• No results found

Measurement of charged-particle event shape variables in inclusive root(s)=7 TeV proton-proton interactions with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of charged-particle event shape variables in inclusive root(s)=7 TeV proton-proton interactions with the ATLAS detector"

Copied!
25
0
0

Loading.... (view fulltext now)

Full text

(1)

Measurement of charged-particle event shape variables in inclusive

p

ffiffiffiffiffiffi

ðsÞ

¼ 7 TeV

proton-proton interactions with the ATLAS detector

G. Aad et al.* (ATLAS Collaboration)

(Received 30 July 2012; published 6 August 2013)

The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor, and transverse sphericity, each defined using the final-state charged particles’ momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged-particle transverse momentum, charged-particle multiplicity, and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.

DOI:10.1103/PhysRevD.88.032004 PACS numbers: 12.38.t, 13.75.n

I. INTRODUCTION

Event shape variables describe the structure of hadronic events and the properties of their energy flow. In this analysis, three event shape observables [1,2] are measured: the transverse thrust, the thrust minor, and the transverse sphericity, each built from the momenta of charged particles using tracking information from proton-proton collisions at pffiffiffis¼ 7 TeV collected with the ATLAS detector [3]. Event shape observables are among the sim-plest experimentally measured quantities and, depending on the events being considered, may have sensitivity to both the perturbative and nonperturbative aspects of quan-tum chromodynamics (QCD).

Event shapes in hadronic collisions were investigated first at the Intersecting Storage Rings [4] and at the SppS [5,6] at CERN to examine the emergence of jets, and later at Tevatron [7] to study the dependence of the event shape observables on the transverse energy of the leading jet and on contributions from the underlying event. At the Large Hadron Collider (LHC), event shape observables were recently studied in inclusive interactions [8] and multijet events [9,10]. In eþe and ep deep-inelastic scattering experiments, the study of the energy flow in hadronic final states has allowed tests of the predictions of perturbative QCD, and the extraction of a precise value for the strong coupling constant S [11–17].

The study of event shape observables in inclusive inelastic collisions plays an important role in under-standing soft-QCD processes at LHC center-of-mass energies [18], where ‘‘soft’’ refers to interactions with

low momentum transfer between the scattering particles. Soft interactions cannot be reliably calculated from theory and are thus generally described by phenomenological models, usually implemented in Monte Carlo (MC) event generators. These models contain many parameters whose values are a priori unknown and thus need to be constrained by measure-ments. Inclusive and semi-inclusive observables sensi-tive to soft-QCD processes have been measured at the LHC by the ATLAS [19–21], CMS [22,23], and ALICE [24,25] collaborations. The measurements presented in this paper can further constrain the event generator models, which encapsulate our understanding of these soft processes.

In this analysis, the event shape observables are constructed from six or more primary charged particles in the pseudorapidity range jj < 2:5 and with transverse momentum pT> 0:5 GeV [26]. Primary charged particles are defined as those with a mean proper lifetime  > 30 ps, produced either directly in the pp interaction or from the subsequent decay of particles with a shorter lifetime. The particle level refers to particles as they emerge from the proton–proton interaction. The detector level corre-sponds to tracks as measured after interaction with the detector material, and includes the detector response. The results are corrected for detector effects, using simulation, to obtain distributions of the event shape variables defined at particle level which can be directly compared to MC models.

This paper is organized as follows: SectionIIdefines the event shape variables; the detector is described in Sec.III; Sec. IV discusses the MC models used in this analysis; Secs.VandVI respectively describe the event selections and background contributions. The correction of the data back to particle level and estimation of the systematic uncertainties are described in Secs. VII and VIII; the results are discussed in Sec.IXand finally the conclusions are presented in Sec.X.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

II. EVENT SHAPE OBSERVABLES

In particle collisions, event shape observables describe the geometric properties of the energy flow in the final state. A single event shape variable can distinguish in a continuous way between configurations in which all the particles are flowing (forward and backward) along a single axis and configurations where the energy is distrib-uted uniformly over the 4 solid angle. If defined as a ratio of measured quantities, the corresponding systematic un-certainties may be small.

