• No results found

Search for non-resonant Higgs boson pair production in the bbl nu l nu final state with the ATLAS detector in pp collisions at root s=13 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Search for non-resonant Higgs boson pair production in the bbl nu l nu final state with the ATLAS detector in pp collisions at root s=13 TeV"

Copied!
22
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

non-resonant

Higgs

boson

pair

production

in

the

bb



ν



ν

final

state

with

the

ATLAS

detector

in

pp collisions

at

s

=

13 TeV

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received19August2019

Receivedinrevisedform4December2019

Accepted5December2019

Availableonline13December2019

Editor:M.Doser

Asearchfornon-resonantHiggsbosonpairproduction,aspredictedbytheStandardModel,ispresented, where one ofthe Higgs bosonsdecays via the Hbb channel and the othervia one of the HW W/Z Z/τ τ channels.Theanalysisselection requireseventstohaveatleasttwob-taggedjetsand exactlytwoleptons(electronsormuons)withoppositeelectricchargeinthefinalstate.Candidateevents consistentwithHiggsbosonpairproductionareselectedusingamulti-classneuralnetworkdiscriminant. Theanalysis uses139 fb−1 ofpp collisiondata recordedatacentre-of-massenergyof13 TeVbythe ATLASdetectorattheLargeHadronCollider.Anobserved(expected)upperlimitof1.2(0.9+00..43) pbis set on thenon-resonant Higgsboson pairproductioncross-section at95% confidence level,which is equivalentto40(29+149)timesthevaluepredictedintheStandardModel.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In2012,theATLASandCMSCollaborationsreportedthe obser-vationofanewparticleinthesearchfortheStandardModel(SM) Higgsboson (H )[1,2]. Sofar,measurementsofthespin and cou-plingsofthe newparticleare consistentwiththose predictedby theBrout–Englert–Higgs(BEH)mechanismofthe SM[3–12]. The SM predicts non-resonant productionof Higgs boson pairs (H H ) in proton–proton(pp) collisions, referred to as non-resonantH H production,withthedominantproductionmodesattheLHC pro-ceedingviathegluon–gluonfusion(ggF)process.TheggFprocess hastwo leading order contributions: thefirst corresponds to the so-called‘trianglediagram’,which includesthe Higgsboson self-coupling,andthesecond istheso-called‘boxdiagram’,which in-cludesaheavy-quarkloopwithtwofermion–fermion–Higgs( f f H ) vertices.Thesetwoamplitudesinterferedestructively,resultingin alow cross-section of only31.05±1.90 fb forthe ggF H H pro-ductionmode,computedatnext-to-next-to-leading order(NNLO) andincludingfinitetop-quarkmasseffects[13–20].Feynman dia-gramsillustratingthesetwocontributionsareshowninFig.1.The measurementofnon-resonant H H productionattheLHCstandsas animportanttestoftheBEHmechanism.Inmanybeyond-the-SM (BSM)theories,H H productioncanbeenhancedbymodifyingthe Higgs boson self-coupling, λH H H, or the top-quark Yukawa cou-pling, yt,and/orbyintroducingnewcontactinteractions between

 E-mailaddress:atlas.publications@cern.ch.

Fig. 1. FeynmandiagramsforleadingorderggFproductionofHiggsbosonpairs:the ‘trianglediagram’sensitivetotheHiggsbosonself-couplingontheleftandthe‘box diagram’ontheright.

two top-quarks or gluons and two Higgs bosons or introducing productionmechanismsviaintermediateBSMparticles[21–23].

The ATLAS and CMS Collaborations have performed searches for non-resonant H H production in a variety of final states at 13 TeV [24–33]. No significant excess of events beyond SM ex-pectationsisobservedinthesesearches,withtheATLAS andCMS data-analyses setting observed(expected) limitson non-resonant H H production to be no larger than 6.9 (10.0) and 22.2 (12.8) timesthepredictedrateintheSM,respectively[34,35].

This Letter describes a search for non-resonant H H produc-tion inthe bbνν final state, where  refers to a lepton(either an electron ora muon), using13 TeV pp collision datacollected with the ATLAS detector during 2015–2018 and corresponding to a total integrated luminosity of 139 fb−1. The analysis uses machine-learningtechniquesbasedonfeedforwardneuralnetwork architectures[36] toconstruct an event-level classifier trainedto distinguish between the H H signal and SM backgrounds. Analy-ses searching for non-resonant H H production via similar decay channelswereperformedpreviouslyinthesingle-leptonfinalstate

https://doi.org/10.1016/j.physletb.2019.135145

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

byATLASinsearchesforH HbbW W∗ [28] andinthedilepton channelbyCMSinsearchesforH HbbW W/bb Z Z∗ [31].

2. ATLASdetector

The ATLAS detector [37–39] is a general-purpose particle de-tectorwithforward–backwardsymmetriccylindricalgeometry.1 It includesaninnertrackingdetector(ID),immersedinanaxial mag-netic field,which providesprecision tracking ofchargedparticles over the rangeof |η|<2.5.Calorimeter systems with either liq-uidargonorscintillatortilesastheactivemediumprovideenergy measurements overthe rangeof|η|<4.9.The muon spectrome-ter(MS)ispositioned outsidethecalorimetersandincludesthree air-coretoroidalmagnets.TheMSiscomposedofseveraltypesof muondetectorswhichprovidetriggerandhigh-precisiontracking capabilitiesfor |η|<2.4 and |η|<2.7,respectively. A hardware-based trigger followed by a software-based trigger reduce the recordedeventratetoanaverageof1 kHz[40].

3. Datasetandsimulatedevents

Thedatausedforthissearchwerecollectedin pp collisionsat theLHCwithacentre-of-massenergyof13 TeV.Onlythose data collected during stableLHC beam conditions andwith all ATLAS detectorsubsystems fullyoperationalare used,andcorrespondto an integrated luminosity of 139 fb−1. The selection of candidate

eventswithoppositelychargedleptons isbasedonacombination of single-lepton and dilepton triggers.2 The use of a given

trig-gerdepends on the flavour and the transverse momenta (pT) of

thetwo(pT-ordered)leptonsintheevent,andonthedata-taking

period.Single-leptontriggerswith pT thresholds between22 and

28 GeVaregivenpriorityoverdileptontriggers.Thecriteriaofthe dileptontriggersarecheckedonlyifnosingle-leptontrigger crite-riaare metandhavepT thresholdsaslowas19(10) GeVforthe

leading (subleading)lepton.At leastone reconstructed lepton(or leptonpair)hastomatchacorrespondingtriggerobject,inwhich casetheir offline pT mustbehigherthanthetriggerthresholdby

atleast2 GeV,inordertobeontheefficiencyplateauofthe cor-respondingtrigger.

MonteCarlo(MC) simulation[41] isused tomodel thesignal processes and in the estimation of SM background processes. A GEANT4 [42] simulation ofthe ATLAS detectorwas used forthe backgroundprocesses.ThesignalMCsampleswereprocessedwith afastsimulationthatreliesonaparameterisationofthe calorime-terresponse[41] andon GEANT4 forthetrackingdetectors. Simu-latedeventsare reconstructedusingthesamealgorithms asused fordataandincludetheeffectsofmultiple pp interactionsinthe sameor neighbouringbunch crossings, collectively referred to as pile-up.The simulation of pile-up collisions was performed with Pythia 8.186 [43] using the ATLAS A3 set of tuned parameters [44] and the NNPDF2.3LO parton distribution function (PDF) set [45].Simulatedeventswere reweightedtomatchthedistribution ofpile-up interactions indata. Theaverage amount ofpile-up in thedatacollectedduring2015–2018was33.7.

Thesignal processes withggF-initiated non-resonant H H pro-ductioninthebbννfinalstateweregeneratedwithaneffective

1 ATLASusesaright-handed coordinatesystemwith itsoriginat thenominal

interactionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis pointsupwards.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φ beingtheazimuthalanglearoundthez-axis.Thepseudorapidityisdefinedinterms ofthepolarangleθasη= −ln tan(θ/2).Theangulardistanceismeasuredinunits ofR≡(η)2+ (φ)2.

2 Distinctsetsofsingle-leptontriggersareusedforelectronsandmuons.Dilepton

triggersrequireeithertwoelectrons,twomuons,oroneelectronandonemuon.

Lagrangianintheinfinitetop-quarkmassapproximation.The gen-erated signal eventswerereweighted withformfactors thattake into account the finite mass of the top-quark [46,47]. SM back-groundprocessesweresimulatedusingdifferentMCevent gener-ators.TheMCmatrixelement(ME)eventgeneratorsandPDFsets, the parton showering (PS) and the underlying event (UE) mod-elling, UE tuned parameters (tune), andthe accuracy ofthe the-oretical cross-sections usedto normalise thesimulated processes are summarised in Table 1.Each SM backgroundprocess is nor-malised to the best available respective theoretical cross-section. ThemassoftheHiggsbosonwassetto125 GeVforallsignaland backgroundprocesses.The H H branchingfractions(BF)predicted bytheSM [13] areusedforallHiggsbosondecays. MadSpin [48] was used to model top-quark spin correlations and EvtGen [49] was usedtomodelpropertiesofb- andc-hadrondecays for pro-cessesusing Pythia andforthesignalprocesses.

SM top-quarkpair production (t¯t) andthe production of sin-gletop-quarksinassociationwithW bosons(W t)contributewith significantbackgroundcontaminationinthebbνν finalstate.At next-to-leading-order (NLO) accuracy, there exists non-trivial in-terferencebetweenthesetwoprocessesthatmaybe enhancedin phase-spaceregionswhereintherearehighfractionsofW t events [50]. Twoschemes are typically used to remove the overlap be-tween these two processes: the so-called diagram removal (DR) and diagram subtraction (DS) schemes [51]; the former is used inthe presentanalysisto removetheoverlapping eventsandthe latterisusedtoevaluatethesystematicuncertaintyin correspond-ing background event yields. Because of these effects, the sum of the simulated t¯t and W t processes is considered as a single background process and referred to asthe ‘Top’ process in what follows.

