Vatten går genom en brandspruta, 9,6 cm i diameter med hastigheten 1,3 m/s. I änden på slangen passerar vattnet genom ett munstycke med diametern 2,5 cm. Trycket i slangen är 350 kPa? Hur stort är trycket i munstycket?

Exemple Spray I gav hastigheten 19 m/s i munstycket.

Ekvation 15-14 ger direkt p1 + ρv12/2 = p2 + ρv22/2

p = p + ρ(v 2 - v 2)/2

(56)

15-7 Bernoulli’s Equation

If a fluid flows in a pipe of constant diameter, but changes its height, there is also work done on it against the force of gravity.

Equating the work done with the

change in potential energy gives: (15-15)

(57)

Exercise 15-4

Vatten går genom en trädgårdsslang som går över ett 20,0 cm högt trappsteg. Om trycket i slangen är 143 kPa före steget, vad är det då efter?

Ekvation 15-14 ger direkt

p1 + ρgy1 = p2 + ρgy2 p2 = p1 - ρg(y2 – y1)

p2 = 143 kPa - 1000 kg/m3 • 9,81 m/s2 0,200 m = 141 kPa

(58)

15-7 Bernoulli’s Equation

The general case, where both height and speed may change, is described by Bernoulli’s

equation:

This equation is essentially a statement of conservation of energy in a fluid.

(59)

Active Example 15–3 Find the Pressure

Information som Exercise 15-4 dvs Vatten går genom en

trädgårdsslang som går över ett 20,0 cm högt trappsteg. Om trycket i slangen är 143 kPa före steget, vad är det då efter?

Dessutom att arean på den övre slangen är hälften av den undre, samt att hastigheten vid det nedre steget är 1,20 m/s.

(60)

Active Example 15-3

Kontinuitetsekvationen (15-12) ger direkt att v2 = v1(A1/A2) = 2v1 = 2,4 m/s

Bernoullis ekvation (15-16) ger sedan att p1 + ρgy1 + ρv12/2 = p2 + ρgy2+ ρv22/2

p2 = p1+ ρg(y1 - y2) + ρ(v12- v22)/2

p2 = 143 kPa – 2,0 kPa – 2,2 kPa = 139 kPa

(61)

15-8 Applications of Bernoulli’s Equation

The Bernoulli effect is simple to demonstrate – all you need is a sheet of paper. Hold it by its end, so that it would be horizontal if it were stiff, and blow across the top.

The paper will rise, due to the

higher speed, and therefore lower pressure, above the sheet.

(62)

Figure 15-18

Airflow and lift in an airplane wing

(63)

Figure 15-19

Force on a roof due to wind speed

(64)

Exercise 15-5

Under en storm blåser vinden med hastigheten 35,5 m/s över ett hus med platt tak. Vad är tryckskillnaden mellan insidan av taket och ovanpå detsamma?

Bernoullis ekvation (15-16) ger att p1 + ρgy1 + ρv12/2 = p2 + ρgy2+ ρv22/2

lägeskoordinaten är (nästan) densamma och v1 ≈ 0 så p1 – p2 = ρ(v22)/2 = 630 kPa

(65)

15-8 Applications of Bernoulli’s Equation

This lower pressure at high speeds is what rips roofs off houses in hurricanes and tornadoes, and causes the roof of a convertible to expand upward. It even helps prairie dogs with air

circulation!

(66)

Figure 15-21 An atomizer (gust = vindstöt, orifice = mynning, öppning)

(67)

Conceptual Checkpoint 15–7 A Ragtop Roof (buktar upp, =, ned?)

(68)

15-8 Applications of Bernoulli’s Equation

If a hole is punched in the side of an open

container, the outside of the hole and the top of the fluid are both at atmospheric pressure.

Since the fluid inside the container at the level of the hole is at higher pressure, the fluid has a horizontal velocity as it exits.