In hadron collisions, where the center-of-mass frame of the interaction is usually boosted along the beam axis, event shape observables are often defined in terms of the transverse momenta, which are Lorentz invariant under such boosts. Different formulations of event shape ob-servables are possible; the most intuitive is to calculate the event shape from all particles in an event. These are denoted by directly global event shapes [1,2]. In hadron collider experiments, it is not usually possible to detect all particles in an event due to the finite detector acceptance, limited at small scattering angles by the presence of the beam pipe. Event shapes which include only particles from a restricted phase space in pseudorapidity, , are called central event shapes; in this analysis charged par-ticles within the range jj < 2:5 are used. These central event shapes are nevertheless sensitive to nonperturbative effects at low momentum transfer and provide useful information about the event structure for development of models of proton–proton collisions. The thrust is one of the most widely used event shape variables. The trans-verse thrust for a given event is defined as

T? ¼ max ^n P ij ~pT;i ^nj P ij ~pT;ij ; (1)

where the sum is performed over the transverse momenta ~

pT;i of all charged particles in the event. The thrust axis ^nTis the unit vector ^n that maximizes the ratio in Eq. (1). The transverse thrust ranges from T?¼ 1 for a perfectly balanced, pencil-like, dijet topology to T?¼ hj coscji ¼ 2= for a circularly symmetric distribution of particles in the transverse plane, where c is the azimuthal angle between the thrust axis and each respective particle. It is convenient to define the complement of T?, ? ¼ 1  T?, to match the behavior of many event shape variables, which vanish in a balanced dijet topology.

The thrust axis ^nTand the beam axis ^z define the event plane. The transverse thrust minor measures the out-of-event-plane energy flow:

TM¼ P

iPj ~pT;i ^nmj

ij ~pT;ij

; ^nm¼ ^nT ^z:

The transverse thrust minor is 0 for a pencil-like event in azimuth and 2= for an isotropic event.

Another widely used event shape variable is the sphe-ricity, S, which describes the event energy flow based on the momentum tensor,

S ¼ P ipipi P ij ~pij2 ;

where the Greek indices represent the x, y, and z compo-nents of the momentum of the particle i. The sphericity of the event is defined in terms of the two smallest eigenval-ues of this tensor, 2and 3:

S ¼3

2ð2þ 3Þ:

The sphericity has values between 0 and 1, where a balanced dijet event corresponds to S ¼ 0 and an isotropic event to S ¼ 1. Sphericity is essentially a mea-sure of the summed p2T with respect to the event axis [27,28], where the event axis is defined as the line passing through the interaction point and oriented along the eigenvector associated with the largest eigenvalue, 1. Similarly to transverse thrust, the transverse spheric-ity, S?, is defined in terms of the transverse components only: Sxy¼X i 1 j ~pT;ij2 p2x;i px;ipy;i px;ipy;i p2y;i 2 4 3 5 and S?¼ 2 xy 2 xy1 þ  xy 2 ;

where xy2 < xy1 are the two eigenvalues of Sxy. The following distributions are measured:

(i) normalized distributions: ð1=NevÞdNev=dch

?,

ð1=NevÞdNev=dTMch,ð1=NevÞdNev=dSch?; (ii) average values:hch

?i, hTMchi and hSch?i as functions of Nch andPpT;

where Nev is the number of events with six or more charged particles within the selected kinematic range; Nch is the number of charged particles in an event; P

pT is the scalar sum of the transverse momenta of the charged particles in the event. The event shape ob-servables ch?, TMch, and Sch? are defined as above, with the superscript indicating that they are constructed from charged particles. The three normalized differential dis-tributions are studied separately for

(i) 0:5 GeV < plead

T  2:5 GeV, (ii) 2:5 GeV < pleadT  5:0 GeV, (iii) 5:0 GeV < pleadT  7:5 GeV, (iv) 7:5 GeV < plead

T  10:0 GeV, (v) plead

T > 10 GeV, where plead

T is the transverse momentum of the highest pT (leading) charged particle.