4. Eventselectionandobjectdefinitions

Selectedeventsarerequiredtohaveatleastone pp interaction vertexreconstructedfromatleasttwoIDtrackswithpT>0.4 GeV.

Theprimaryvertexforeacheventisdefinedasthevertexwiththe highest(pT)2 ofassociatedID tracks[102].Eventsthat contain

atleastonejetarisingfromnon-collisionsourcesordetectornoise arerejectedbyasetofqualitycriteria[103].

Loose and signal criteria are defined in orderto select recon-structed lepton and jet candidates, where the latter is a subset of the former. Compared to the loose objects, the signal objects arerequiredtosatisfytighteridentificationorqualitycriteriathat are designedtosuppressbackgroundcontributions.Reconstructed loose(signal) electrons arerequiredto satisfy the‘Loose’(‘Tight’) likelihoodidentificationcriteria[104].Looseelectronsarerequired tohave pT>10 GeV andtobewithin|η|<2.47.Inaddition,

sig-nal electrons are required to be outside the range 1.37<|η|< 1.52,whichcorrespondstothetransitionregionsbetweenthe bar-rel and endcaps of the electromagnetic calorimeters. In order to reduce background contributions fromjets misidentified as elec-trons,signal electronsarerequiredtobeisolated accordingtothe ‘Gradient’ selection criteria [104]. Reconstructed loose andsignal muon candidatesare requiredtohave pT>10 GeV,to be within

|η|<2.4,andtosatisfy the‘Medium’identificationcriteria[105]. Additionally,signalmuonsarerequiredtobeisolatedaccordingto the‘FixedCutLoose’selectioncriteria[105].Signalelectron(muon) candidates are required to originate from the primary vertex by demanding that the significanceof thetransverse impact param-eter, definedasthe absolutevalue ofthetracktransverse impact parameter,d0,measuredrelativetotheprimaryvertex,dividedby

its uncertainty, σd0, satisfy |d0|/σd0 <5 (3). The difference z0 betweenthevalueofthez coordinateofthepointonthetrackat which d0 is definedandthe longitudinalpositionof theprimary

(3)

Table 1

ListoftheMEgeneratorsandPS/UEmodellingalgorithmsusedinthesimulation.AlternativegeneratorsandPS/UEmodels,usedtoestimatesystematicuncertainties,are showninparentheses.ThePDFsets,tunes,andtheperturbativeQCDhighest-orderaccuracy(leading-order,LO;next-to-leading-order,NLO;next-to-next-to-leading-order, NNLO;next-to-next-to-leading-logarithm,NNLL)usedforthenormalisationofthesamplesarealsoincluded.Thetop-quarkmassissetto172.5 GeV.

Process MEgenerator

(alternative)

ME PDF PS/UEmodel

(alternative)

UE tune Predictionorderfor

totalcross-section

tt [¯ 52,53] Powheg-Box v2[54,55] NNPDF3.0NLO [56] Pythia8.230 [57] A14 [58] NNLO + NNLL [59–65]

(MadGraph 5_aMC@NLO) (Herwig 7.0.4) (H7-MMHT14)

Single-tops-channel,W t [52,66,67]

Powheg-Box NNPDF3.0NLO Pythia8.230 A14 NLO + NNLL [68,69]

(MadGraph 5_aMC@NLO) (Herwig 7.0.4) (H7-MMHT14)

Single-topt-channel[52,66] Powheg-Box, MadSpin [48] NNPDF3.04fNLO Pythia8.230 A14 NLO + NNLL [70]

(MadGraph 5_aMC@NLO) (Herwig 7.0.4) (H7-MMHT14)

W,Z/γ∗+jets [71] Sherpa2.2.1 [72,73] NNPDF3.0NNLO Sherpa2.2.1 Sherpadefault NLO(LO)≤2(4) partons [74–78]

(Z/γ∗+jets) (MadGraph 5_aMC@NLO) (Pythia 8.230) (A14)

Diboson(W W,W Z,Z Z ) [79]

Sherpa2.2.2 NNPDF3.0NNLO Sherpa2.2.2 Sherpadefault NLO(LO)≤1(3) partons [75–78]

tt W ,¯ t¯t Z [80] MadGraph5_aMC@NLO [81] NNPDF3.0NLO Pythia8.210 A14 NLO [82,83]

tt H [¯ 80] MadGraph5_aMC@NLO NNPDF3.0NLO Pythia8.210 A14 NLO [84,85]

W H,Z H [86] Pythia8.186 [43] NNPDF2.3LO [45] Pythia8.186 A14 NNLO QCD + NLO EW [87–93]

ggFH [94] Powheg-Box v2NNLOPS [95] CT10 [96] Pythia8.212 AZNLO [97] NNNLO QCD + NLO EW [98]

SMH Hbbνν[99] MadGraph5_aMC@NLO 2.6.2 CT10 Herwig7.0.4 [100] H7-MMHT14 [101] NNLO [14–20]

vertexisrequiredtosatisfy|z0×sinθ|<0.5 mm,whereθ isthe

polarangleofthetrackwithrespecttothez-axis.

Jetsare reconstructed fromtopological clusters of energy de-positsinthe calorimeters[106] usingthe anti-kt algorithm[107, 108] with a radius parameter of R=0.4 and calibrated as de-scribed in Ref. [109]. Candidate loose jets are required to have pT>20 GeV. Signaljetsare requiredto have|η|<2.8 andmust

satisfypile-upsuppressionrequirementsbasedontheoutputofa multivariate classifier [110], which identifies jetsconsistent with a primary vertex in the region |η|<2.4 and pT <120 GeV.

The MV2c10multivariate algorithm [111] isused to identify jets containing b-hadrons (b-tagged jets). An MV2c10 working point with a b-tagging efficiency of 70%, estimated from simulated tt¯ events[112], is used. The b-tagged jetsmust have pT>20 GeV

and |η|<2.5. The momentum of b-tagged jets is adjusted us-ing the muon-in-jet correction, as described in Ref. [6], by ac-countingformomentumlossesduetomuonsoriginatingfrom in-flightsemileptonicb-hadrondecaysoccurringwithintheb-tagged jet.

The missing transverse momentum pmissT , the magnitude of whichis denotedby EmissT ,isconstructed fromthe negative vec-torial sumofthe transverse momenta ofcalibrated looseobjects intheevent.Anadditionaltermisincludedtoaccountforthe en-ergy ofID tracks that are matched to the primary vertexin the eventbutnottoanyoftheselectedlooseobjects[113].

Toavoiddouble-counting,looseobjectsaresubjecttothe over-lapremovalprocedure definedasfollows.Ifareconstructed elec-tron andmuon share a trackin theID, the electron is removed. However, if the muon sharing the track with the electron is calorimeter-tagged,3thenthemuonisremovedinsteadofthe

elec-tron.IfajetandanelectronarereconstructedwithinR=0.2 of eachother,thenthejetisremoved.Ifajetandamuonarewithin R=0.2 of eachother,andthe jethaslessthan threetracksor carrieslessthan50% ofthemuonpT,thenthejetisremoved;

oth-erwise,themuon isremoved.Electronsormuonsseparatedfrom theremainingjetsbyR<0.4 areremoved.

The analysis selects candidate events with exactly two oppo-sitelychargedsignalleptons,electronsormuons,andatleasttwo signal b-tagged jets. To enhance sensitivity to the signal process

3 Acalorimeter-taggedmuonhasonlyareconstructedtrackintheIDmatched

toenergydepositsinthecalorimetercompatiblewithaminimumionisingparticle, butnocorrespondingtracksegmentintheMS.

and to maximise rejection of the expected SM backgrounds, the analysisusesamultivariateapproachtoselectsignalevents.

5. Analysisstrategy

Theanalysisreliesontheuseofamultivariatediscriminant de-signedtoselectcandidateeventsconsistentwithnon-resonantH H production.Section 5.1describesthearchitectureandthetraining ofthe deep neural network(DNN) classifier fromwhich the dis-criminant is constructed. Section 5.2 describes the signal region selection criteria. Section 5.3describesthe final background esti-mationprocedure.

5.1. DeeplearningapproachtotargetH H

The discriminant uses the outputs of a DNN classifier that is builtusingthe Keras librarywith Tensorflow asabackend[114, 115] andusesthe lwtnn library[116] tointerfacewiththe analy-sissoftwareinfrastructureoftheATLASexperiment.Thesampleof eventsused fortraining iscomposedof equalnumbersof events fromthe signalandeach ofthe dominantbackgroundprocesses: Top(asdefinedinSection 3), Z/γ→ (Z-),and Z/γ∗→τ τ

(Z-τ τ) production.The signal sample used inthe training ofthe classifier containsonly the H HbbW W∗ componentduetoits larger BF relative to the H Hbbτ τ and H Hbb Z Z∗ compo-nents. However,the sumofall threesignal componentsis evalu-ated asthesignal when performing thestatisticalanalysis. Addi-tionally, all processes that make up the training sample (H HbbW W∗, Top,Z-,and Z-τ τ) havethe same weightduring the trainingoftheclassifier.Thetrainingsampleiscomposedof simu-latedcandidateeventswithm>20 GeV andhavingoneormore

b-taggedjets, whereeventswithexactly oneb-tagged jetare in-cludedtoincreasethenumberofeventsavailablefortraining.For thetrainingeventswithexactlyoneb-taggedjet,eachobservable thatrequiresatleasttwob-taggedjetsissettoitsmeanvalueas computedwiththefullsetoftraining eventsthatcontainatleast two b-taggedjets. Observablesthatrequiretwo b-taggedjetsare definedusingtheleadingtwob-taggedjets.Theclassifiercontains two fullyconnectedhiddenlayers each with250nodes.Rectified linearunit(ReLU)activations areusedforeachlayer[117].In or-dertoimprovetherobustnessofthetrainingandtoreduceeffects duetoovertraining, thereisa dropoutlayer thatrandomly drops 50% ofthe nodesbetween thetwo fullyconnected layers during training[118].Theclassifierproducesfouroutputsthatarepassed through asoftmaxactivation, constraining their sumto one[36].

