• No results found

Correlated long-range mixed-harmonic fluctuations measured in pp, p plus Pb and low-multiplicity Pb plus Pb collisions with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Correlated long-range mixed-harmonic fluctuations measured in pp, p plus Pb and low-multiplicity Pb plus Pb collisions with the ATLAS detector"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

Physics Letters B 789 (2019) 444–471

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Correlated

long-range

mixed-harmonic

fluctuations

measured

in

pp,

p+Pb

and

low-multiplicity

Pb+Pb

collisions

with

the

ATLAS

detector

.

The

ATLAS

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received6July2018

Receivedinrevisedform7October2018 Accepted13November2018

Availableonline2January2019 Editor: D.F.Geesaman

Correlations oftwoflowharmonics vnand vm viathree- andfour-particlecumulantsaremeasuredin

13TeVpp,5.02TeVp+Pb,and2.76TeVperipheralPb+PbcollisionswiththeATLASdetectorattheLHC.

The goalistounderstandthe multi-particlenature ofthelong-rangecollectivephenomenoninthese

collisionsystems.Thelargenon-flowbackgroundfromdijetproductionpresentinthestandardcumulant

methodissuppressedusingamethodofsubeventcumulantsinvolvingtwo,threeand foursubevents

separatedinpseudorapidity.Theresultsshowanegativecorrelationbetweenv2and v3 andapositive

correlationbetweenv2andv4forallcollisionsystemsandoverthefullmultiplicityrange.However,the

magnitudes ofthecorrelationsare foundtodependontheeventmultiplicity,thechoiceoftransverse

momentumrangeand collisionsystem. Therelativecorrelation strength,obtainedbynormalisationof

the cumulants withthe v2

nfrom atwo-particle correlationanalysis, issimilar inthe threecollision

systemsanddependsweaklyontheevent multiplicityand transversemomentum.Theseresultsbased

onthesubevent methodsprovidestrongevidence ofasimilar long-rangemulti-particle collectivityin

pp,p+PbandperipheralPb+Pbcollisions.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

One of the goals in the studies of azimuthal correlations in high-energy nuclear collisions at the Relativistic Heavy Ion Col-lider(RHIC)andtheLargeHadronCollider(LHC)istounderstand the multi-parton dynamics of QCD in the strongly coupled non-perturbative regime [1]. Measurements of azimuthal correlations in small collision systems, such as pp, p+A or d+A collisions, have revealed the ridge phenomenon [2–6]: enhanced produc-tion of particle pairs at small azimuthal angle separation,

, extended over a wide range of pseudorapidity separation,



η

. The azimuthal structure has been related to harmonic modula-tion of particle densities, characterised by a Fourier expansion, dN

/

d

φ

1

+

2



n=1vncos n

− n

)

, where vn and



n repre-sent the magnitude and the event-plane angle of the nth-order flowharmonic.Theyarealsoconvenientlyrepresentedbytheflow vector: Vn

=

vneinn.The vn are known to depend onthe colli-sionsystem,buthaveweakdependenceoncollisionenergies [6,7]. Theridgereflectsmulti-partondynamicsearlyinthecollisionand hasgeneratedsignificantinterestinthehigh-energyphysics com-munity. A key question is whetherthe long-range multi-particle collectivityreflects initial momentumcorrelation fromgluon

sat- E-mailaddress:atlas.publications@cern.ch.

uration effects [8], ora final-statehydrodynamic response to the initialtransversecollisiongeometry [9].

Further insight into the ridge phenomenon is obtained via a multi-particle correlation technique,known ascumulants, involv-ing three or more particles [10–12]. The multi-particle cumu-lants probe the event-by-event fluctuation of a single flow har-monic vn, as well as the correlated fluctuations between two flowharmonics, vn andvm.Theseevent-by-eventfluctuationsare often represented by probability density distributions p

(

vn

)

and p

(

vn

,

vm

)

, respectively. For instance, the four-particle cumulants cn{4

}

=



v4n



2



vn2



2 constrain the width of p

(

vn

)

[10], while thefour-particlesymmetriccumulantsscn,m{4

}

=



v2nv2m





v2n

 

v2m



quantifythelowest-ordercorrelationbetweenvn andvm[12].The three-particle asymmetric cumulants such asacn{3

}

=



V2nV2n



=



v2

nv2ncos 2n

(

n

− 

2n

)



[5,13] aresensitivetocorrelations involv-ingboththeflowmagnitudevn andflowphase



n.

Oneofthechallengesinthestudyofazimuthalcorrelationsin smallcollisionsystemsishowto distinguishthelong-rangeridge from“non-flow”correlationsinvolvingonlyafewparticles,suchas resonancedecays,jets, ordijets.Fortwo-particlecorrelations, the non-flowcontributioniscommonlysuppressedbyrequiringalarge



η

gapbetweenthe two particles ineach pair anda peripheral subtractionprocedure [3–5,7,14,15]. Formulti-particlecumulants, the non-flowcontributions canbe suppressedbyrequiring corre-lation betweenparticles fromdifferentsubevents separatedin

η

,

https://doi.org/10.1016/j.physletb.2018.11.065

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

5

.

02 TeV andlow-multiplicityPb+Pbcollisionsat

sNN

=

2

.

76 TeV.

They are obtained using two-, three- and four-subevent cumu-lant methods and are compared with results from the standard cumulantmethod.The cumulantsare normalisedby the



v2n



ob-tainedfromatwo-particlecorrelationanalysis [7] toquantifytheir relative correlation strength. The measurements suggest that the resultsobtainedwiththe standard methodare strongly contami-natedbycorrelationsfromnon-flowsources. Theresultsobtained withthethree-subeventmethodorthefour-subeventmethod pro-videnewevidenceoflong-rangethree- orfour-particleazimuthal correlations.

TheLetterisorganisedasfollows.DetailsoftheATLASdetector, thetriggersystem, datasets,aswellaseventandtrackselections areprovided inSections 2to 4.Section 5describesthe standard andsubeventcumulantmethodsusedinthisanalysis.Theanalysis procedureandsystematicuncertaintiesaredescribedinSections6

and7,respectively.Themeasuredcumulantsarepresentedin Sec-tion8.AsummaryisgiveninSection9.

2. Detectorandtrigger

TheATLASdetector [20] providesnearlyfull solid-angle cover-agearound the collision point withtracking detectors, calorime-ters,andmuonchambers, andiswell suited formeasurementof multi-particlecorrelationsoveralarge pseudorapidityrange.1 The measurements were performed using primarily the inner detec-tor(ID), minimum-biastrigger scintillators(MBTS) and the zero-degreecalorimeters(ZDC).TheIDdetectschargedparticleswithin

|

η

|

<

2

.

5 using a combination of a silicon pixel detector, a sili-conmicrostripdetector (SCT),andastraw-tubetransitionradiation tracker, all immersed in a 2 T axial magnetic field [21]. An ad-ditionalpixellayer, the “insertable B-layer”(IBL) [22] is installed betweenthe Run-1 (2010–2013)andRun-2(2015–2018) periods. The MBTS detects charged particles within 2

.

1

 |

η

|



3

.

9 using two hodoscopes ofcounters positioned at z

= ±

3

.

6 m. The ZDC, usedonlyinp+PbandPb+Pbcollisions,arepositionedat

±

140 m from the collision point, and detect neutral particles, primarily neutronsandphotons,with

|

η

|

>

8

.

3.

The ATLAS trigger system [23,24] consistsof a first-level (L1) trigger implemented using a combination of dedicated electron-icsandprogrammablelogic,andahigh-level trigger(HLT) imple-mentedinprocessors.TheHLTreconstructscharged-particletracks

1 ATLAStypicallyusesaright-handedcoordinatesystemwithitsoriginat the

nominalinteractionpoint(IP)inthe centreofthe detectorandthe z-axisalong thebeampipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe

y-axispointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,

φbeingtheazimuthalanglearoundthebeampipe.Bydefault,thepseudorapidityis definedintermsofthepolarangleθasη= −ln tan(θ/2).However,forasymmetric

p+PborPb+p collisions,the−z directionisalwaysdefinedasthedirectionofthe Pbbeam.

andHMTtriggers.Theminimum-biastriggerrequiredeitherahit inatleastoneMBTScounter,orahitinatleastoneMBTScounter oneachside,oratleastonereconstructedtrackattheHLTseeded by a random trigger at L1. More detailed information about the triggersusedforthepp and p+Pbdataandtheirperformancecan befoundinRefs. [7,25] andRefs. [5,26],respectively.