(3)

III. THE ATLAS DETECTOR

The ATLAS detector [3] covers almost the full solid angle around the collision point with layers of tracking detectors, calorimeters, and muon chambers. The compo-nents that are relevant for this analysis are the tracking detectors. The inner tracking detector has full coverage in azimuthal angle  and covers the pseudorapidity range jj < 2:5. It consists of a silicon pixel detector (pixel), a semiconductor tracker (SCT), and for jj < 2:0, a straw-tube transition radiation tracker. These detectors, immersed in a 2 T axial magnetic field, are located at a radial distance from the beam line of 50.5–150 mm, 299–560 mm, and 563–1066 mm, respectively. They pro-vide position resolutions typically of 10 m, 17 m, and 130 m for the r- coordinate, and of 115 m and 580 m for the z coordinate in the case of the pixel and SCT detectors.

The measurements presented here use events triggered by the minimum-bias trigger scintillator (MBTS) system [29]. The MBTS detectors are mounted at each end of the tracking detector at z ¼ 3:56 m and are segmented into eight sectors in azimuth and two concentric rings in pseu-dorapidity (2:09 < jj < 2:82 and 2:82 < jj < 3:84). The MBTS trigger was configured to require at least one hit above threshold from either side of the detector in coincidence with a fast beam-pickup device ensuring that the event is compatible with a bunch crossing.

IV. MONTE CARLO MODELS

Monte Carlo (MC) event samples are used to compute the detector acceptance and reconstruction efficiency, de-termine background contributions, correct the measure-ments for detector effects, and to calculate systematic uncertainties. Finally, different phenomenological models implemented in the MC generators are compared to the data corrected to the particle level.

ThePYTHIA6[30],PYTHIA8[31], andHERWIG++[32,33] event generators were used to produce the simulated event samples for the analysis. These generators implement

leading-logarithm parton shower models matched to leading-order matrix element calculations with different hadronization models and orderings for the parton shower. ThePYTHIA 6andPYTHIA 8generators use a hadronization model based upon fragmentation of color strings and a pT-ordered or virtuality-ordered shower, whereas the

HERWIG++ generator implements a cluster hadronization

scheme with parton showering ordered by emission angle. The PYTHIA8 generator uses a multiparton interaction

(MPI) model interleaved with both initial-state and final-state radiation, and all three processes compete against each other for emission phase space in the resulting evo-lution. The HERWIG++ UE7-2 tune employs color recon-nection. Different settings of model parameters, tuned to reproduce the existing experimental data, were used for the MC generators. Table I shows the different MC models used in this paper.

The reference model for this analysis is chosen to be

PYTHIA6 AMBT1. Samples generated with this tune were passed through the ATLAS detector and trigger simula-tions [44] based on GEANT4 [45] and then reconstructed and analyzed using the same procedure and software that are used for the data. Reconstructed MC events are then used to correct the data for detector effects. The sample generated with an older version ofHERWIG++, 2.5.0 with no

additional tuning, was also passed through the full detector simulation and the analysis chain for systematic studies of unfolding corrections.

V. EVENT AND TRACK SELECTION

The data used for the analysis presented here were collected in April 2010 with a minimal prescale factor for the minimum-bias trigger. The only further requirement for selecting the data sample is that the MBTS trigger and all inner detector subsystems were at nominal operating conditions. In each event the reconstructed vertices are ordered by the Pp2

T over the tracks assigned to each vertex, and the vertex with the highest Pp2

T is taken as the primary interaction vertex of the event. To reduce the TABLE I. Details of the MC models used. It is emphasized that the tunes use data from different experiments to constrain different processes, but for brevity only the data which had the most weight in each specific tune are shown. Here ‘‘LHC’’ indicates data taken atffiffiffi

s p

¼ 7 TeV, althoughpffiffiffis¼ 900 GeV data were also included in ATLAS tunes, with much smaller weight. Some tunes are focused on describing the minimum-bias (MB) distributions better, while the rest are tuned to describe the underlying event (UE) distributions, as indicated. Authors indicates a tune performed by the MC developers.