(4)

Table 2

DescriptionofthevariablesusedasinputstotheDNNclassifier.

(pT,η,φ) pT,η, andφof the leptons, leading two jets (not necessarily b-tagged), and leading two b-tagged jets

Dilepton flavour Whether the event is composed of two electrons, two muons, or one of each (encoded as 3 booleans)

R,|φ| R and magnitude of theφbetween the two leptons

m, pT Invariant mass and the transverse momentum of the dilepton system

Emiss T , E

miss

T -φ Magnitude of the missing transverse momentum vector and itsφcomponent

|φ(pmiss

T ,pT)| Magnitude of theφbetween the pmissT and the transverse momentum of the dilepton system

|pmiss T +p



T| Magnitude of the vector sum of the p

miss

T and the transverse momentum of the dilepton system

Jet multiplicities Numbers of b-tagged and non-b-tagged jets

|φbb| Magnitude of theφbetween the leading two b-tagged jets

mbbT2 mT2[120] using the leading two b-tagged jets as the visible inputs and pmissT as invisible input

HT2 Scalar sum of the magnitudes of the momenta of the H→ ννand Hbb systems,

HT2= |pmissT +p ,0 T +p ,1 T | + |p b,0 T +p b,1 T | HR

T2 Ratio of HT2and scalar sum of the transverse momenta of the H decay products,

HR T2=HT2/(EmissT + |p ,0 T | + |p ,1 T | + |p b,0 T | + |p b,1 T |),

where p(Tb) ,0{1}are the transverse momenta of the leading {subleading} lepton (b-tagged jet)

Theresulting fouroutputs, each constrainedtovaluesbetween0 and1,arereferredtoaspi(i∈ {H H,Top,Z-,Z-τ τ}).Valuesofpi nearerto1indicatethattheeventlikelybelongstoclassi and val-uesnearerto 0indicate otherwise.The maindiscriminant inthe analysis, dH H, is constructed from the four pi and is defined as dH H=ln

 pH H/



pTop+pZ-+pZ-τ τ.

The H Hbbνν signal events are characterised by two distinct ‘Higgs hemispheres’. One hemisphere contains the two b-taggedjetsfromthe Hbb decayandit istypically opposite inthetransverseplanetothesecondhemispherethatcontainsthe two leptons and EmissT from the HW W/Z Z/τ τ decay. The final-stateobjectsintheSM backgrounds,theTop processin par-ticular,aredistributedmore uniformlywithin theeventandthey typically donot exhibit the same opposite hemispherestopology asthe H H signal. TheseHiggshemispheres thusprovide a topo-logicalcriterionthatdistinguishesthesignalfromthebackground and motivatesthe choice of input observables that are provided to theclassifier. Thirty-five such variables are provided asinputs totheclassifier, rangingfrommomentumcomponentsofthe visi-blefinal-stateobjectstoobservablesusingevent-wideinformation, andare constructed using only calibratedfinal state objects that havewell-understood uncertainties (Section6).A completelistis providedinTable2.Theevent-wideinputobservablesaresensitive tothepresenceofHiggshemispheresinthesignalandarelargely angularinnatureortakeadvantageofthefactthatthefinalstate objects from each of the Higgs bosons in the signal tend to be neartoeachother.TheobservablesHRT2 andmbbT2arenon-standard high-levelobservablesthatarenotstraightforwardfunctionsofthe momentaofthefinal-stateobjects.Byconstruction, HRT2 cantake valuesbetweenzeroandone;it peaksnearone forsignal andis more broadly distributed for background. The mbb

T2 observable is

definedsimilarlytotheMbb

T2 observableinRef. [119] butdoesnot

includethe final-stateleptons. As discussedin Ref. [119],forthe Top backgroundsmbbT2 generallyhasvaluesbelowthemassofthe top-quark dueto kinematic constraints while forthe Z/γ∗ pro-cesses, which have little-to-no ETmiss, mbbT2 is typically below 45 GeV. Theuseof dropoutregularisationduring thetraining ofthe classifier allows it to more effectively use the information con-tained inthe full set of inputspresented inTable 2 by reducing itssusceptibilitytoovertrainingeffectsthatmayotherwiseappear asa resultof usingsuch an extended input featurespace inthe casewherenosuchregularisationisperformed.Toverifythis, the performance of the classifier was checked using an independent sampleofeventsnotusedinthetrainingoftheclassifierandwas

found to be compatible to its performance when presentedwith thoseofthetrainingsample.

5.2. Signalselectioncriteria

To define signal selection criteria, the analysis relies on the invariant mass of the two leptons, m, and the invariant mass

of the two leading (pT-ordered)b-tagged jets, mbb. Due to spin-correlationeffectspresentintheHW W→ ννdecaywithin the dominant H HbbW W∗ signal process, the signal events exhibit values of m that are typically below 60 GeV. By

se-lecting low valuesof m,the signal purity can thereforebe

en-hanced while rejecting a large component of the SM Z boson and Top backgrounds. Additionally, mbb has a peak at the mass of the Higgsboson forthe signal process andthereforeprovides an effectivemeans to define selections inwhich the H H contri-bution isenhanced. The signalselection criteriathereforerequire m∈ (20,60)GeV andmbb∈ (110,140) GeV. The m>20 GeV

requirement is enforced in order to remove contamination from low-massresonancesandZ/γ∗processes.Thesignalselection cri-teria are further broken down into same-flavour (SF), i.e. ee or

μμ,ordifferent-flavour(DF),i.e.,regions.Separatingby dilep-tonflavourenhancestheseparationpowerbetweenthesignaland Z/γ∗ background; theformer hasroughly equal probabilitiesfor theSFandDFfinalstatesandthelatterleadspredominantlytoSF finalstates.

Inadditiontothem andmbb requirements,thesame-flavour anddifferent-flavoursignalregions, SR-SFandSR-DF,respectively, are defined by requiring high values of dH H and are presented in Table3. Thechosen threshold valuesofdH H>5.45 (5.55) for SR-SF (SR-DF) are found to maximise the expected sensitivity to thenon-resonant H H process.ThepredictedH Hbbνν signal yieldsinSR-SFandSR-DFareshowninTable3,andarecomposed of 90% H HbbW W∗, 9% H Hbbτ τ, and1% H Hbb Z Z∗. The predominanceof the H HbbW W∗ process over theother two is a result ofboth its larger overall BF andof the classifier havingbeentrainedonlyonthiscomponentofthesignal. 5.3. Backgroundestimation

As mentioned in Section 5.1, the dominant backgrounds ex-pected to contaminate the signal regions are the Top and Z/γ

(5)

Table 3

Analysisregionandbackgroundestimationsummary.Shownarethedefinitionsofthecontrol,validation,andsignalregionsusedintheanalysisaswellasthepredicted andobservedeventyieldsineachoftheseregions.Thepredictedyieldsareshownafterbackground-onlyfitstodatainthecontrol regions.The Top and Z/γ∗+ HF post-fitnormalisationfactors,obtainedfrombackground-onlyfitsinthecorrespondingcontrolregions,areshownatthebottomofthetable.Alsoshownisthepredicted H Hbbννsignalyieldineachoftheregions,multipliedbyafactorof20.OftheH H yieldinthesignalregions,90%comesfromtheH HbbW W∗process,9%from theH Hbbτ τprocess,and1%fromtheH Hbb Z Z∗process.Theuncertaintiesineachyieldandinthenormalisationcorrectionfactorsaccountforthestatisticaland systematicuncertaintiesdescribedinSection6,withthoseonthenormalisationcorrectionsdueonlytoexperimentalsources.

Region definitions Observable CR-Top VR-1 CR-Z+HF VR-2 SR-SF SR-DF Dilepton flavour DF SF DF or SF SF SF DF m[GeV] (20,60) (20,60) (81.2,101.2) (71.2,81.2)or(101.2,115) (20,60) (20,60) mbb[GeV] ∈ (/ 100,140) >140 (100,140) (100,140) (110,140) (110,140) dH H >4.5 >4.5 >0 >0 >5.45 >5.55 Event yields Data 108 171 852 157 16 9 Total Bkg. 108±10 162±10 852±29 147±11 14.9±2.1 4.9±1.2 Top 92±11 77±10 55±7 71±10 4.8±1.4 3.8±1.1 Z/γ∗+ HF 3.2±0.5 70±4 686±33 60±4 7.8±1.4 0.21±0.05 Other 13.1±3.4 14.2±1.9 110±13 15.8±1.2 2.3±0.5 0.9±0.4 H H (×20) 2.70±0.25 1.03±0.22 1.97±0.11 1.22±0.05 5.0±0.6 4.8±0.8 Post-fit normalisation μTop=0.79±0.10 μZ/γ∗+ HF=1.36±0.07 originating from heavy-flavour hadrons (bb, bc, or cc),

subse-quentlyreferredtoas Z/γ∗+ HF.SubdominantSM processes con-tributevia tt production¯ inassociation withan electroweak vec-torboson, single Higgsboson production (predominantly via the t¯t H mode), Z/γ∗ productioninassociationwithlight-flavourjets, andelectroweakdibosonprocesses.There is additionallya minor contributionofbackgroundevents fromnon-promptleptons pro-ducedin semileptonicdecays ofheavy-flavour hadronsandfrom misidentifiedelectroncandidatesarising fromphoton conversions andjets. Thisbackgroundisestimatedusingeventswitha same-charge lepton pair, following procedures described in Ref. [121], aftersubtracting the prompt-lepton contribution.The restof the SM background processes detailed in Table 1 are estimated pri-marilyusingsimulation.