3. DatasetsandMonteCarlosimulations

This analysisis basedon ATLAS datasets corresponding to in-tegrated luminosities of 0.9 pb−1 of pp data recorded at

s

=

13 TeV, 28 nb−1 of p+Pbdatarecordedat

sNN

=

5

.

02 TeV, and

7 μb−1 of Pb+Pb data at

sNN

=

2

.

76 TeV. The 2

.

76 TeV Pb+Pb

datawerecollectedin2010.The p+Pbdataweremainlycollected in2013,butalsoinclude0.3 nb−1 ofdatacollectedin2016,which increase thenumber ofeventsatmoderatemultiplicity (see Sec-tion4).Duringboth p+Pbruns,theLHCwasconfiguredtoprovide a4 TeVprotonbeamanda1.57 TeVper-nucleonPbbeam, which produced collisions at

sNN

=

5

.

02 TeV, with a rapidity shift of

0

.

465 of the nucleon–nucleon centre-of-mass frame towards the protonbeamdirectionrelativetotheATLASrestframe.The direc-tionofthePbbeamisalwaysdefinedtohavenegative pseudora-pidity. The 13 TeV pp data were collected during several special runsoftheLHCwithlowpile-upin2015and2016.Asummaryof thedatasetsusedinthisanalysisisshowninTable1.

Thetrackreconstructionefficiencywasdeterminedusing simu-latedMonteCarlo(MC)eventsamples (Section4).The pp events were simulated withthe Pythia8 MC event generator [27] using theA2set oftunedparameters withMSTW2008LO parton distri-bution functions [28]. The HIJING eventgenerator [29] was used to producePb+Pb and p+Pbcollisions withthesame energyand the sameboost ofthe centre-of-mass systemasinthe data.The detector response was simulated using Geant4 [30,31] with de-tectorconditionsmatchingthoseduring thedata-taking.The sim-ulated events and data events are reconstructed with the same algorithms. The MC sample for Pb+Pb events in the multiplicity region of interest is very small, and so the track reconstruction efficiencyforPb+Pbwastakenfromthelargerp+Pbsample recon-structedwiththesamereconstructionalgorithm.Theefficiencyin p+Pbeventswas found to be consistentwiththe efficiencyfrom thePb+PbMCsimulation [17].

4. Eventandtrackselection

The offline eventselection forthe pp and p+Pbdata requires atleastonereconstructedvertexwithitslongitudinalposition sat-isfying

|

zvtx

|

<

100 mmrelative tothe nominalinteractionpoint.

Thevertexisrequiredtohaveatleasttwo associatedtrackswith pT

>

0

.

4 GeV. The mean number of collisions per bunch

(3)

446 The ATLAS Collaboration / Physics Letters B 789 (2019) 444–471

p+Pbdata, and0.001–0.006 forthe 2016 p+Pbdata. In orderto suppressadditional interactions in the same bunch crossing (re-ferredto aspile-up)in pp collisions,eventscontaining additional verticeswithatleast fourassociatedtracks arerejected. In p+Pb collisions,eventswithmorethanone goodvertex, definedasany vertexforwhichthescalarsumofthepToftheassociatedtracks

isgreater than5 GeV, arerejected. The remainingpile-up events are further suppressedby using the signal inthe ZDCin the di-rection of the Pb beam. This signal is calibrated to the number ofdetectedneutrons, Nn,byusingthelocationofthepeak corre-spondingtoasingleneutron.ThedistributionofNn ineventswith pile-upisbroaderthanthatfortheeventswithoutpile-up.Hence asimplerequirementontheZDCsignaldistributionisusedto fur-thersuppresseventswithpile-up,whileretainingmorethan98% of eventswithout pile-up. The impact ofresidual pile-up, atthe levelof



10−3,isstudiedbycomparingtheresultsobtainedfrom datawithdifferent

μ

values.

TheofflineeventselectionforthePb+Pbdatarequires

|

zvtx

|

<

100 mm.Theselection alsorequiresatimedifference

|

t

|

<

3 ns betweensignalsintheMBTStriggercountersoneithersideofthe interactionpoint tosuppressnon-collisionbackgrounds. A coinci-dence between the ZDC signals at forward and backward pseu-dorapidityisrequiredtoreject avarietyofbackgroundprocesses, whilemaintaininghighefficiencyforinelasticprocesses.The frac-tionofeventswithmorethanoneinteractionafterapplyingthese selectioncriteriaislessthan10−4.

Charged-particletracksandcollisionverticesarereconstructed using algorithms optimised forimproved performance forRun-2. In order to comparedirectly with the pp and p+Pbsystems us-ing event selections based on the multiplicity of the collisions, a subset of datafrom low-multiplicityPb+Pb collisions, collected during the 2010 LHC heavy-ion run with a minimum-bias trig-ger,wasanalysedusingthesametrackreconstructionalgorithmas thatusedforp+Pbcollisions.ForthePb+Pband2013p+Pb analy-ses,tracksarerequiredtohavea pT-dependentminimumnumber

ofhitsin theSCT. The transverse (d0) andlongitudinal(z0 sin

θ

)

impactparametersofthetrackrelativeto thevertexare required tobelessthan1.5 mm.Additionalrequirements

|

d0

|/

σ

d0

<

3 and

|

z0sin

θ

|/

σ

z0

<

3 are imposed, where

σ

d0 and

σ

z0 are the

un-certainties of the transverse and longitudinal impact parameter values,respectively. A more detaileddescription of the track se-lectionforthe2010Pb+Pbdataand2013p+Pbdatacanbefound inRefs. [5,17].

Forall thedatatakensincethestartofRun-2,thetrack selec-tioncriteriamakeuseoftheIBL,asdescribedinRefs. [14,25].For the pp and2016 p+Pbanalyses,thetracks arerequiredtosatisfy

|

dBL0

|

<

1

.

5 mm and

|

z0sin

θ

|

<

1

.

5 mm, where dBL0 is the

trans-verseimpactparameterofthetrackrelativetothebeamline (BL). Thecumulantsarecalculatedusingtrackspassingtheabove se-lectionrequirements,andhaving

|

η

|

<

2

.

5 and 0

.

3

<

pT

<

3 GeV

or 0

.

5

<

pT

<

5 GeV. These two pT ranges are chosen because

they were often used in the previous ridge measurements at the LHC [6,7,14,15,17]. However, to count the number of recon-structed charged particles for event-class definition (denoted by Nrec

ch), tracks with pT

>

0

.

4 GeV and

|

η

|

<

2

.

5 are used for

com-patibility with the requirements in the HLT selections described above. Due to different trigger requirements, most of the p+Pb events with Nrecch

>

150 are provided by the 2013 dataset,while the2016datasetprovidesmostoftheeventsatlowerNrec

ch.

The efficiencyof thecombined trackreconstruction and track selection requirements is estimated using MC samples recon-structed withthesame algorithmsandselection requirements as indata.Efficiencies,

(

η

,

pT

)

, areevaluated asafunction oftrack

η

,pTandthenumberofreconstructedcharged-particletracks,but

averagedoverthefullrangeinazimuth.Theefficiencies are

simi-larforeventswiththesamemultiplicity.Forallcollisionsystems, the efficiency increases by about 4% as track pT increases from

0.3 GeVto 0.6GeV.Above 0.6GeV,the efficiencyisindependent of pT and reaches 86% (72%) for Run-1 pp and p+Pb, and 83%

(70%)forPb+PbandRun-2 p+Pbcollisions,at

η

0 (

|

η

|

>

2).The efficiency is independent ofthe event multiplicity for Nrecch

>

40. Forlower-multiplicityeventstheefficiencyissmallerbyupto3% duetobroaderd0 andz0sin

θ

distributions [17].