Generator Version Tune PDF Focus Data From

PYTHIA6 6.425 AMBT1 [34] MRST LO** [35] MB Early LHC ATLAS

PYTHIA6 6.425 AMBT2B [36] CTEQ6L1 [37] MB LHC ATLAS

PYTHIA6 6.421 DW [38] CTEQ5L [39] UE Tevatron CDF

PYTHIA6 6.425 Z1 [40] CTEQ5L UE LHC CMS

PYTHIA8 8.157 A2 [41] MSTW2008LO [42] MB LHC ATLAS

HERWIG++ 2.5.1 UE7-2 [43] MRST LO** UE LHC Authors

HERWIG++ 2.5.0 Default MRST LO** UE LHC Authors

(4)

contribution from beam-related backgrounds and decays of long-lived particles, and to minimize the systematic un-certainties, events are rejected if they contain any other vertex reconstructed with four or more tracks.

If there is only one vertex in the event, or if any additional vertex in the event has three or fewer tracks, all tracks from the event that pass the track selection (described below) are retained. After this selection, the fraction of events with more than one proton–proton interaction in the same bunch crossing (referred to as pileup) is found to be approximately 0.1% and this residual contribution is therefore neglected. The average number of pp interactions per bunch crossing during this data-taking period was less than 0.15, indicating a negligible pileup contribution. The MC samples used have no pileup contribution.

Events are required to contain at least six tracks that fulfill the following criteria:

(i) pT> 0:5 GeV; (ii) jj < 2:5;

(iii) a minimum of one pixel and six SCT hits;

(iv) a hit in the innermost pixel layer, if the correspond-ing pixel module was active;

(v) transverse and longitudinal impact parameters with respect to the primary vertex, jd0j < 1:5 mm and jz0j sin < 1:5 mm;

(vi) a track-fit probability 2> 0:01 for tracks with pT> 10 GeV in order to remove mismeasured tracks.

Tracks with pT> 0:5 GeV are less prone than lower-pT tracks to inefficiencies and systematic uncertainties result-ing from interactions with the material inside the trackresult-ing volume.

After event selection, the analysis is based on ap-proximately 17  106 events containing approximately

300  106 tracks. For the PYTHIA6 generator and for the

PYTHIA8 generator, which has a harder diffractive model than the former, the contribution to the event shape ob-servables from diffractive events is negligible when requir-ing six or more tracks in the event.

The pTdistributions of all tracks and of the leading track in the selected event are shown in Fig.1. The fraction of events in each pleadT bin is shown in TableII.

VI. BACKGROUND CONTRIBUTIONS A. Backgrounds

Backgrounds comprise beam-induced events, due to beam-gas and beam-material interactions, as well as non-beam backgrounds from cosmic-ray interactions and de-tector noise. The contribution of these background events remaining after the event selection is estimated using the number of pixel hits not associated with reconstructed tracks. This multiplicity includes unassigned hits from low-pT looping tracks, but is dominated at higher multi-plicities by hits from charged particles produced in inelas-tic interactions of protons with the residual gas inside the beam pipe. The vertex requirement removes most of the beam background events and the residual contribution is below 0.1%. As the level of background is very low, no explicit background subtraction is performed.

B. Secondary track fraction

The primary charged-particle multiplicities are mea-sured from selected tracks after correcting for the fractions of secondary and poorly reconstructed tracks in the sample. The potential background from fake tracks is found from MC studies to be less than 0.01% [19].

Nonprimary tracks arise predominantly from hadronic interactions, photon conversions to positron–electron pairs in the detector material, and decays of long-lived particles. For pT> 0:5 GeV the contribution from photon conver-sions is small. The systematic uncertainty from secondary decays is included in the uncertainties associated with the tracking performance.