Dedicatedcontrolregionsaredefinedtoderivedata-driven nor-malisationcorrectionsforthedominantbackgroundprocesses: CR-TopforTop andCR-Z+HFfor Z/γ∗+ HF.Thesenormalisation cor-rections havea uniform prior and are checkedin two validation regions, VR-1 and VR-2,enriched withevents from the Top and Z/γ∗+ HF processes. The control and validation regions are de-finedinTable3andarekinematically closetothesignal regions. CR-Top(CR-Z+HF)andVR-1(VR-2)aredefinedbyinvertingthembb (m)requirementsrelativetothoseofthesignalregionsbutretain

aselectionofthehighdH H regionsimilartothesignalregions.The dH H selectionswererelaxedtoincreasestatisticalpower, indepen-dentchecksshowedthatthisdidnothaveasignificantimpacton thepost-fitnormalisationcorrectionsinTable3.

VR-1keeps onlythose events withmbb>140 GeV, excluding the region mbb<100 GeV which is included in CR-Top, due to significantcontaminationofZ/γ∗+ HF events.Thecorrelations be-tweenthemandmbbobservablesanddH H afterthepreselection areobservedtobesmallanddonotpreventtheuseoftheformer twointheconstructionoftheanalysisregionsdefinedinTable3, asdH H is found to rely mainly on the information provided by theadditionalinputobservableslistedinTable2.Thisabsenceof strongcorrelationensuresthatthemeasurementsmadeinthetails ofdH H inthecontrol regionscan beextrapolatedtothoseinthe signalregions.

The Top background in the signal regions is expected to be composed of approximately equal contributions from the t¯t and single-top-quark W t process andthereforesusceptible to the

in-terferenceeffectsasdescribedinSection3.Forthisreason,CR-Top andthevalidationregions aredefinedsothattheyhavepredicted tt and¯ W t compositionssimilartothatofthesignalregions. This ensuresthatthenormalisationcorrectiondeterminedinthefitfor the Top background results in an accurate estimate of the com-bined tt and¯ W t process in the signal regions, accounting for potential interference effects present in data but not necessar-ily modelled in MC simulation. Table 3 compares the observed and predicted event yields, where the background event yields obtained after background-only fits in the corresponding control regions arealso shown.The post-fit normalisationcorrection fac-torsfortheTop and Z/γ∗+ HF backgroundprocesses,respectively

μTop=0.79±0.10 and μZ/γ∗+ HF=1.36±0.07,arealsoshownin

Table3.Theuncertaintiesin μTop and μZ/γ∗+ HFtakeintoaccount

thestatisticalandsystematicuncertaintiesduetotheexperimental sources,asdescribedinSection6.

Distributions of dH H in the control regions after performing background-only fits to data in the control regions and applying the Top and Z/γ∗+ HF normalisation corrections are shown in Fig. 2.In thecontrol andvalidation regions, good agreement be-tween the data and SM prediction provided by the post-fit MC simulation is observedfor theobservables relevant tothe analy-sis.

6. Systematicuncertainties

Theanalysisevaluatesseveralsourcesofsystematicuncertainty for the signal and background processes,which are classified as either experimental (detectororluminosity related) ortheoretical modelling uncertainties. Statistical uncertainties of the simulated eventsamples are alsotaken intoaccount. The main uncertainty componentsare summarisedinTable4.MC modelling uncertain-tiesintheTop andZ/γ∗+ HF backgroundestimatesaredominant, followedbystatisticalanddetectoruncertainties.

The normalisationcorrectionsofthe Top and Z/γ∗+ HF back-groundprocesses aredetermined primarily by thedata eventsin thecontrolregionswhenperformingthestatisticalanalysis.These correctionstakeintoaccount thestatisticalandsystematic uncer-taintiesduetotheexperimentalsources,asdescribedlaterinthis section. In addition, the systematic uncertainties in the theoret-ical modelling of these processes are applied as uncertainties in

(6)

Fig. 2. DistributionsofdH HinCR-Top(left)andCR-Z+HF(right).Distributionsareshownafterthefittodataunderthebackground-onlyhypothesisintheshowncontrol

regions.Theratioofthedatatothesumofthebackgroundsisshowninthelowerpanel.Thehatchedbandsindicatethecombinedstatisticalandsystematicuncertainty.

the corrected predictions in the signal regions using the follow-ingprocedures.TheuncertaintiesintheestimatedTop background eventyields dueto partonshower modellingare assessedasthe differencebetweenthepredictionsof Powheg-Box showeredwith Pythiaor Herwig,andthoseduetothechoiceofeventgenerator areassessedbycomparingthepredictionsof Powheg-Box or Mad-Graph5_aMC@NLO [122],bothshoweredwith Pythia.The uncer-tainties duetomissing higher-ordercorrectionsare estimatedby changingtherenormalisationandfactorisationscales(μr and μf,

respectively)upanddownbyafactoroftwo(8-pointsvariation). Theuncertaintiesduetothemodellingofinitial- andfinal-state ra-diation(ISRandFSR,respectively)inthegeneratorsusedto simu-latetheTop backgroundprocessesareevaluatedusingthemethod described in Ref. [122]. The Top background composition is var-iedwithin the uncertaintiesin thetheoretical predictionsforthe tt and¯ single-top-quark W t cross-sections [65,68,123].The uncer-tainty arising fromtheinterference betweentheNLO predictions fort¯t andW t processesisestimatedbytakingthedifference be-tweenthepredictedTop backgroundyields obtainedwiththeDR andDSschemes usedforthe NLO W t calculation [122].The un-certaintiesduetoPDFvariationsarecomputedastheenvelopeof thecentralvaluesofthenominalNNPDF3.0PDFsetandtheCT14, MMHT14,andPDF4LHC15_30PDFPDFsets[124].Alluncertainties exceptthoseinthescalevariations,cross-section,andinterference are considered as fully correlated between the tt and¯ W t pro-cesses.The Z/γ∗+ HF modellinguncertaintiesareestimatedusing thenominal Sherpa 2.2.1samplesbyconsideringdifferentmerging (CKKW-L)[125] andresummationscales.Theuncertaintiesdueto PDFvariationsandchangesin μr and μf arecalculatedusingthe

sameproceduresasfortheTop backgrounds.Anadditional uncer-tainty in the Z/γ∗ process is computedby takingthe difference betweenthenominal Sherpa 2.2.1sampleswithsamplesgenerated using MadGraph 5_aMC@NLO+Pythia8. The dominant uncertain-tiesinthetotalbackgroundestimatesinSR-SFarethe Z/γ∗+ HF modellinguncertainties(8%), primarilythat duetocomparisonof Sherpa2.2.1 and MadGraph 5_aMC@NLO,andthe partonshower uncertainty affecting the Top background process (5%). The un-certainties in the background estimates in SR-DF are dominated by the uncertainty due to the parton shower affecting the Top backgroundprocess (12%), theuncertainty in the Top normalisa-tioncorrection μTop (10%),theuncertaintyduetothecomparison

betweenthe generators usedforthe Top process (7.5%),andthe

uncertainty duetothe modellingofISR andFSR inthe Top pro-cess(5%).

Systematicuncertainties in thesignal acceptancedue to vary-ing μrand μf,aswellasPDF-induceduncertainties,areevaluated

usingthesameprocedureasfortheTop backgroundprocess.The resulting scale (PDF) uncertainties are <3% (<1%) in both sig-nal regions. Theuncertainty dueto thepartonshower modelling is computed by comparing Herwig7 with Pythia8, and is found to be 8% (9%)in SR-SF (SR-DF). The uncertainty inthe H H pro-ductioncross-section,evaluatedtobe5%,isincludedasan uncer-taintyin σSM(ggH H)whencomputingtheupperlimitsonthe cross-sectionratioinTable5.Thisvalue isthequadraturesumof the scale,PDF+αs,andtop masscontributionsasreportedby the LHCXSWG[20].

The uncertainties dueto experimental sources arise primarily from the mismeasurement of reconstructed objectmomenta and from the mismodelling of reconstruction efficiencies. These un-certainties includeuncertaintiesfromthemismodellingofthe jet energyscale(JES)[109] andjetenergyresolution(JER)[126]. Addi-tionaluncertainties forb-taggedjetsarisefromthemismodelling of the b-tagging efficiency [111] and from the mismodelling of the rates at which charm- and light-flavoured jets are selected asb-taggedjets [127,128].Lepton-relateduncertaintiesarisefrom themismodellingoftheelectron[104] (muon[105])reconstructed energy (momentum) measurements, as well as in the mismod-elling of their reconstruction and identification efficiencies [104, 105].TheEmissT scaleandresolution[113] uncertainties,aswellas uncertainties fromthe mismodellingof pile-up,trigger efficiency and luminosity, are also taken into account. The uncertainty in thecombined2015–2018integratedluminosity is1.7% [129], ob-tainedusingtheLUCID-2detector[130] fortheprimaryluminosity measurements.Thecombinedeffectoftheexperimentalsourcesof systematicuncertaintyinthepredictedbackgroundyields is sum-marised in Table 4 and is dominated by the JER, with all other contributionsfoundtobenegligible.