The fraction of falsely reconstructed charged-particle tracks is alsoestimatedandfoundtobenegligiblysmallinalldatasets.This fractiondecreaseswithincreasingtrackpT,andevenatthelowest

transversemomentaof0.3 GeVitisbelow1%ofthetotalnumber oftracks.Therefore,thereisnocorrectionforthepresenceofsuch tracksintheanalysis.

In the simulated events, the reconstruction efficiency reduces the measured charged-particle multiplicity relative to the gener-atedmultiplicityforprimarychargedparticles.Acorrectionfactor b is used to correct Nrecch to obtain the efficiency-corrected aver-age number of charged particles per event,



Nch

 =

b



Nrec

ch



. The valueofthecorrectionfactorisobtainedfromtheMCsamples de-scribed above, and is found to be nearly independent of Nrecch in therangeusedinthisanalysis, Nrec

ch

<

400.Itsvalueandthe

asso-ciated uncertainties are b

=

1

.

29

±

0.05 forthe Pb+Pband2013 p+Pbcollisions andb

=

1

.

18

±

0.05 forRun-2 p+Pb and pp colli-sions [32].Bothscn,m{4

}

andac2

{

3

}

arethenstudiedasafunction

of



Nch



.

5. Cumulantmethod

The multi-particlecumulantmethod [10] hastheadvantageof directly reducing non-flow correlations from jets and dijets. The mathematical framework for the standard cumulant is based on theQ-cumulantsdiscussedinRefs. [11,12,33].Itwasextended re-cently to the caseof subevent cumulants in Refs. [13,16]. These methodsarebrieflysummarisedbelow.

5.1. Cumulantsinthestandardmethod

The standardcumulantmethodcalculates k-particleazimuthal correlations,

{

k

}

, in one event using a complex number nota-tion [11,12]:

{

2

}

n

 =



ein(φ1−φ2)



,

{

3

}

n

 =



ein(φ1+φ2−2φ3)



,



{

4

}

n,m



=



ein(φ1−φ2)+im(φ3−φ4)



,

(1)

where “



” denotes a single-event average over all pairs, triplets orquadruplets,respectively.The averagesfromEq. (1) canbe ex-pressed intermsofper-particle normalisedflowvectors

q

n;l with l

=

1

,

2

...

ineachevent [11]: qn;l



j wljeinφj





j wlj

,

(2)

wherethesumrunsoveralltracksintheeventandwjisaweight assigned to the jth track. This weight is constructed to correct for both detectornon-uniformity andtracking inefficiency as ex-plainedinSection6.

The multi-particle asymmetric and symmetric cumulants are obtainedfrom

{

k

}

as:

acn

{

3

} = {

3

}

n

 ,

scn,m

{

4

} =



{

4

}

n,m



 − {

2

}

n

 {

2

}

m

 ,

(3) where“



”representsa weighted averageof

{

k

}

over anevent ensemble with similar Nrec

(4)

Inthestandardcumulantmethoddescribedabove,allk-particle multipletsinvolvedin

{

k

}n



and



{

k

}n

,m



areselectedusingtracks inthe entire ID acceptanceof

|

η

|

<

η

max

=

2

.

5. To suppress

fur-therthenon-flowcorrelationsthattypicallyinvolveafewparticles withina localisedregion in

η

,the tracksare dividedintoseveral subevents, each covering a unique

η

interval. The multi-particle correlations are then constructed by only correlating tracks be-tweendifferentsubevents.

Inthe two-subevent cumulantmethod,the tracks are divided into two subevents, labelled by a and b, according to

η

max

<

η

a

<

0 and0

η

b

<

η

max.Theper-eventk-particleazimuthal

cor-relationsareevaluatedas:

{

2

}

n



a|b

=



ein(φa1−φb2)



,

{

3

}

n



2a|b

=



ein(φa1+φa2−2φ3b)



,



{

4

}

n,m



2a|2b

=



ein(φa1−φ2b)+im(φa3−φ4b)



,

(6)

where the superscript or subscript a (b) indicates tracks chosen fromthe subeventa (b).Herethe three- andfour-particle cumu-lantsaredefinedas:

ac2an|b

{

3

} = {

3

}

n



2a|b

,

sc2an,m|2b

{

4

} =



{

4

}

n,m





2a|2b

− {

2

}

n



a|b

{

2

}

m



a|b

.

Thetwo-subeventmethodsuppresses correlationswithina single jet(intra-jetcorrelations),sinceparticles fromone jetusually fall inonesubevent.

Inthe three-subevent cumulant method,tracks in each event are divided into three subevents a, b and c, each covering one third of the

η

range,

η

max

<

η

a

<

η

max

/

3,

|

η

b|

η

max

/

3 and

η

max

/

3

<

η

c

<

η

max.Themulti-particleazimuthalcorrelationsand

cumulantsarethenevaluatedas:

{

3

}

n



a,b|c

=



ein(φa1+φb2−2φ3c)



,



{

4

}

n,m



a,b|2c

=



ein(φ1a−φ2c)+im(φb3−φc4)



,

(7) and acan,b|c

{

3

} = {

3

}

n



a,b|c

,

scan,,bm|2c

{

4

} = {

4

}

n,m



a,b|2c

− {

2

}

n



a|c

{

2

}

m



b|c

.

(8) Since a dijet event usually produces particles in at most two subevents, the three-subevent method efficiently suppresses the non-flow contribution from inter-jet correlations associated with dijets. To maximise the statistical precision, the

η

range for subevent a is swapped with that for subevent b or c, and the resultsareaveragedtoobtainthefinalvalues.

precision, the

η

rangesfor thefour subevents are swapped with eachother,andtheresultsareaveragedtoobtainthefinalvalues. 5.3. Normalisedcumulants

Althoughthecumulantsreflectthenatureofthecorrelation be-tween vn and vm,their magnitudesalsodependonthesquare of singleflow harmonicsv2

n andv2m,seeEq. (4).Thedependenceon the single flow harmonics can be scaled out via the normalised cumulants [34,35]: nsc2,3

{

4

} =

sc2,3

{

4

}

v2

{

2

}

2v3

{

2

}

2

=



v22v23





v22

 

v23

 −

1

,

(11) nsc2,4

{

4

} =

sc2,4

{

4

}

v2

{

2

}

2v4

{

2

}

2

=



v2 2v24





v2 2

 

v2 4

 −

1

,

(12) nac2

{

3

} =

ac2

{

3

}

2v2

{

2

}

4

+

c2

{

4

}

c4

{

2

}

=



v22v4cos 4

(

2

− 

4

)





v42

 

v24



,

(13) wherethe vn

{

2

}

2

=



v2n



areflowharmonicsobtainedusinga two-particlecorrelationmethodbasedonaperipheralsubtraction tech-nique [7,14], andc2

{

4

}

=



v4 2



2



v2 2



2

are four-particlecumulant resultsfromRefs. [17,18]. Thisdefinitionfornac2

{

3

}

ismotivated

byRef. [36].

6. Analysisprocedure

Themeasurement ofthescn,m{4

}

andac2

{

3

}

followsthesame

analysis procedure as for the four-particle cumulants cn{4

}

in Ref. [18].Themulti-particlecumulantsarecalculatedinthreesteps using charged particles with

|

η

|

<

2

.

5. In the first step,

{

2

}n

,

{

3

}n



and



{

4

}n

,m



from Eqs. (1), (6), (7) and (9) are calculated for each event from particles in one of two different pT ranges,

0

.

3

<

pT

<

3 GeVand 0

.

5

<

pT

<

5 GeV. The numbersof

recon-structedchargedparticlesinthesepT rangesaredenotedby Nsel1ch

andNsel2

ch ,respectively.

In thesecond step, thecorrelators

{

k

}

for 0

.