(69)

Torricellis lag (p.500)

Vi vill bestämma hastigheten på en vätska som strömmar ut ur ett hål i en behållare enligt figur 15-22. Bernoullis

ekvation (15-16) tillämpad vid punkterna 1 och 2 ger att p1 + ρgy1 + ρv12/2 = p2 + ρgy2+ ρv22/2

p1 är atmosfärstryck men det är också p2 och v1 ≈ 0 så ρgh = ρ(v22)/2

som ger 15-17 som kallas Torricellis lag v2 = (2gh)1/2

(70)

15-8 Applications of Bernoulli’s Equation

If the fluid is directed upwards instead, it will reach the height of the surface level of the fluid in the container.

(71)

Example 15-9 A Water Fountain

(72)

Example 15-0 A Water Fountain

En trädgårdsmästare vill designa en vattenfontän enligt figur. H = 0,500 m, h = 0,150 m så hur lång är sträckan D?

Standard y/x

Toricellis lag ger hastigheten på den utströmmande vätskan.

vx = (2gh)1/2 = 1,72 m/s

y = y0 + vyt + ayt2/2 ger att 0 = H – gt2/2

t = (2H/g)1/2 = 0,319 s

(73)

15-9* Viscosity and Surface Tension

Viscosity is a form of friction felt by fluids as they flow along surfaces. We have been

dealing with nonviscous fluids, but real fluids have some viscosity.

A viscous fluid will have zero velocity next to the walls and maximum

velocity in the center.

(74)

15-9* Viscosity and Surface Tension

It takes a force to maintain a viscous flow, just as it takes a force to maintain motion in the

presence of friction.

A fluid is characterized by its coefficient of viscosity, η. It is defined so that the pressure difference in the fluid is given by:

(75)

15-9* Viscosity and Surface Tension

Using this to calculate the volume flow rate yields:

(76)

15-9* Viscosity and Surface Tension

A molecule in the

center of a liquid drop experiences forces in all directions from

other molecules. A molecule on the

surface, however, experiences a net

force toward the drop.

This pulls the surface inward so that its area

(77)

15-9* Viscosity and Surface Tension

Since there are forces tending to keep the surface area at a minimum, it tends to act

somewhat like a spring – the surface acts as though it were elastic.

(78)

15-9* Viscosity and Surface Tension

This means that small, dense

objects such as

insects and needles can stay on top of water even though they are too dense to float.

(79)

Summary of Chapter 15

• Density:

• Pressure:

• Atmospheric pressure:

• Gauge pressure:

• Pressure with depth:

(80)

Summary of Chapter 15

• Archimedes’ principle:

An object completely immersed in a fluid experiences an upward buoyant force equal in magnitude to the weight of fluid displaced by the object.

• Volume of submerged part of object:

(81)

Summary of Chapter 15

• Equation of continuity:

• Bernoulli’s equation:

• Speed of fluid exiting a hole in a container a depth h below the surface:

(82)

Summary of Chapter 15

• A pressure difference is required to keep a viscous fluid moving:

References

Related documents

Some algebra gives us the magnitude of the acceleration, and therefore the force, required to keep an object of mass m moving in a circle of radius r. The magnitude of the force

Work-Energy Theorem: The total work done on an object is equal to its change in kinetic

Conservative force: the work it does is stored in the form of energy that can be released at a later time.. Example of a conservative

The total mass multiplied by the acceleration of the center of mass is equal to the net external force:. The center of mass accelerates

kinetic energy of a rolling object is a multiple of the kinetic energy of translation... Example 10-5 Like a Rolling Disk. Bestäm a) translationsenergin b)

Gravitational potential energy of an object of mass m a distance r from the Earth’s center:.. 12-4 Gravitational

13-3 Connections between Uniform Circular Motion (likformig cirkulär rörelse) and Simple

That is, temperature is the only factor that determines whether two objects in thermal contact are in thermal equilibrium or not.... 16-1 Temperature and the Zeroth Law of