7. Results

Inordertoextractinformationaboutthe H Hbbνν signal cross-section, acountingexperimentis performedwitha profile-likelihood fit [131] simultaneously across the CR-Top, CR-Z+HF, SR-SF,andSR-DF regionsusing thepredictedandobservedevent counts ineach region asinputs. The Top and Z/γ∗+ HF

(7)

normal-Table 4

BreakdownofthemainuncertaintycomponentsinthebackgroundestimatesinthetwosignalregionsfortheTop,Z/γ∗+ HF,and allother(“Other”)backgrounds.Theuncertaintycomponentsassociatedwiththetotalbackgroundestimateinthesignalregions (thesumofTop, Z/γ∗+ HF,andOther)islistedunder“TotalBkg.”.AsintheupperhalfofTable3,alluncertaintiesareshown “post-fit”.Thepercentagesshowthesizeoftheuncertaintyrelativetotheexpectedbackgroundineachcolumnanduncertainties canbecorrelated,notnecessarilyaddinginquadraturetothetotaluncertaintyineachcolumnoracrosseachrow.Uncertaintiesin thepost-fitnormalisationfactors,μTopandμZ/γ∗+ HF,areonlyapplicablefortheTop andZ/γ∗+ HF processes.

Uncertainty [%] SR-SF SR-DF

Top Z/γ∗+ HF Other Total Bkg. Top Z/γ∗+ HF Other Total Bkg.

Total uncertainty 28 18 20 14 30 26 41 25

Theoretical 21 15 17 11 20 15 40 17

Experimental 12 <5 8 <5 15 17 8 12

MC statistics 8 8 6 8 13 13 7 11

μTop,μZ/γ∗+ HF 13 5 n/a 5 13 5 n/a 10

Fig. 3. Distributionsofmbb(left),m(middle),andthediscriminantdH H(right).Thedistributionsareshownafterthefittodatainthecontrolregionsunderthe

background-onlyhypothesis.EachdistributionincludesboththeSFandDFeventsandimposessignalselectionrequirementsonallquantitiesexcepttheonebeingplotted,butthe requirementondH HhasbeenrelaxedtodH H>5 forthedistributionsofmbb andm.TheH Hbbνν signal(“H H ”)isoverlaidandhasitscross-sectionscaledbya

factorof20relativetotheSMpredictionforvisualisationpurposes.Theratioofthedatatothesumofthebackgroundsisshowninthelowerpanelofeachfigure.The hatchedbandsindicatethecombinedstatisticalandsystematicuncertainty.

Table 5

ObservedandexpectedupperlimitsontheggF-initiatednon-resonantH H productioncross-sectionat95% CLand theirratiostotheSMprediction(σSM(ggH H)=31.05±1.90 fb[13–20]).The±1σ and±2σ variationsabout theexpectedlimitarealsoshown.UncertaintiesintheSMcross-sectionaretakenintoaccountwhencomputing theupperlimitsonthecross-sectionratio.

−2σ −1σ Expected +1σ +2σ Observed

σ(ggH H)[pb] 0.5 0.6 0.9 1.3 1.9 1.2

σ(ggH H) /σSM(ggH H) 14 20 29 43 62 40

isation correctionsare also extractedfromthis fit andare found to differ negligibly from those presented in Table 3. All sources of systematic and statistical uncertainty in the signal and back-groundmodels are implemented asdeviations fromthe nominal model,scaledby nuisanceparameters thatare profiled inthefit. Thep-valuecorrespondingtothebackground-onlyhypothesis, giv-ingthe probability thatthe datainthe signal regionsbe atleast asincompatiblewiththe background-onlyhypothesis asthat ob-servedinSR-SFandSR-DF,isp0=0.15 andcorrespondsto1.05σ

significance.Distributions ofmbb,m,and dH H after performing background-only fits to data in the control regions and apply-ing the Top and Z/γ∗+ HF normalisation corrections are shown inFig. 3.The signal selection criteriaare imposed on all observ-ablesshowninFig.3apartfromtheonebeingplotted,exceptthat thedH H requirementforthembb andm distributions isrelaxed

todH H>5.No significantexcessofeventsover theexpectedSM backgroundisobservedandupperlimitsareseton non-resonant Higgsbosonpairproductionat95% confidencelevel(CL)usingthe CLs method [132]. Table 5 presentsthese upperlimitsand

com-parisonswiththeSM prediction.Theobserved(expected)limitat

95% CLis1.2 (0.9)pb,correspondingto40 (29)timestheSM pre-diction.

8. Conclusions

Asearchfornon-resonantHiggsbosonpairproduction,as pre-dictedbytheSM, ispresentedinthefinalstatewithatleasttwo b-taggedjetsandexactlytwoleptonswithoppositeelectriccharge, where one of the Higgs bosons decays to bb and the other de-cays to either W W∗, Z Z∗,or τ τ. The analysisuses pp collision datarecorded at√s=13 TeVby theATLAS detectoratthe LHC, corresponding to an integratedluminosity of139 fb−1. The data

areinagreementwiththepredictionsfortheSMbackground pro-cesses. An observed (expected) 95% CLupper limit is set on the cross-sectionfortheproductionofHiggsbosonpairs, correspond-ing to 40 (29) times the SM prediction. These limits are com-parable to the previous leading searches for non-resonant Higgs boson pairproduction performedby the ATLAS and CMS experi-ments.

(8)

Acknowledgements

We thankCERN for the very successfuloperation of theLHC, aswell asthe support stafffrom ourinstitutions without whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq andFAPESP, Brazil; NSERC, NRC and CFI,Canada; CERN; CONICYT,Chile; CAS, MOSTandNSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece;RGC,Hong KongSAR,China;ISF andBenoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands;RCN, Norway;MNiSW andNCN, Poland;FCT, Portu-gal; MNE/IFA, Romania; MES of Russia andNRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;DST/NRF,SouthAfrica;MINECO,Spain;SRCand Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF,UnitedStatesofAmerica. Inaddition, in-dividualgroupsandmembershavereceivedsupport fromBCKDF, Canarie,CRCandComputeCanada,Canada;COST,ERC,ERDF, Hori-zon 2020, andMarie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammesco-financedbyEU-ESFandtheGreekNSRF,Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain;TheRoyalSocietyandLeverhulmeTrust,UnitedKingdom.

The crucial computingsupport fromall WLCG partners is ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresourcesarelisted in Ref. [133].

References

[1]ATLASCollaboration,Observationofanewparticleinthesearchforthe Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,arXiv:1207.7214 [hep-ex].

[2]CMSCollaboration,Observationofanewbosonatamassof125GeVwith theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,arXiv:1207.7235 [hep-ex].

[3]ATLASCollaboration,StudyofthespinandparityoftheHiggsbosonin di-bosondecayswiththeATLASdetector,Eur.Phys.J.C75(2015)476,arXiv: 1506.05669 [hep-ex],Erratum:Eur.Phys.J.C76(2016)152.

[4]ATLASCollaboration,TestofCPinvarianceinvector-bosonfusionproduction oftheHiggsbosonusingtheOptimalObservablemethodintheditaudecay channelwiththeATLASdetector,Eur.Phys.J.C76(2016)658,arXiv:1602. 04516 [hep-ex].

[5]ATLASCollaboration, ObservationofHiggsbosonproduction inassociation withatopquarkpairattheLHCwiththeATLASdetector,Phys.Lett.B784 (2018)173,arXiv:1806.00425 [hep-ex].

[6]ATLASCollaboration,ObservationofHbb decays¯ andVHproductionwith theATLASdetector,Phys.Lett.B786(2018)59,arXiv:1808.08238 [hep-ex].

[7]ATLAS,CMSCollaborations,MeasurementsoftheHiggsbosonproductionand decayratesandconstraintsonitscouplingsfromacombinedATLASandCMS analysisoftheLHCpp collisiondataat√s=7 and8TeV,J.HighEnergy Phys.08(2016)045,arXiv:1606.02266 [hep-ex].

[8]CMSCollaboration,Observationoft¯t H production,Phys.Rev.Lett.120(2018) 231801,arXiv:1804.02610 [hep-ex].

[9]CMSCollaboration,ObservationofHiggsbosondecaytobottomquarks,Phys. Rev.Lett.121(2018)121801,arXiv:1808.08242 [hep-ex].

[10]CMSCollaboration,MeasurementsoftheHiggsbosonwidthandanomalous HVVcouplingsfromon-shellandoff-shellproductioninthefour-leptonfinal state,Phys.Rev.D99(2019)112003,arXiv:1901.00174 [hep-ex].

[11]CMSCollaboration,ConstraintsonanomalousHVVcouplingsfromthe pro-ductionofHiggsbosonsdecayingtoτ leptonpairs,arXiv:1903.06973 [hep -ex],2019.

[12]CMS Collaboration, Combined measurements ofHiggs boson couplings in proton–protoncollisionsat √s=13 TeV,Eur.J.Phys.C79 (5)(2018)421, arXiv:1809.10733 [hep-ex].

[13]D.deFlorian,etal.,HandbookofLHCHiggscrosssections:4.Decipheringthe natureoftheHiggssector,arXiv:1610.07922 [hep-ph],2016.

[14]S. Dawson, S. Dittmaier,M. Spira,NeutralHiggs-boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012, arXiv: hep-ph/9805244 [hep-ph].

[15]S.Borowka,etal.,Higgsbosonpairproductioningluonfusionat next-to-leadingorderwithfulltop-quarkmassdependence,Phys.Rev.Lett.117 (1) (2016)012001,arXiv:1604.06447 [hep-ph].

[16]J.Baglio,etal.,GluonfusionintoHiggspairsatNLOQCDandthetopmass scheme,Eur.Phys.J.C79(2019)459,arXiv:1811.05692 [hep-ph].

[17]D.deFlorian,J.Mazzitelli,Higgsbosonpairproduction at next-to-next-to-leading orderinQCD,Phys.Rev.Lett.111(2013)201801,arXiv:1309.6594 [hep-ph].