3

<

pT

<

3 GeV

(0

.

5

<

pT

<

5 GeV) areaveraged overeventswiththe same Nsel1ch

(Nchsel2)toobtain

{

k

}

,andthensc2,3

{

4

}

,sc2,4

{

4

}

andac2

{

3

}

.The

sc2,3

{

4

}

,sc2,4

{

4

}

andac2

{

3

}

values are then averaged in broader

multiplicityrangesoftheeventensemble,weightedbynumberof events,toobtainstatisticallysignificantresults.

In the third step, the sc2,3

{

4

}

, sc2,4

{

4

}

and ac2

{

3

}

values

ob-tained fora given Nsel1ch or Nsel2ch are mapped to



Nrecch



,the aver-agenumberofreconstructedchargedparticleswith pT

>

0

.

4 GeV.

(5)

448 The ATLAS Collaboration / Physics Letters B 789 (2019) 444–471

Themappingprocedureisnecessarysothat sc2,3

{

4

}

,sc2,4

{

4

}

and

ac2

{

3

}

obtainedforthetwodifferent pT rangescan becompared

usingacommonx-axisdefinedby



Nrecch



.The



Nrecch



valueisthen converted to



Nch



, the efficiency-corrected average number of

chargedparticleswithpT

>

0

.

4 GeV,asdiscussedinSection4.

In order to account for detector inefficiencies and non-uni-formity,particleweightsusedinEq. (2) aredefinedas:

w

(φ,

η

,

pT

)

=

d

(φ,

η

)/

(

η

,

pT

) .

Theadditionalweightfactord

(φ,

η

)

accountsfornon-uniformities in the azimuthal acceptance of the detector as a function of

η

. Allreconstructedchargedparticleswith pT

>

0

.

3 GeVareentered

intoa two-dimensional histogram N

(φ,

η

)

,andthe weightfactor isthenobtainedasd

(φ,

η

)

≡ 

N

(

η

)

 /

N

(φ,

η

)

,where



N

(

η

)



isthe trackdensityaveraged over

φ

in thegiven

η

bin.Thisprocedure removesmostofthe

φ

-dependentnon-uniformity inthedetector acceptance [17].

In order to calculate the normalised cumulants from Eqs. (11)–(13),theflowharmonicsvn{2

}

areobtainedfroma“template fit”oftwo-particle

correlationasdescribedinRefs. [7,14].The vn{2

}

values are calculated identically to the procedure used in the previous ATLAS publications [7,14], butare furthercorrected fora bias,which exists onlyif vn{2

}

changes with Nrecch.The de-tailsofthecorrectionprocedurearegivenintheAppendixAand arediscussedbrieflybelow.

ThestandardprocedureofRefs. [7,14] firstconstructsa

dis-tributionforpairsoftrackswith

|

η

|

>

2:theper-trigger-particle yield Y

(φ)

foragiven Nrec

ch range.Thedominatingnon-flow jet

peak at

π

is estimatedusing low-multiplicity events with Nrecch

<

20 andseparatedviaatemplatefitprocedure,andthe har-monic modulation of the remaining component is taken as the vn{2

}

2 [7]: Y

(φ)

=

F Y

(φ)

peri

+

Gtmp

1

+

2 ∞



n=2 vn

{

2

,

tmp

}

2cos n

,

where superscripts “peri” and “tmp” indicate quantities for the Nrecch

<

20 eventclassandquantitiesafterthetemplatefitforthe eventclassofinterest,respectively.ThescalefactorF andpedestal Gtmp are fixed by the fit, and vn{2

,

tmp

}

are calculated from a Fouriertransform. Thisprocedureimplicitlyassumesthat vn{2

}

is independentofNrec

ch,andrequiresasmallcorrectionifvn{2

}

does

changewithNchrec(AppendixA).In p+PbandPb+Pbcollisions,this correctionin the Nrecch

>

100 regionamounts toa 2–6%reduction forv2

{

2

,

tmp

}

anda4–9%reductionforv3

{

2

,

tmp

}

andv4

{

2

,

tmp

}

.

The correction is smaller for v2

{

2

,

tmp

}

in pp collisions as it is

nearlyindependentofNchrec[7].

7. Systematicuncertainties

The evaluation of the systematic uncertainties follows closely theprocedureestablishedforthefour-particlecumulantscn{4

}

and describedinRef. [18].Themainsourcesofsystematicuncertainties arerelatedto thedetectorazimuthal non-uniformity,track selec-tion,trackreconstructionefficiency,triggerefficiencyandpile-up. Duetotherelativelypoorstatisticsandlargernon-floweffects,the systematicuncertainties are typically larger in pp collisions. The systematic uncertainties are also generally larger, in percentage, forfour-particlecumulantsscn,m{4

}

thanforthethree-particle

cu-mulantsac2

{

3

}

,sincethe

|

scn,m{4

}|

valuesaremuchsmallerthan

thoseforac2

{

3

}

.Thesystematicuncertaintiesaregenerallysimilar

among the two- and three- and four-subevent methods, but are different from those for the standard method, which is strongly

influenced by non-flow correlations. The following discussion fo-cusesonthethree-subeventmethod,whichisthedefaultmethod usedtopresentthefinalresults.

The effect of detector azimuthal non-uniformity is accounted for usingthe weight factor d

(φ,

η

)

. The impact of theweighting procedure is studiedby fixing the weight to unityand repeating the analysis. The results are mostly consistent with the nominal results. The corresponding uncertainties for scn,m{4

}

vary in the

range of0–4%,0–2% and1–2% in pp, p+PbandPb+Pbcollisions, respectively.Theuncertaintiesforac2

{

3

}

varyintherangeof0–2%

in pp collisions, and 0–1% in p+PbandPb+Pb collisions, respec-tively.

The systematicuncertaintyassociated withthetrack selection is estimated by tightening the

|

d0

|

and

|

z0sin

θ

|

requirements.

They are each varied from the default requirement of less than 1.5 mm tolessthan1 mm.In p+PbandPb+Pbcollisions, the re-quirementon thesignificanceofimpactparameters,

|

d0

|/

σ

d0 and

|

z0sin

θ

|/

σ

z0 are also varied fromlessthan 3 to lessthan 2.For

eachvariation,thetrackingefficiencyisre-evaluatedandthe anal-ysisisrepeated. Forac2

{

3

}

,whichhasalargeflowsignal,the

dif-ferencesfromthenominalresultsareobservedtobelessthan2% forallcollisionsystems.Forscn,m{4

}

,forwhichthesignalissmall,

the differencesfrom the nominal results are found to be in the rangeof2–10%in pp collisions,2–7%in p+Pbcollisionsand2–4% inPb+Pbcollisions.Thedifferencesaresmallerforresultsobtained for0

.

5

<

pT

<

5 GeVthanthoseobtainedfor0

.

3

<

pT

<

3 GeV.

Previousmeasurementsindicatethattheazimuthalcorrelations (both the flow andnon-flow components) have a strong depen-denceon pT,buta relativelyweakdependenceon

η

[5,7].

There-fore, pT-dependent systematic effects in the trackreconstruction

efficiencycouldaffectthecumulantvalues.Theuncertaintyinthe trackreconstruction efficiencyismainlydueto differencesinthe detectorconditionsandmaterial descriptionbetweenthe simula-tion and the data. The efficiency uncertainty varies between 1% and4%,depending ontrack

η

andpT [7,17].Its impacton

multi-particlecumulantsisevaluatedbyrepeatingtheanalysiswiththe trackingefficiencyvariedupanddownbyitscorresponding uncer-taintyasafunctionoftrackpT.Forthestandardcumulantmethod,

which is more sensitive to jets and dijets, the evaluated uncer-tainty amountsto2–6%in pp collisionsandlessthan2% inp+Pb collisionsfor



Nch

 >

100.Forthesubeventmethods,theevaluated

uncertaintyistypicallylessthan3%formostofthe



Nch



ranges.