VII. CORRECTION TO PARTICLE LEVEL To facilitate comparison with theoretical predictions and other measurements, the event shape distributions for charged particles are presented at particle level, after

[GeV] T p -1 10 × 5 1 2 3 4 5 10 20 102 ] -1 [GeV T dp trk dN ev N 1 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1

10 Data 2010 - detector level

T track p T leading track p ATLAS = 7 TeV s

FIG. 1 (color online). The distribution of the transverse mo-mentum of all tracks and of the leading transverse momo-mentum track in data at detector level. The uncertainties shown are statistical. Where not visible, the statistical error is smaller than the marker size.

TABLE II. Percentage of events in each plead T bin. plead

T bin [GeV] Percentage of events

0.5–2.5 68.45

2.5–5.0 28.20

5.0–7.5 2.65

7.5–10.0 0.47

(5)

correction for trigger and event selection efficiencies, as well as detector resolution effects. A two-step correction procedure is used: first, corrections for event selection efficiency are applied, followed by an additional bin-by-bin correction to account for tracking inefficiencies, pos-sible bin migrations, and any remaining detector effects.

A. Event-level correction

Trigger and vertexing efficiencies are taken from a previous analysis using the same data sample [19]. The efficiency of the MBTS trigger is determined from data using a control trigger and found to be fully efficient for the analysis requirement of at least six tracks. The vertex reconstruction efficiency is also measured in data by taking the ratio of the number of triggered events with a recon-structed vertex to the total number of triggered events. This ratio is also found to be very close to unity. The total correction applied to account for events lost due to the trigger and vertex requirements is less than 1% and it varies very weakly with the number of tracks associated with the primary vertex.

B. Bin-by-bin correction

The event shape observables presented here are sensitive to changes in the configuration of the selected tracks. Applying average track efficiencies to individual tracks on a track-by-track basis and reweighting tracks distorts the event shape distribution. A more robust approach is to apply bin-by-bin corrections to find the event shape distri-bution at particle level. Such a bin-by-bin correction is applied to all distributions after applying the event-level efficiency corrections described above.

The correction factors Cbin are evaluated separately in each bin for each event shape observable,

Cbin¼ V

Gen bin

VbinReco;eff corr;

where VGen

bin and VbinReco;eff corr represent the generator-level MC value of the bin content and the reconstructed MC value after applying the event-level efficiency corrections for each bin, respectively. The corrected value of the bin content for an observable is found by multiplying the measured bin content by the corresponding correction factor. The bin sizes are chosen to be consistent with the resolution of the correction procedure.

The correction factors are calculated using the two different models implemented in PYTHIA6 AMBT1 and HERWIG++. This correction accounts for bin-by-bin migra-tions and tracking inefficiencies. For each distribution, the unfolding factor is typically within10% of unity for most of the range. It is very close to unity for the average values, except at the highest PpT. The difference from unity becomes more pronounced at the statistically limited edges of the distributions. The correction factors for the inclusive

ch τ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 corr. factor 1 1.2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 ch τ d ev dN ev N 1 1 2 3 4 5 6 7 8 ATLAS = 7 TeV s 2.5 GeV ≤ lead T 0.5 GeV < p Data 2010 (efficiency corrected)

PYTHIA 6 AMBT1 reco (eff. corr.) PYTHIA 6 AMBT1 generated Herwig++ reco (eff. corr.) Herwig++ generated (a) ch M T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 corr. factor 0.4 0.6 0.8 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ch M dT ev dN ev N 1 1 2 3 4 5 6 ATLAS = 7 TeV s 2.5 GeV ≤ lead T 0.5 GeV < p Data 2010 (efficiency corrected)

PYTHIA 6 AMBT1 reco (eff. corr.) PYTHIA 6 AMBT1 generated Herwig++ reco (eff. corr.) Herwig++ generated (b) ch S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 corr. factor 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ch dS ev dN ev N 1 0.5 1 1.5 2 2.5 3 3.5 4 ATLAS = 7 TeV s 2.5 GeV ≤ lead T 0.5 GeV < p Data 2010 (efficiency corrected)