[18]D.Y. Shao,C.S.Li,H.T. Li,J. Wang,ThresholdresummationeffectsinHiggs bosonpairproductionattheLHC,J.HighEnergyPhys.07(2013)169,arXiv: 1301.1245 [hep-ph].

[19]D.deFlorian,J.Mazzitelli,Higgspairproductionat next-to-next-to-leading logarithmicaccuracyattheLHC,J.HighEnergyPhys.09(2015)053,arXiv: 1505.07122 [hep-ph].

[20]M.Grazzini,etal.,HiggsbosonpairproductionatNNLOwithtopquarkmass effects,J.HighEnergyPhys.05(2018)059,arXiv:1803.02463 [hep-ph].

[21]G.C.Branco,etal.,Theoryandphenomenologyoftwo-Higgs-doubletmodels, Phys.Rep.516(2012)1,arXiv:1106.0034 [hep-ph].

[22]A.Azatov,R.Contino,G.Panico,M.Son,Effectivefieldtheoryanalysisof dou-bleHiggsbosonproductionviagluonfusion,Phys.Rev.D92(2015)035001, arXiv:1502.00539 [hep-ph].

[23]P.Huang,A.Joglekar,M.Li,C.E.M.Wagner,Correctionstodi-Higgsboson pro-ductionwithlightstopsandmodifiedHiggscouplings,Phys.Rev.D97(2018) 075001,arXiv:1711.05743 [hep-ph].

[24]ATLASCollaboration,SearchforHiggsbosonpairproductionintheγ γbb fi-¯

nalstatewith13TeVpp collisiondatacollectedbytheATLASexperiment,J. HighEnergyPhys.11(2018)040,arXiv:1807.04873 [hep-ex].

[25]ATLASCollaboration,SearchforresonantandnonresonantHiggsbosonpair production inthe bb¯τ+τ− decaychannelinpp collisions at√s=13 TeV withtheATLASdetector,Phys.Rev.Lett.121(2018)191801,arXiv:1808.00336 [hep-ex],Erratum:Phys.Rev.Lett.122 (8)(2019)089901.

[26]ATLASCollaboration,SearchforHiggsbosonpairproductionintheγ γW W

channelusingpp collisiondatarecordedat√s=13 TeVwiththeATLAS de-tector,Eur.Phys.J.C78(2018)1007,arXiv:1807.08567 [hep-ex].

[27]ATLAS Collaboration, Search for Higgs boson pair production in the

W W(∗)W W(∗) decay channelusingATLAS datarecordedats=13 TeV, J.HighEnergyPhys.05(2019)124,arXiv:1811.11028 [hep-ex].

[28]ATLASCollaboration,SearchforHiggsbosonpairproductioninthebbW W¯ ∗

decaymodeat√s=13 TeVwiththeATLASdetector,J.HighEnergyPhys.04 (2019)092,arXiv:1811.04671 [hep-ex].

[29]ATLASCollaboration,SearchforpairproductionofHiggsbosonsinthebbb¯ b¯

finalstateusingproton–protoncollisionsat√s=13 TeVwiththeATLAS de-tector,J.HighEnergyPhys.01(2019)030,arXiv:1804.06174 [hep-ex].

[30]CMSCollaboration,SearchforHiggsbosonpairproductionineventswithtwo bottomquarksandtwotauleptonsinproton–protoncollisionsat √s=13 TeV,Phys.Lett.B778(2018)101,arXiv:1707.02909 [hep-ex].

[31]CMSCollaboration, Searchfor resonant andnonresonant Higgsboson pair productioninthebb¯νν finalstateinproton–protoncollisionsat√s=13 TeV,J.HighEnergyPhys.01(2018)054,arXiv:1708.04188 [hep-ex].

[32]CMSCollaboration,SearchforHiggsbosonpairproductionintheγ γbb final¯

stateinpp collisionsat√s=13 TeV,Phys.Lett.B788(2019)7,arXiv:1806. 00408 [hep-ex].

[33]CMSCollaboration,SearchfornonresonantHiggsbosonpairproductioninthe

bbb¯ b final¯ stateat√s=13 TeV,J.HighEnergyPhys.04(2019)112,arXiv: 1810.11854 [hep-ex].

[34]ATLAS Collaboration,Combinationofsearches forHiggsbosonpairsin pp

collisionsat√s=13 TeVwiththeATLASdetector,arXiv:1906.02025 [hep-ex], 2019.

[35]CMSCollaboration, Combinationof searches forHiggs bosonpair produc-tioninproton-protoncollisionsat√s=13 TeV,Phys.Rev.Lett.122(2019) 121803,arXiv:1811.09689 [hep-ex].

[36] I.Goodfellow,Y.Bengio,A.Courville,DeepLearning,MITPress,2016,http:// www.deeplearningbook.org.

[37]ATLASCollaboration,TheATLASexperimentattheCERNLargeHadron Col-lider,J.Instrum.3(2008)S08003.

[38] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report,

ATLAS-TDR-19, URL: https://cds.cern.ch/record/1291633, 2010, Addendum: ATLAS-TDR-19-ADD-1,URL,https://cds.cern.ch/record/1451888,2012.

(9)

[39]B.Abbott,etal.,ProductionandintegrationoftheATLASinsertableB-layer,J. Instrum.13(2018)T05008,arXiv:1803.00844 [physics.ins-det].

[40]ATLASCollaboration,PerformanceoftheATLAStriggersystemin2015,Eur. Phys.J.C77(2017)317,arXiv:1611.09661 [hep-ex].

[41]ATLASCollaboration,TheATLASsimulationinfrastructure,Eur.Phys.J.C70 (2010)823,arXiv:1005.4568 [physics.ins-det].

[42]S.Agostinelli,etal.,GEANT4- asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250.

[43]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1, Com-put.Phys.Commun.178(2008)852,arXiv:0710.3820 [hep-ph].

[44] ATLASCollaboration,ThePythia8A3tunedescription ofATLAS minimum

bias and inelastic measurements incorporating the Donnachie–Landshoff

diffractivemodel, ATL-PHYS-PUB-2016-017, URL: https://cds.cern.ch/record/ 2206965,2016.

[45]R.D.Ball,etal.,PartondistributionswithLHCdata,Nucl.Phys.B867(2013) 244,arXiv:1207.1303 [hep-ph].

[46]R.Frederix,etal.,Higgspairproduction attheLHCwithNLOand parton-showereffects,Phys.Lett.B732(2014)142,arXiv:1401.7340 [hep-ph].

[47]G.Degrassi, P.P.Giardino, R. Gröber,Onthe two-loop virtualQCD correc-tionstoHiggsbosonpairproductionintheStandardModel,Eur.Phys.J.C 76(2016)411,arXiv:1603.00385 [hep-ph].

[48]P.Artoisenet,R.Frederix,O.Mattelaer,R.Rietkerk,Automaticspin-entangled decaysofheavyresonancesinMonteCarlosimulations,J.HighEnergyPhys. 03(2013)015,arXiv:1212.3460 [hep-ph].

[49]D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. MethodsA462(2001)152.

[50]ATLASCollaboration,Probingthe quantuminterferencebetweensinglyand doublyresonanttop-quarkproductioninpp collisionsat√s=13 TeVwith the ATLAS detector,Phys. Rev. Lett.121(2018) 152002, arXiv:1806.04667 [hep-ex].

[51]S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproductionin associationwith a W boson,J. High Energy Phys. 07 (2008)029,arXiv:0805.3067 [hep-ph].

[52] ATLAS Collaboration, Improvements in t¯t modellingusing NLO+PS Monte

CarlogeneratorsforRun2,ATL-PHYS-PUB-2018-009,URL:https://cds.cern.ch/ record/2630327,2018.

[53]J.M.Campbell,R.K.Ellis,P.Nason,E.Re,Top-pairproductionand decayat NLOmatchedwithpartonshowers,J.HighEnergyPhys.04(2015)114,arXiv: 1412.1828 [hep-ph].

[54]S.Alioli,P.Nason, C.Oleari,E.Re,A generalframework forimplementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High EnergyPhys.06(2010)043,arXiv:1002.2581 [hep-ph].

[55]S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod, J.HighEnergy Phys.11(2007) 070,arXiv:0709.2092 [hep-ph].

[56]R.D.Ball,etal.,PartondistributionsfortheLHCRunII,J.HighEnergyPhys. 04(2015)040,arXiv:1410.8849 [hep-ph].

[57]T.Sjöstrand,etal.,AnintroductiontoPYTHIA8.2,Comput.Phys.Commun. 191(2015)159,arXiv:1410.3012 [hep-ph].

[58] ATLASCollaboration, ATLAS Pythia8tunes to7TeVdata,

ATL-PHYS-PUB-2014-021,URL:https://cds.cern.ch/record/1966419,2014.

[59]M.Beneke,P.Falgari,S.Klein,C.Schwinn,Hadronictop-quarkpairproduction withNNLLthresholdresummation,Nucl.Phys.B855(2012)695,arXiv:1109. 1536 [hep-ph].

[60]M.Cacciari,M.Czakon,M. Mangano,A.Mitov,P.Nason, Top-pair produc-tionathadroncolliderswithnext-to-next-to-leadinglogarithmicsoft-gluon resummation,Phys.Lett.B710(2012)612,arXiv:1111.5869 [hep-ph].

[61]P.Bärnreuther, M.Czakon,A.Mitov, Percentlevelprecisionphysicsat the Tevatron:firstgenuineNNLOQCDcorrectionstoqq¯→t¯t+X ,Phys.Rev.Lett. 109(2012)132001,arXiv:1204.5201 [hep-ph].

[62]M.Czakon,A.Mitov,NNLOcorrectionstotop-pairproductionathadron col-liders:theall-fermionicscatteringchannels,J.HighEnergyPhys.12(2012) 054,arXiv:1207.0236 [hep-ph].