Most eventsin pp and p+Pb collisions are collected with the HMT triggerswith severalonline Nrecch thresholds. Inorder to es-timate the possible bias due to trigger inefficiency asa function of



Nch



,theoffline Nrecch requirementsarechanged suchthat the

HMT triggerefficiencyisatleast 50%or80%. Theresults are ob-tained independently for each variation. These results are found to be consistent with each other forthe subevent methods, and show some differencesforthe standard cumulantmethodin the low



Nch



region.Thenominalanalysisisperformedusingthe50%

efficiency selection and the differences betweenthe nominal re-sults andthose fromthe80% efficiency selection areincluded in thesystematicuncertainty.Thechangesforpp collisionsareinthe rangeof5–15%forsc2,3

{

4

}

,2–8%forsc2,4

{

4

}

and1–5%forac2

{

3

}

.

Theranges forp+Pbcollisionsaremuchsmallerduetothemuch sharperturn-onofthetriggerefficiencyandlargersignal:theyare estimatedtobe 1–3%forsc2,3

{

4

}

,2–4%forsc2,4

{

4

}

and1–2%for

ac2

{

3

}

.

Inthisanalysis,apile-uprejectioncriterionisappliedtoreject eventscontainingadditionalverticesin pp andp+Pbcollisions.In order to check the impact of residualpile-up, the analysisis re-peated without the pile-uprejection criterion.No differences are observed in p+Pbcollisions, asisexpected sincethe

μ

valuesin p+Pbaremodest.Forthe13 TeV pp dataset,thedifferenceswith

(6)

The vn{2

}

values used to obtain normalised cumulants from Eqs. (11)–(13) aremeasuredfollowingtheprescriptionofthe pre-viousATLAS publications [7,14],resulting invery similar system-aticuncertainties. The correction for the biasof the template fit procedure,asdescribedinSection6,reducesthesensitivitytothe choiceoftheperipheral Nrec

ch bin.The uncertaintiesofnormalised

cumulantsare obtainedby propagationof theuncertainties from theoriginalcumulantsandvn{2

}

,takingintoaccountthatthe cor-relatedsystematicuncertaintiespartiallycancelout.

8. Results

Theresults are presented intwo parts. Section 8.1presents a detailedcomparisonbetweenthe standard method andsubevent methods to demonstrate the ability of the subevent methods to suppress non-flow correlations. Section 8.2 compares the cumu-lantsamongpp, p+PbandPb+Pbcollisionstoprovideinsightinto thecommonnatureofcollectivityinthesesystems.

8.1.Comparisonbetweenstandardandsubeventmethods

The top row of Fig. 1 compares the sc2,3

{

4

}

values obtained

fromthe standard,two-, three- and four-subevent methodsfrom pp collisionsin0

.

3

<

pT

<

3 GeV(leftpanel)and0

.

5

<

pT

<

5 GeV

(right panel). The values from the standard method are positive overthefull



Nch



range,andare larger atlower



Nch



orinthe

higher pT range.Thisbehaviour suggeststhat the sc2,3

{

4

}

values

fromthe standard methodin pp collisions, including those from Ref. [19],are strongly influenced by non-flow effects inall



Nch



and pT ranges [16]. In contrast, the values from the subevent

methods are negative over the full



Nch



range, and they are

slightlymorenegative atlowest



Nch



andalsomorenegative at

higher pT.Theresultsare consistentamongthe varioussubevent

methods for 0

.

3

<

pT

<

3 GeV.For the high pT region of 0

.

5

<

pT

<

5 GeV,resultsfromthetwo-subeventmethodare

systemati-callylowerthanthosefromthethree- andfour-subeventmethods, suggestingthatthetwo-subeventmethodmaybeaffectedby neg-ative non-flow contributions. Such negative non-flow correlation hasbeenobservedinaPythia8 calculation [16].

Themiddlerowof Fig.1 showssc2,3

{

4

}

from p+Pbcollisions.

At



Nch

 >

140,the valuesare negative andconsistentamong all

fourmethods,reflectinggenuinelong-rangecollectivecorrelations. At



Nch

 <

140, the values are different between the standard

method and the subevent methods. The sc2,3

{

4

}

from the

stan-dardmethodchangessignaround



Nch

 ∼

80 andremainspositive

atlower



Nch



,reflecting thecontributionfromnon-flow

correla-tions.Incontrast,thesc2,3

{

4

}

fromvarioussubeventmethodsare

negativeandconsistentwitheachotherat



Nch

 <

140,suggesting

thattheymainlyreflectthegenuinelong-rangecorrelations.

observed between thetwo-subevent andthree- or four-subevent methods at low



Nch



, butthese differencesdecrease and

disap-pear for



Nch

 >

100. Within the statistical uncertainties of the

measurement,nodifferencesareobservedbetweenthethree- and four-subevent methods. This comparison suggests that the two-subeventmethodmaynotbesufficienttorejectnon-flow correla-tionsfromdijetsinpp collisions,andmethodswiththreeormore subeventsarerequiredtosuppressthenon-flowcontributionover themeasured



Nch



range.

The middlerowofFig. 2showssc2,4

{

4

}

from p+Pbcollisions.

Significantdifferencesareobservedbetweenthestandardmethod and the subevent methods over the full



Nch



range. However,

nodifferencesareobservedamongthevarioussubeventmethods. These results suggest that the standard method is contaminated by large contributions from non-flow correlations at low



Nch



,

and thesecontributions may not vanish even atlarge



Nch



val-ues.All subeventmethods suggest anincrease of sc2,4

{

4

}

toward

lower



Nch



for



Nch

 <

40,whichmayreflectsomeresidual

non-flowcorrelationsinthisregion.

ThebottomrowofFig.2showssc2,4

{

4

}

fromPb+Pbcollisions.

Thesc2,4

{

4

}

valuesincreasegraduallywith



Nch



forallfour

meth-ods. This increase reflects the known fact that the v2 increases

with



Nch



inPb+Pbcollisions [37].The valuesfromthestandard

method are systematically larger than those from the subevent methods, andthis difference varies slowly with



Nch



,similar to

the behaviour observed in p+Pb collisions in the high



Nch



re-gion.

The resultsfortheasymmetric cumulantac2

{

3

}

are presented

inFig. 3.The top rowshowstheresults obtainedfromthe stan-dard, two-subevent, and three-subevent methods from pp colli-sions in 0

.

3

<

pT

<

3 GeV (left panel) and 0

.

5

<

pT

<

5 GeV

(right panel).Theresultsare positiveforall methods.The results from the standard method are much larger than those from the subeventmethods, consistentwiththe expectationthat the stan-dardmethodismoreaffectedbynon-flowcorrelationsfromdijets. Significantdifferencesarealsoobservedbetweenthetwo-subevent and three-subevent methods at low



Nch



, but these differences

decrease and disappear at



Nch

 >

100. The ac2

{

3

}

values from

the three-subeventmethodshow a slightincrease for



Nch

 <

40

but are nearly constant for



Nch

 >

40. This behaviour suggests

thatinthethree-subeventmethod,thenon-flowcontributionmay play some role at



Nch

 <

40, but is negligible for



Nch

 >

40.

Therefore, the ac2

{

3

}

from the three-subevent method supports

theexistence ofathree-particlelong-rangecollective flowthat is nearly independent of



Nch



in pp collisions, consistentwith the



Nch



-independentbehaviourofv2 and v4 observedpreviouslyin

thetwo-particlecorrelationanalysis [7].

ThemiddleandbottomrowsofFig.3showac2

{

3

}

from p+Pb

and Pb+Pb collisions, respectively. The ac2

{

3

}

values from the

(7)

450 The ATLAS Collaboration / Physics Letters B 789 (2019) 444–471

Fig. 1. The symmetriccumulantsc2,3{4}asafunctionofNchfor0.3<pT<3 GeV(leftpanels)and0.5<pT<5 GeV (rightpanels)obtainedfor pp collisions(toprow),

p+Pbcollisions(middlerow)andlow-multiplicityPb+Pbcollisions(bottomrow).Ineachpanel,thesc2,3{4}isobtainedfromthestandardmethod(filledsymbol),the

two-subeventmethod(opencircles),three-subeventmethod(opensquares)andfour-subeventmethod(opendiamonds).Theerrorbarsandshadedboxesrepresentthe statisticalandsystematicuncertainties,respectively.