PYTHIA 6 AMBT1 reco (eff. corr.) PYTHIA 6 AMBT1 generated Herwig++ reco (eff. corr.) Herwig++ generated

(c)

FIG. 2 (color online). The generated and reconstructed MC distributions of the complement of transverse thrust, the thrust minor, and the transverse sphericity are shown in the top part of each plot for the lowest plead

T range. The

correction factors are shown in the lower parts for PYTHIA6 AMBT1 and the HERWIG++ default tune. The data are shown with only the efficiency corrections and statistical uncertain-ties. Where not visible, the statistical error is smaller than the marker size.

(6)

distributions of the three event shape observables are shown in the bottom panels of Fig.2for the two MC event generators mentioned above. Although the two MC gen-erators have different distributions, the bin-by-bin correc-tion factors are similar.

VIII. SYSTEMATIC UNCERTAINTIES Systematic uncertainties on the measured distributions are assessed with the following sources of uncertainty included:

Tracking: The largest of the systematic uncertainties for the tracking inefficiency [19] is found to be due to the material description in the inner detector. This is deter-mined to produce a relative uncertainty of 2% in the efficiency in the barrel region, rising to 7% for 2:3 < jj < 2:5. The contribution of the propagated uncertainty is found to be less than 1% of the content in each bin of the shape distributions.

Bin-by-bin correction model dependence: The remain-ing contributions to the overall systematic uncertainty result from the specific correction method used in this analysis. The bin-by-bin corrections in general depend on the number of charged particles and their pTdistributions, so there is some dependence on the event generators. In order to estimate this uncertainty, it is necessary to com-pare different plausible event generators, which deviate significantly from each other, but still give predictions close to the data. The corrected results using the two very different PYTHIA6 AMBT1 and HERWIG++ models

are compared. As these two generators use very different soft-QCD models the difference is assigned as a systematic uncertainty. The generated and reconstructed distributions are shown in Fig.2for the two MC event generators and compared with the detector-level data.

Statistical uncertainty of bin-by-bin correction: In addi-tion to the model-dependent uncertainty in the bin-by-bin correction, there is also a statistical uncertainty due to the finite size of the MC sample. The statistical fluctuations of the PYTHIA6 AMBT1 correction factor are found to be negligible for most of each distribution, increasing to a few percent in the tails of the distributions. This is also added to the overall systematic uncertainty estimate.

The systematic uncertainty due to the small number of residual multiple proton–proton interactions is estimated to be negligible.

All the above mentioned systematic uncertainties are added in quadrature. Table IIIlists representative values

for the various contributions to the systematic uncertainty in the content of each bin for all the event shape observ-ables away from the edges of the distributions.

IX. RESULTS AND DISCUSSION

The distributions of the complement of the transverse thrust, thrust minor, and transverse sphericity are presented in Figs.3–5, in different plead

T ranges. The behavior of the average values of the shape variables as functions of the charged-particle multiplicity, Nch, and transverse momen-tum scalar sum, PpT, is presented in Fig.6. Predictions from the PYTHIA6 AMBT2B, PYTHIA6 DW, PYTHIA6 Z1,

PYTHIA8A2, andHERWIG++UE7-2 models are also shown. AMBT2B is chosen instead of AMBT1, which was used to correct the data back to the particle level because it shows a slight improvement in reproducing the distribu-tions of charged-particle transverse momentum and multiplicity [36].