[63]M.Czakon,A.Mitov,NNLOcorrectionstotoppairproductionathadron col-liders:thequark-gluonreaction,J.HighEnergyPhys.01(2013)080,arXiv: 1210.6832 [hep-ph].

[64]M.Czakon,A.Mitov,Top++:aprogramforthe calculationofthetop-pair cross-sectionathadroncolliders,Comput.Phys.Commun.185(2014)2930, arXiv:1112.5675 [hep-ph].

[65]M.Czakon,P.Fiedler,A.Mitov,Totaltop-quarkpair-productioncrosssection athadroncollidersthroughO(α4

S),Phys.Rev.Lett.110(2013)252004,arXiv:

1303.6254 [hep-ph].

[66]S.Alioli,P.Nason,C.Oleari,E.Re,NLOsingle-topproductionmatchedwith showerinPOWHEG:s- andt-channelcontributions,J.HighEnergyPhys.2009 (2009)111,arXiv:0907.4076 [hep-ph],Erratum:J.HighEnergyPhys.(2010) 11.

[67]E.Re,Single-topWt-channelproductionmatchedwithpartonshowersusing thePOWHEGmethod,Eur.Phys.J.C71(2011)1547,arXiv:1009.2450 [hep -ph].

[68]N.Kidonakis,Two-loopsoftanomalousdimensionsforsingletopquark as-sociated production with a W− or H−, Phys. Rev. D 82(2010) 054018, arXiv:1005.4451 [hep-ph].

[69]N.Kidonakis, Next-to-next-to-leadinglogarithmresummationfor s-channel singletopquarkproduction,Phys.Rev.D81(2010)054028,arXiv:1001.5034 [hep-ph].

[70]N.Kidonakis,Next-to-next-to-leading-ordercollinearand softgluon correc-tions for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503,arXiv:1103.2792 [hep-ph].

[71] ATLASCollaboration,ATLASsimulationofbosonplusjetsprocessesinRun2, ATL-PHYS-PUB-2017-006,URL:https://cds.cern.ch/record/2261937,2017. [72]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02

(2009)007,arXiv:0811.4622 [hep-ph].

[73]E.Bothmann,etal.,EventgenerationwithSherpa2.2,arXiv:1905.09127 [hep -ph],2019.

[74]S.Catani,L.Cieri,G.Ferrera,D.deFlorian,M.Grazzini,Vectorboson produc-tionatHadroncolliders:afullyexclusiveQCDcalculationat next-to-next-to-leadingorder,Phys.Rev.Lett.103(2009)082001,arXiv:0903.2120 [hep-ph].

[75]T.Gleisberg,S.Höche,Comix,anewmatrixelementgenerator,J.HighEnergy Phys.12(2008)039,arXiv:0808.3674 [hep-ph].

[76]F.Cascioli,P.Maierhöfer,S.Pozzorini,Scatteringamplitudeswithopenloops, Phys.Rev.Lett.108(2012)111601,arXiv:1111.5206 [hep-ph].

[77]S.Schumann,F.Krauss,APartonshoweralgorithmbasedonCatani-Seymour dipolefactorisation, J. High Energy Phys. 03 (2008) 038, arXiv:0709.1027 [hep-ph].

[78]S.Höche,F.Krauss,M.Schönherr,F.Siegert,QCDmatrixelements+parton showers:theNLOcase,J.HighEnergyPhys.04(2013)027,arXiv:1207.5030 [hep-ph].

[79] ATLASCollaboration,Multi-bosonsimulationfor13TeVATLASanalyses, ATL-PHYS-PUB-2017-005,URL:https://cds.cern.ch/record/2261933,2017. [80] ATLAS Collaboration,Modellingofthett H and¯ tt V¯ (V=W,Z)processesfor

s=13 TeVATLASanalyses,ATL-PHYS-PUB-2016-005,URL:https://cds.cern. ch/record/2120826,2016.

[81]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simu-lations,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301 [hep-ph].

[82]J.M.Campbell,R.K.Ellis,ttW¯ ±productionanddecayatNLO,J.HighEnergy Phys.07(2012)052,arXiv:1204.5678 [hep-ph].

[83]M.V. Garzelli, A. Kardos, C.G. Papadopoulos, Z. Trocsanyi, t¯tW± and t¯t Z

hadroproductionatNLOaccuracyinQCDwithpartonshowerand hadroniza-tioneffects,J.HighEnergyPhys.11(2012)056,arXiv:1208.2665 [hep-ph].

[84]S.Frixione, V.Hirschi, D.Pagani,H.-S.Shao, M.Zaro,Weakcorrectionsto Higgshadroproductioninassociationwithatop-quarkpair,J.HighEnergy Phys.09(2014)065,arXiv:1407.0823 [hep-ph].

[85]S.Frixione,V.Hirschi,D.Pagani,H.-S.Shao,M.Zaro,ElectroweakandQCD correctionstotop-pairhadroproductioninassociationwithheavybosons,J. HighEnergyPhys.06(2015)184,arXiv:1504.03446 [hep-ph].

[86] ATLAS Collaboration, Evaluation of theoretical uncertainties for

simpli-fied template cross section measurements of V-associated production of

the Higgs boson, ATL-PHYS-PUB-2018-035, URL: http://cds.cern.ch/record/ 2649241,2018.

[87]M.L.Ciccolini,S.Dittmaier,M.Krämer,Electroweakradiativecorrectionsto associatedWHandZHproductionathadroncolliders,Phys.Rev.D68(2003) 073003,arXiv:hep-ph/0306234 [hep-ph].

[88]O. Brein, A. Djouadi, R. Harlander, NNLO QCD corrections to the Higgs-strahlungprocessesathadroncolliders,Phys.Lett.B579(2004)149,arXiv: hep-ph/0307206 [hep-ph].

[89]G.Ferrera,M.Grazzini,F.Tramontano,AssociatedHiggs-W-bosonproduction athadroncolliders:afullyexclusiveQCDcalculationatNNLO,Phys.Rev.Lett. 107(2011)152003,arXiv:1107.1164 [hep-ph].

[90]O.Brein,R.Harlander,M.Wiesemann,T.Zirke,Top-quarkmediatedeffects inhadronicHiggs-Strahlung,Eur.Phys.J.C72(2012)1868,arXiv:1111.0761 [hep-ph].

[91]G.Ferrera,M.Grazzini,F.Tramontano,Higher-orderQCDeffectsforassociated WHproductionanddecayattheLHC,J.HighEnergyPhys.04(2014)039, arXiv:1312.1669 [hep-ph].

[92]G.Ferrera,M.Grazzini,F.Tramontano,AssociatedZHproductionathadron colliders:thefullydifferentialNNLOQCDcalculation,Phys.Lett.B740(2015) 51,arXiv:1407.4747 [hep-ph].

[93]J.M.Campbell,R.K.Ellis,C.Williams,AssociatedproductionofaHiggsboson atNNLO,J.HighEnergyPhys.06(2016)179,arXiv:1601.00658 [hep-ph].

[94] ATLASCollaboration, Study ofhigher-order QCD corrections inthe gg

HV V process,ATL-PHYS-PUB-2016-006,URL:https://cds.cern.ch/record/ 2127515,2016.

[95]K.Hamilton,P.Nason,E.Re,G.Zanderighi,NNLOPSsimulationofHiggsboson production,J.HighEnergyPhys.10(2013)222,arXiv:1309.0017 [hep-ph].

[96]H.-L.Lai,et al.,Newpartondistributions forcolliderphysics, Phys.Rev.D 82 (7)(2010)074024,arXiv:1007.2241 [hep-ph].

(10)

[97]ATLASCollaboration,MeasurementoftheZ/γ∗bosontransversemomentum distributioninpp collisionsat√s=7 TeVwiththeATLASdetector,J.High EnergyPhys.09(2014)145,arXiv:1406.3660 [hep-ex].

[98]C.Anastasiou,etal.,HighprecisiondeterminationofthegluonfusionHiggs bosoncross-sectionat theLHC,J.HighEnergy Phys.05(2016)058,arXiv: 1602.00695 [hep-ph].

[99] ATLAS Collaboration,Validation ofsignalMonteCarlo eventgeneration in

searches for Higgsboson pairs with the ATLAS, detector,

ATL-PHYS-PUB-2019-007,URL:https://cds.cern.ch/record/2665057,2019.

[100]J.Bellm,etal.,Herwig7.0/Herwig++3.0releasenote,Eur.Phys.J.C76(2016) 196,arXiv:1512.01178 [hep-ph].

[101]L.A.Harland-Lang,A.D.Martin,P.Motylinski,R.S.Thorne,Partondistributions intheLHCera:MMHT2014PDFs,Eur.Phys.J.C75(2015)204,arXiv:1412. 3989 [hep-ph].

[102] ATLASCollaboration,VertexreconstructionperformanceoftheATLAS detec-torat√s=13 TeV,ATL-PHYS-PUB-2015-026,URL:https://cds.cern.ch/record/ 2037717,2015.

[103] ATLASCollaboration,Selectionofjetsproducedin13TeVproton–proton col-lisionswiththeATLASdetector,ATLAS-CONF-2015-029,URL:https://cds.cern. ch/record/2037702,2015.

[104]ATLASCollaboration,Electron andphotonperformancemeasurementswith

theATLAS detectorusingthe 2015-2017LHCproton-protoncollisiondata, arXiv:1908.00005 [hep-ex],2019.

[105]ATLASCollaboration,MuonreconstructionperformanceoftheATLASdetector inproton–protoncollisiondataat√s=13 TeV,Eur.Phys.J.C76(2016)292, arXiv:1603.05598 [hep-ex].

[106]ATLASCollaboration,TopologicalcellclusteringintheATLAScalorimetersand itsperformanceinLHCRun1,Eur.Phys.J.C77(2017)490,arXiv:1603.02934 [hep-ex].