Nch

 ∼

200 inp+Pbcollisionsand



Nch

 ∼

80 inPb+Pbcollisions.

Inthesubevent methods,theinfluenceofnon-flow contributions isvery smallfor



Nch

 >

60 inboth collisionsystems,and

there-forethe



Nch



dependenceofac2

{

3

}

reflectsthe



Nch



dependence

ofthe v2 and v4. The ac2

{

3

}

valuesfrom thesubevent methods

increase with



Nch



, and the increase is stronger in Pb+Pb

colli-sions. This is consistent with previous observations that v2 and

v4increasewith



Nch



morestronglyinPb+Pbthaninp+Pb

colli-sions [17].

The valuesofsc2,4

{

4

}

andac2

{

3

}

,which areboth measuresof

correlations between v2 and v4, show significant differences

be-tween thestandardmethodandthesubevent methods,asshown in Figs. 2 and 3. The



Nch



dependence of these differences

de-creasesgraduallywith



Nch



,andisconsistentwithaninfluenceof

non-flowthatisexpectedtoscaleas1

/



Nch



.However,these

dif-ferencesseemtopersistfor



Nch

 >

200 inp+Pbcollisionsandfor



Nch

 >

150 inPb+Pbcollisions,whichisnotcompatiblewiththe

(8)

Fig. 2. The symmetriccumulantsc2,4{4}asafunctionofNchfor0.3<pT<3 GeV(leftpanels)and0.5<pT<5 GeV (rightpanels)obtainedfor pp collisions(top

row),p+Pbcollisions(middlerow)andlow-multiplicityPb+Pbcollisions(bottomrow).Ineachpanel,thesc2,4{4}isobtainedfromthestandardmethod(filledsymbol),

two-subeventmethod(opencircles),three-subeventmethod(opensquares)andfour-subeventmethod(opendiamonds).Theerrorbarsandshadedboxesrepresentthe statisticalandsystematicuncertainties,respectively.

large



Nch



mayarisefromlongitudinalflowdecorrelations [38,39],

whichhavebeenmeasuredbyCMS [40] andATLAS [41]. Decorre-lationeffectsarefoundto belargefor v4 andstronglycorrelated

with v2, andtherefore they are expected to reduce the sc2,4

{

4

}

andac2

{

3

}

in the subeventmethod. Therefore, the observed

dif-ferencesbetweenthe standardmethod andsubevent method re-flectthecombinedcontributionfromnon-flowcorrelations,which dominates in the low



Nch



region, and decorrelation, which is

moreimportant atlarge



Nch



(see furtherdiscussion inthe

Ap-pendixB).

The results presented above suggest that the three-subevent method is sufficient to suppress mostof the non-flow effects. It isthereforeusedasthedefaultmethodforthediscussionbelow. 8.2. Comparisonbetweencollisionsystems

Fig. 4 shows a direct comparison of cumulants for the three collisionsystems.Thethreepanelsinthetoprowshowtheresults forsc2,3

{

4

}

,sc2,4

{

4

}

andac2

{

3

}

,respectively,for0

.

3

<

pT

<

3 GeV.

These results support the existence of a negative correlation be-tween v2 and v3 and a positive correlation between v2 and v4.

(9)

452 The ATLAS Collaboration / Physics Letters B 789 (2019) 444–471

Fig. 3. The asymmetriccumulantac2{3}asafunctionofNchfor0.3<pT<3 GeV(leftpanels)and0.5<pT<5 GeV(rightpanels)obtainedforpp collisions(toprow),p+Pb

collisions(middlerow)andlow-multiplicityPb+Pbcollisions(bottomrow).Ineachpanel,theac2{3}isobtainedfromthestandardmethod(filledsymbol),two-subevent method(opencircles),andthree-subeventmethod(opensquares).Theerrorbarsandshadedboxesrepresentthestatisticalandsystematicuncertainties,respectively.

Such correlation patterns havepreviously been observed inlarge collisionsystems [42–44],butarenowconfirmedalsointhesmall collisionsystems,oncenon-floweffectsareadequatelysuppressed. Inthemultiplicityrangecoveredbythe pp collisions,



Nch

 <

150,

theresultsforsymmetriccumulantssc2,3

{

4

}

andsc2,4

{

4

}

are

sim-ilaramongthethree systems.Intherange



Nch

 >

150,

|

sc2,3

{

4

}|

andsc2,4

{

4

}

arelargerinPb+Pbthaninp+Pbcollisions.Theresults

for ac2

{

3

}

are similar among the three systems at



Nch

 <

100,

buttheydeviatefromeachother athigher



Nch



.The pp dataare

approximatelyconstantordecreaseslightlywith



Nch



,whilethe

p+PbandPb+Pb data show significant increasesas a functionof



Nch



.The bottomrowshowstheresultsforthehigher pT range

of0

.

5

<

pT

<

5 GeV,wheresimilartrendsareobserved.

Fig. 5 shows the results for normalised cumulants, nsc2,3

{

4

}

,

nsc2,4

{

4

}

and nac2

{

3

}

, compared among the three systems. The

normalised cumulants generally show a much weaker



Nch



de-pendence at



Nch

 >

100, where the statistical uncertainties are

small.Thisbehaviourimpliesthatthestrong



Nch



dependenceof

thescn,m{4

}

andac2

{

3

}

valuesreflectsthe



Nch



dependenceofthe

vn values,andthesedependencesare removedinthe normalised cumulants.Thenormalised cumulantsarealsosimilaramong dif-ferent collisionsystems atlarge



Nch



,althoughsome differences

(10)

Fig. 4. The Nchdependenceofsc2,3{4}(leftpanels),sc2,4{4}(middlepanels)andac2{3}(rightpanels)in0.3<pT<3 GeV(toprow)and0.5<pT<5 GeV(bottomrow)

obtainedfor pp collisions(solidcircles),p+Pbcollisions(opencircles)andlow-multiplicityPb+Pbcollisions(opensquares).Theerrorbarsandshadedboxesrepresentthe statisticalandsystematicuncertainties,respectively.

attherelativelevelof20–30%areobservedforsmaller



Nch



.The

onlyexception isnsc2,3

{

4

}

,whose valuesinthe pp collisions are

verydifferentfromthoseinp+PbandPb+Pbcollisions.Incontrast, the sc2,3

{

4

}

values in Fig. 4 are close among different systems.

Thissuggeststhatthe



v23



valuesfromthetemplatefitmethod [7] maybesignificantlyunderestimated.AspointedoutinRef. [7] and emphasised in Appendix A, the template fit method, and other methods based on peripheral subtraction in general [5,15], tend tounderestimatetheoddflow harmonics,duetothepresenceof alargeaway-side peak at

π

inthetwo-particle correlation function.Thecomparisonofsc2,3

{

4

}

andnsc2,3

{

4

}

amongdifferent

collision systems provides indirect evidenceof this underestima-tionof



v23



.

Fig.5 showsthat thenormalisedcumulantsareconsistent be-tween0

.

3

<

pT

<

3 GeVand0

.

5

<

pT

<

5 GeV.Ontheotherhand,

themagnitudesofthecumulantsinFig.4differby alargefactor betweenthetwopTranges:aboutafactorofthreeforsc2,3

{

4

}

and

sc2,4

{

4

}

,anda factoroftwoforac2

{

3

}

.Theseresultssuggest that

the pT dependenceofsc2,3

{

4

}

,sc2,4

{

4

}

andac2

{

3

}

largelyreflects

thepT dependenceofthevn atthesingle-particlelevel.

9. Discussion

Three- and four-particle cumulants involving correlations be-tweentwo harmonicsofdifferentorder vn andvm are measured in

s

=

13 TeV pp,

sNN

=

5

.

02 TeV p+Pb,andlow-multiplicity

sNN

=

2

.

76 TeV Pb+Pb collisions with the ATLAS detector at

theLHC,with totalintegratedluminosities of0.9 pb−1, 28 nb−1, and 7 μb−1, respectively. The correlation between vn and vm is studied using four-particle symmetric cumulants, sc2,3

{

4

}

and

sc2,4

{

4

}

,and the three-particleasymmetric cumulant ac2

{

3

}

.The

symmetriccumulants scn,m{4

}

=



vn2v2m





v2n

 

vm2



probe the cor-relation ofthe flow magnitudes,while the asymmetric cumulant ac2

{

3

} =



v22v4cos 4

(

2

− 

4

)



issensitivetocorrelationsinvolving

both the flowmagnitude vn andflow phase



n.They are calcu-lated using the standard cumulant method,as well asthe two-, three- and four-subevent methods to suppress non-flow effects. Thefinalresultsarepresentedasafunctionoftheaveragenumber ofchargedparticleswithpT

>

0

.

4 GeV,



Nch



.

Significant differences are observed between the standard method and the subevent methods over the full



Nch



range in

pp collisions, as well as over the low



Nch



range in p+Pb and

Pb+Pbcollisions. The differencesarelarger forparticles athigher pT oratsmaller



Nch



.When analysedwiththestandard method

in pp collisions,thisbehaviouriscompatiblewiththedominance ofthe non-flowcorrelationsratherthan thelong-rangecollective flow correlations. Systematic, but much smaller, differences are alsoobserved inthelow



Nch



regionbetweenthetwo-subevent

methodandthree- orfour-subeventmethods,whichindicatethat the two-subevent method may still be affected by correlations arising fromjets. Onthe other handno differencesare observed between the three-subevent and four-subevent methods, within experimentaluncertainties,suggestingthatmethodswiththreeor moresubeventsaresufficienttorejectnon-flow correlationsfrom jets. Therefore,thethree-subevent methodisusedto presentthe mainresultsinthisanalysis.

The three-subevent methodprovides a measurement of nega-tive sc2,3

{

4

}

and positive sc2,4

{

4

}

andac2

{

3

}

over nearly thefull



Nch



range and in all three collision systems. These results

(11)

454 The ATLAS Collaboration / Physics Letters B 789 (2019) 444–471

Fig. 5. The Nchdependenceofnsc2,3{4}(leftpanels),nsc2,4{4}(middlepanels)andnac2{3}(rightpanels)in0.3<pT<3 GeV(toprow)and0.5<pT<5 GeV(bottom

row)obtainedforpp collisions(solidcircles),p+Pbcollisions(opencircles)andlow-multiplicityPb+Pbcollisions(opensquares).Theerrorbarsandshadedboxesrepresent thestatisticalandsystematicuncertainties,respectively.

correlationbetweenv2andv4.Suchcorrelationpatternshave

pre-viously beenobserved inlarge collision systems [42–44], butare now confirmed in small collision systems, once non-flow effects areadequatelysuppressed.Thevaluesofsc2,3

{

4

}

andsc2,4

{

4

}

are

consistent in pp and p+Pb collisions over the same



Nch



range,

buttheir magnitudesatlarge



Nch



are muchsmaller thanthose

forPb+Pb collisions.The valuesof ac2

{

3

}

are similar atvery low



Nch



among the three systems, but are very different at large



Nch



.Ontheotherhand,afterscalingbythe



v2n



estimatedfrom atwo-particle analysis [7,14], theresultingnormalisedcumulants nsc2,3

{

4

}

,nsc2,4

{

4

}

andnac2

{

3

}

showamuchweakerdependence

on



Nch



,and their valuesare much closerto each other among

the three systems. The magnitudes of the normalised cumulants are also similar to each other for 0

.

5

<

pT

<

5 GeV as well as

0

.

3

<

pT

<

3 GeV. This suggests that the



Nch



, pT and system

dependenceofthesc2,3

{

4

}

,sc2,4

{

4

}

andac2

{

3

}

reflectmostlythe



Nch



,pTandsystemdependenceof



v2n



,buttherelativestrengths ofthecorrelationsaresimilarforthethreecollisionsystems.

The new results obtained with the subevent cumulant tech-nique provide further evidence that the ridge is indeed a long-rangecollectivephenomenoninvolvingmanyparticlesdistributed across a broad rapidity interval. The similarity between differ-entcollisionsystemsfornsc2,3

{

4

}

,nsc2,4

{

4

}

andnac2

{

3

}

,andthe

weakdependenceoftheseobservablesonthepTrangeand



Nch



,

largelyfree fromnon-flow effects,provideanimportantinput to-wardsunderstandingthespace–timedynamicsandtheproperties of the medium created in small collision systems. These results provideinputstodistinguishbetweenmodelsbasedoninitial-state momentumcorrelationsandmodelsbasedonfinal-state hydrody-namics.

Acknowledgements

We thank CERN forthe very successful operation ofthe LHC, as well asthe supportstaff fromour institutions withoutwhom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP,Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT,Chile; CAS,MOSTand NSFC,China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, andMPG, Germany; GSRT, Greece; RGC,Hong KongSAR, China;ISFandBenoziyoCenter, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN,Norway; MNiSW andNCN, Poland; FCT, Portu-gal;MNE/IFA,Romania; MESofRussiaandNRCKI,Russian Feder-ation;JINR;MESTD,Serbia;MSSR,Slovakia;ARRSandMIZŠ, Slove-nia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden;SERI,SNSFandCantonsofBernandGeneva, Switzerland;MOST,Taiwan;TAEK, Turkey;STFC,UnitedKingdom; DOE and NSF, United States of America. In addition, individ-ual groupsandmembers havereceived support fromBCKDF, the Canada Council, CANARIE,CRC, Compute Canada,FQRNT, andthe OntarioInnovation Trust,Canada; EPLANET,ERC, ERDF,FP7, Hori-zon 2020and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne andFondationPartagerleSavoir,France;DFGandAvHFoundation, Germany;Herakleitos,ThalesandAristeiaprogrammesco-financed by EU-ESFandtheGreek NSRF;BSF,GIFandMinerva,Israel;BRF, Norway; CERCA Programme Generalitat de Catalunya,Generalitat

(12)

Fig. 6. The valuesofvn{2,tmp}2obtainedfollowingthetemplatefitproceduregiveninEq. (14) [7] inpp collisionsforn=2 (leftpanel),n=3 (middlepanel)andn=4

(rightpanel).Ineachpanel,thevaluesarecalculatedforthreeperipheralNrecch intervals:N rec ch <20,N

rec

ch <10 and10≤N rec

ch <20.Onlystatisticaluncertaintiesareshown.

Valenciana,Spain;theRoyalSocietyandLeverhulmeTrust,United Kingdom.

The crucialcomputing support fromall WLCG partners is ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresources arelistedin Ref. [45].

Appendix A. Improvementtothetemplatefitprocedure

In order to separate the long-range ridge from other non-flowsources, especiallydijets,the ATLAS Collaborationdeveloped atemplatefittingproceduredescribedinRefs. [7,14].Thefirststep istoconstructa

distributionofparticlepairswithlarge pseu-dorapidityseparation

|

η

|

>

2,theso-called“per-trigger”particle yield, Y

(φ)

, for a given Nchrec range. The

|

η

|

>

2 requirement suppresses the intra-jet and other short-range correlations, and in small collision systems the resulting Y

(φ)

distributions are knowntobedominatedbyaway-sidejetcorrelations [4,5,14].This away-sidenon-flowcomponentispeakedat

π

,andleadsto asignificantbiasintheflowcoefficientsvn,especiallyfortheodd harmonics.

Tosubtracttheaway-sidejetcorrelations,themeasuredY

(φ)

distribution in a given Nrec

ch interval is assumed to be a sum

ofa scaled “peripheral” distribution Y

(φ)

peri, obtainedfor low-multiplicity events Nrec

ch

<

20,anda constantpedestal modulated

bycos

(

n

φ)

forn

2 [7,14]: Y

(φ)

=

F Y

(φ)

peri

+

Gtmp

1

+

2 ∞



n=2 vn

{

2

,

tmp

}

2cos n

.