[107]M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,arXiv:0802.1189 [hep-ph].

[108]M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,arXiv:1111.6097 [hep-ph].

[109]ATLASCollaboration,Jetenergyscalemeasurementsandtheirsystematic un-certaintiesinproton–protoncollisionsat√s=13 TeVwiththeATLAS detec-tor,Phys.Rev.D96(2017)072002,arXiv:1703.09665 [hep-ex].

[110]ATLASCollaboration,Performanceofpile-upmitigationtechniquesforjetsin

pp collisionsat√s=8 TeVusingtheATLASdetector,Eur.Phys.J.C76(2016) 581,arXiv:1510.03823 [hep-ex].

[111]ATLAS Collaboration,ATLAS b-jet identificationperformance and efficiency

measurementwith tt events¯ in pp collisionsat √s=13 TeV,arXiv:1907. 05120 [hep-ex],2019.

[112]ATLASCollaboration,Measurementsofb-jettaggingefficiencywiththeATLAS detectorusingtt events¯ at√s=13 TeV,J.HighEnergyPhys.08(2018)089, arXiv:1805.01845 [hep-ex].

[113]ATLASCollaboration, Performanceofmissingtransversemomentum

recon-structionwiththeATLASdetectorusingproton–protoncollisionsat√s=13 TeV,Eur.Phys.J.C78(2018)903,arXiv:1802.08168 [hep-ex].

[114] F.Chollet,etal.,Keras,https://keras.io,2015.

[115] M.Abadi,etal.,TensorFlow:large-scalemachinelearningonheterogeneous systems,Softwareavailablefromtensorflow.org,URL:http://tensorflow.org/, 2015.

[116] D.H. Guest,et al.,lwtnn/lwtnn:version 2.8.1,URL:https://doi.org/10.5281/ zenodo.2583131,2019.

[117] V. Nair, G.E. Hinton, Rectified linear units improve restricted

Boltz-mann machines, in: Proceedings of the 27th International Conference

on International Conference on Machine Learning, ICML’10, Omnipress,

ISBN 978-1-60558-907-7,2010,p. 807,URL:http://dl.acm.org/citation.cfm?id= 3104322.3104425.

[118] N.Srivastava,G.Hinton,A.Krizhevsky,I.Sutskever,R.Salakhutdinov,Dropout: asimplewaytopreventneuralnetworksfromoverfitting,J.Mach.Learn.Res. 15(2014)1929,URL:http://jmlr.org/papers/v15/srivastava14a.html.

[119]CMSCollaboration, Measurement ofthe topquarkmass inthe dileptonic

t¯t decaychannelusing the massobservables Mb, MT 2,and Mbv in pp

collisionsat √s=8 TeV,Phys.Rev.D96(2017)032002,arXiv:1704.06142 [hep-ex].

[120]A.Barr,C.Lester,P.Stephens,Avariableformeasuringmassesathadron col-liderswhenmissingenergyisexpected;m(T 2):thetruthbehindthe glam-our,J.Phys.G29(2003)2343,arXiv:hep-ph/0304226 [hep-ph].

[121]ATLAS Collaboration,Measurementofthet¯t productioncross-sectionusing

eventswithb-taggedjetsinpp collisionsat√s=13 TeVwiththeATLAS detector,Phys.Lett.B761(2016)136,arXiv:1606.02699 [hep-ex].

[122] ATLAS Collaboration,Simulationoftop-quarkproductionfor theATLAS ex-perimentat√s=13 TeV,ATL-PHYS-PUB-2016-004,URL:https://cds.cern.ch/ record/2120417,2016.

[123] ATLAS,CMSCollaborations,CombinationofATLASandCMSresults onthe

massofthetop-quarkusingupto4.9fb−1ofs=7 TeVLHCdata,

ATLAS-CONF-2013-102,URL:https://cds.cern.ch/record/1601811,2013.

[124]J.Butterworth,etal.,PDF4LHCrecommendationsforLHCRunII,J.Phys.G43 (2016)023001,arXiv:1510.03865 [hep-ph].

[125]L.Lönnblad,S.Prestel,Mergingmulti-legNLOmatrixelementswithparton showers,J.HighEnergyPhys.03(2013)166,arXiv:1211.7278 [hep-ph].

[126] ATLASCollaboration,Jetcalibrationandsystematicuncertaintiesforjets re-constructedintheATLASdetectorat√s=13 TeV,ATL-PHYS-PUB-2015-015, URL:https://cds.cern.ch/record/2037613,2015.

[127] ATLAS Collaboration, Measurement of b-tagging efficiency of c-jets intt¯

eventsusingalikelihoodapproachwith the ATLASdetector,

ATLAS-CONF-2018-001,URL:https://cds.cern.ch/record/2306649,2018.

[128] ATLASCollaboration,Calibrationoflight-flavourb-jetmistaggingratesusing

ATLASproton–protoncollisiondataat√s=13 TeV,ATLAS-CONF-2018-006,

URL:https://cds.cern.ch/record/2314418,2018.

[129] ATLAS Collaboration,Luminositydeterminationinpp collisionsat √s=13 TeVusingtheATLASdetectorattheLHC,ATLAS-CONF-2019-021,URL:https:// cds.cern.ch/record/2677054,2019.

[130]G.Avoni,etal.,ThenewLUCID-2detectorforluminositymeasurementand monitoringinATLAS,J.Instrum.13(2018)P07017.

[131]G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554,arXiv:1007.1727 [physics.data-an],Erratum:Eur.Phys.J.C73(2013)2501.

[132]A.L.Read,Presentation ofsearch results:theCLS technique,J.Phys. G28

(2002)2693.

[133] ATLAS Collaboration, ATLAS computing acknowledgements,

ATL-GEN-PUB-2016-002,URL:https://cds.cern.ch/record/2202407.

TheATLASCollaboration

G. Aad101, B. Abbott128,D.C. Abbott102, A. Abed Abud70a,70b,K. Abeling53,D.K. Abhayasinghe93, S.H. Abidi167, O.S. AbouZeid40,N.L. Abraham156, H. Abramowicz161,H. Abreu160,Y. Abulaiti6, B.S. Acharya66a,66b,o,B. Achkar53, S. Adachi163,L. Adam99,C. Adam Bourdarios5, L. Adamczyk83a, L. Adamek167, J. Adelman120, M. Adersberger113, A. Adiguzel12c,S. Adorni54, T. Adye144,

A.A. Affolder146, Y. Afik160,C. Agapopoulou132, M.N. Agaras38,A. Aggarwal118,C. Agheorghiesei27c, J.A. Aguilar-Saavedra140f,140a,ai,F. Ahmadov79,W.S. Ahmed103,X. Ai18, G. Aielli73a,73b, S. Akatsuka85, T.P.A. Åkesson96,E. Akilli54, A.V. Akimov110,K. Al Khoury132, G.L. Alberghi23b,23a, J. Albert176,

M.J. Alconada Verzini161,S. Alderweireldt36, M. Aleksa36,I.N. Aleksandrov79,C. Alexa27b, D. Alexandre19, T. Alexopoulos10,A. Alfonsi119,F. Alfonsi23b,23a,M. Alhroob128, B. Ali142, G. Alimonti68a, J. Alison37, S.P. Alkire148,C. Allaire132, B.M.M. Allbrooke156,B.W. Allen131, P.P. Allport21, A. Aloisio69a,69b, A. Alonso40, F. Alonso88,C. Alpigiani148,A.A. Alshehri57,

M. Alvarez Estevez98,D. Álvarez Piqueras174, M.G. Alviggi69a,69b, Y. Amaral Coutinho80b,A. Ambler103, L. Ambroz135, C. Amelung26, D. Amidei105,S.P. Amor Dos Santos140a, S. Amoroso46,C.S. Amrouche54, F. An78, C. Anastopoulos149,N. Andari145,T. Andeen11, C.F. Anders61b, J.K. Anders20,

A. Andreazza68a,68b,V. Andrei61a,C.R. Anelli176,S. Angelidakis38, A. Angerami39,

Figure

Fig. 1. Feynman diagrams for leading order ggF production of Higgs boson pairs: the
Fig. 2. Distributions of d H H in CR-Top (left) and CR-Z+HF (right). Distributions are shown after the fit to data under the background-only hypothesis in the shown control regions
Fig. 3. Distributions of m bb (left), m  (middle), and the discriminant d H H (right)

References

Related documents

In summary, PLGA MSPs loaded with clarithromycin was suggested as drug delivery system for sustained drug release to enhance bone regeneration in the calvaria defect model used

Flera pedagoger sa att barn kan, att de har kompetenser eller kunskaper, andra pedagoger trodde att man måste utveckla kompetenserna i barnen, en tyckte att eftersom barn är unika

Sjuksköterskorna i studierna av Kerr, Lu m.fl (2014) och Kullberg, Sharp m.fl (2018) menade att en förutsättning för att patienten skulle kunna vara delaktig var att hen visste hur

Vad det gäller vilken inverkan dialog mellan elever och lärare har på elevernas erhållande av kunskap så tycks det råda en total konsensus mellan styrdokumenten, Selberg, Dysthe

Ett par SF, framförallt sådana som representerar vinteridrotter, hade haft svårt att hantera Handslaget med tanke på att de ansåg att satsningen inte var anpassat

Svaren på fråga sex är alla ganska lika, och inga av svaren skiljer sig markant från varandra. Samtliga lärare svarade att de lägger fokus i sin undervisning om religioner

Klienterna har möjlighet att erhålla hjälp och stöd i form av bistånd enligt SoL (2001:453) som är det yttersta skyddsnätet för individer i samhället. Biståndet avser

Aspekter som bidrar till elevernas delaktighet och som respondenterna markerade i intervjuerna är studiero i klassrummet, lärarens engagemang, när läraren förklarar så