(14)

The scale factor F and pedestal Gtmp are fixed by the fit, and vn{2

,

tmp

}

arecalculated froma Fouriertransform. Onthe other hand,both Y

(φ)

andY

(φ)

peri contain a dijetcomponent and flowcomponent:

Y

(φ)

=

Y

(φ)

centjet

+

Gcent

1

+

2 ∞



n=2 vn

{

2

}

2cos n

,

(15)

Y

(φ)

peri

=

Y

(φ)

perijet

+

Gperi

1

+

2 ∞



n=2 vn

{

2

,

peri

}

2cos n

.

(16) Withtheassumptionthat theshapeofthedijetcomponentis in-dependent of Nrecch, and the magnitudes of the dijet components arerelatedbythescalefactorF :Y

(φ)

jetcent

=

F Y

(φ)

perijet ,Eq. (14) canbewrittenas:

Y

(φ)

=

Y

(φ)

centjet

+ (

Gtmp

+

F Gperi

)

+

2 ∞



n=2



Gtmpvn

{

2

,

tmp

}

2

+

F Gperivn

{

2

,

peri

}

2



×

cos n

φ.

Comparing with Eqs. (15) and (16), one obtains Gcent

=

Gtmp

+

F Gperiandthefollowingrelation:

vn

{

2

}

2

=

vn

{

2

,

tmp

}

2

F Gperi Gcent



vn

{

2

,

tmp

}

2

vn

{

2

,

peri

}

2



,

which shows that vn{2

,

tmp

}

from the template fit differs from the true vn{2

}

by a correction term that vanishes ifand only if vn{2

}

is independent of Nrecch. Since the true flow harmonics in the peripheral interval vn{2

,

peri

}

are unknown in principle, the correction is applied starting from the third-lowest Nrec

ch interval

(40

Nrecch

<

60) inthis analysis, by using vn{2

,

tmp

}

of the sec-ond Nrecch interval (20

Nchrec

<

40) as an estimate of the true flow harmonics.Sincethe non-flow contributionprimarily affects the oddharmonics, the v3

{

2

,

tmp

}

2 maybecome negative in the

firstfew Nrecch intervalsin pp collisions.Insuchcases,the correc-tionstartsfromthesecond Nrecch intervalwithpositive v3

{

2

,

tmp

}

2

(60

Nrec

ch

<

80)byusingv3

{

2

,

tmp

}

fromtheprevious Nrecch

inter-val(40

Nrecch

<

60).

One important feature of the template fit analysis is the as-sumption that the dijet component Y

(φ)

jet is independent of



Nch



. In Ref. [7], the uncertainty associated with this

assump-tion is studied by changing the default peripheral interval from Nrecch

<

20 to Nrecch

<

10 and10

Nrecch

<

20.Itwas foundthat the vn{2

,

tmp

}

valuesarerelativelyinsensitivetothechoiceof periph-eralintervalforn

=

2 andn

=

4,butthesensitivityismuchlarger for n

=

3. This finding is reproduced in Fig. 6 for pp collisions, whichshowsthatthev3

{

2

,

tmp

}

2valuesobtainedviaEq. (14)

dif-fersubstantiallyforthedifferentNrecch ranges.

Inadditiontothetemplatefitwithandwithouttheabove men-tioned correction procedure, the ATLAS and CMS collaborations

(13)

456 The ATLAS Collaboration / Physics Letters B 789 (2019) 444–471

Fig. 7. The v2(leftcolumn),v3 (middlecolumn)and v4 (rightcolumn)obtainedfromtwo-particlecorrelationsin0.3<pT<3 GeVinpp (toprow),p+Pb(middlerow)

andPb+Pb(bottomrow)collisions.Ineachpanel,theyarecomparedbetweenthreemethods:directFouriertransformation(solidcircles),templatefit(opencircles)andthe improvedtemplatefit(opensquares).Theerrorbarsandshadedboxesrepresentthestatisticalandsystematicuncertainties,respectively.

alsocalculateddirectlythe vn{2

}

valuesviaaFouriertransformof theY

(φ)

distributionwithoutdijetsubtraction [7,19].The differ-encesbetweenthedirectFouriertransformandtemplatefitreflect mainlythe away-sidejet contributionsubtracted by thetemplate fitprocedure,andthereforegivea senseofthemagnitudeof un-known systematic uncertainties associated with the template fit procedure. If these differences are too large, the vn

{

2

,

tmp

}

val-uesmaybesensitivetothesystematiceffectsassociatedwiththe assumptionthattheshapeofY

(φ)

jetisindependentofNrecch.

Fig.7 comparesthe vn{2

}

in 0

.

3

<

pT

<

3 GeV obtainedfrom

Y

(φ)

usingthreemethods:a directFouriertransform(solid cir-cles), a template fit (open circles) and a template fit corrected for the bias (open squares), as described above. The systematic uncertainties forthe template fit results are nearly the same as those fromRef. [7]. Fig. 7showsthat the changes introduced by

the correction procedure described above are small in all cases andforallharmonics.Thevaluesoftheeven-orderharmonics, v2

and v4, are also quite similar to those obtained from the direct

Fourier transformation, reflecting the fact that the dijet correla-tions havevery little influence on the even-orderharmonics. On the other hand,significant differences are observed between the direct Fouriertransformandtemplate fitfor v3,especially inthe

pp collisions, dueto the influence ofY

(φ)

jet,a trend observed

anddiscussedpreviouslyinRefs. [7,15].Thetemplatefitprocedure isabletosubtractthedijetcorrelationsandchangethesignofv3,

butalsointroducesalargeuncertaintyassociatedwiththe proce-dure. AsdiscussedinSection8.2,thebehaviourofthesymmetric cumulantssc2,3

{

4

}

inFig.4andnormalisedcumulantsnsc2,3

{

4

}

in

Fig.5inpp collisions,suggestthatthev3valuesfromthetemplate

Figure

Fig. 1. The symmetric cumulant sc 2 , 3 { 4 } as a function of  N ch  for 0 . 3 &lt; p T &lt; 3 GeV (left panels) and 0
Fig. 2. The symmetric cumulant sc 2 , 4 { 4 } as a function of  N ch  for 0 . 3 &lt; p T &lt; 3 GeV (left panels) and 0
Fig. 3. The asymmetric cumulant ac 2 { 3 } as a function of  N ch  for 0 . 3 &lt; p T &lt; 3 GeV (left panels) and 0
Fig. 4. The  N ch  dependence of sc 2 , 3 { 4 } (left panels), sc 2 , 4 { 4 } (middle panels) and ac 2 { 3 } (right panels) in 0
+6

References

Related documents

Åkerbäck menar även att det finns svårigheter för lärare att förhålla sig neutralt till nyreligiositet och nyreligiösa rörelser och att de flesta religiösa

fysiskt men också psykiskt närvarande/…/när jag väl tar mig till en viss patient, så får det gärna ta lite extra tid, men att jag verkligen är där, för oftast så blir de

Therefore, the aim of this paper is to develop, describe, and introduce a reflection model based on improvement coaches’ perceptions of power-related conditions, including both

Eller att ’boosta’ upp våra befintliga kollegor i just programmering, utbilda dem och framförallt få dem bekväma i sin roll.” Jag håller med Alice i detta, för att

There are, as such, multiple representational practices at work in the production of space. What is important is that our theoretical logic operate similarly regardless of

Detta examensarbete syftar till att öka kunskapen och förståelsen för hur gymnasieelever upplever att deras demokratiska kompetens, i form av aktivt politiskt deltagande, påverkas

Leininger menar att förutsättningen för att sjuksköterskan skall kunna främja hälsa och ge en god omvårdnad till patienter från en annan kulturell bakgrund är att

As a final word of this study and to refer to the main question, we can conclude that there is a difference in sustainability demand between convenience and shopping goods with the