The distributions shown in Figs. 3–5indicate a preva-lence of spherical events in the lower plead

T ranges. A slight shift toward less spherical events and a broadening of the distributions is observed for events starting with plead

T >

7:5 GeV in Fig.3(d) for ch? and in Fig. 4(d)for TMch. For both variables, a transition to less spherical events is seen for plead

T > 10 GeV in Figs.3(e)and4(e). The distribution of transverse sphericity is more sensitive to the increase of pleadT , and shows a marked shift toward less spherical events starting at pleadT > 5:0 GeV in Fig.5(c). The average value of the distributions, the rms width, and the skewness of the distributions are given in Table IV, which supports this observation. Mean values of the complement of transverse thrust and the transverse thrust minor are observed to initially rise with increasing pleadT , with their maximum value in the range 2:5 < plead

T < 5 GeV, before decreasing. A similar trend is observed by the ALICE Collaboration, which has measured the transverse sphericity distribution selecting charged particles with jj < 0:8, in inelastic 7 TeV pp collisions [8].

Overall, the PYTHIA6 tune Z1, tuned to the underlying event distributions at the LHC, agrees the best with most of the distributions. The PYTHIA6 DW tune predictions are consistently furthest from the data, as seen in the ch? and TchMdistributions. This is not unexpected as DW is tuned to reproduce the Tevatron data and does not agree with the charged-particle multiplicity and pTdistributions in LHC data [19]. However it performs similarly to other models/ tunes for the Sch? distribution in intermediate to high pleadT values, as is seen in Figs. 5(c)–5(e). The AMBT2B tune, which is based on minimum-bias LHC data, shows better agreement for the lowest plead

T distributions than for the intermediate pleadT distributions, as is seen in Fig.3(a)and in Fig.4(a). Compared to thePYTHIA6AMBT2B tune, the predictions of thePYTHIA8A2 andHERWIG++UE7-2 tunes show better agreement with the data in the intermediate to high pleadT ranges. The UE7-2 tune, based like Z1 on LHC TABLE III. Summary of systematic uncertainties in %.

Trigger and vertex efficiency <0:1

Track reconstruction 0.1–0.5

Correction model difference 1–5

PYTHIAcorrection stat. uncertainty 0.1–2

(7)

MC/Data 0.5 1 1.5 2 2.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 chτ d ev dN ev N 1 1 2 3 4 5 6 7 8 9 2.5 GeV ≤ lead T 0.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (a) MC/Data 0.5 1 1.5 2 2.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 chτ d ev dN ev N 1 1 2 3 4 5 6 7 8 9 5 GeV ≤ lead T 2.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (b) MC/Data0.5 1 1.5 2 2.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 chτ d ev dN ev N 1 1 2 3 4 5 6 7 8 9 7.5 GeV ≤ lead T 5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (c) MC/Data0.5 1 1.5 2 2.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 chτ d ev dN ev N 1 1 2 3 4 5 6 7 8 9 10 GeV ≤ lead T 7.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (d) MC/Data0.5 1 1.5 2 2.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 chτ d ev dN ev N 1 1 2 3 4 5 6 7 8 9 > 10 GeV lead T p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (e) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 ch τ τch 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 ch τ τch 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 ch τ

FIG. 3 (color online). Normalized distributions of the complement of transverse thrust using at least six charged particles with pT> 0:5 GeV and jj < 2:5 for different requirements on the transverse momentum of the leading charged-particle, plead

T . The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.

(8)

ch M T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ch M dT ev dN ev N 1 0 1 2 3 4 5 6 7 2.5 GeV ≤ lead T 0.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (a) ch M T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ch M dT ev dN ev N 1 1 2 3 4 5 6 7 5 GeV ≤ lead T 2.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (b) ch M T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ch M dT ev dN ev N 1 1 2 3 4 5 6 7 7.5 GeV ≤ lead T 5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (c) ch M T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ch M dT ev dN ev N 1 1 2 3 4 5 6 7 10 GeV ≤ lead T 7.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (d) ch M T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ch M dT ev dN ev N 1 1 2 3 4 5 6 7 > 10 GeV lead T p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (e)

FIG. 4 (color online). Normalized distributions of transverse thrust minor using at least six charged particles with pT> 0:5 GeV and jj < 2:5 for different requirements on the transverse momentum of the leading charged-particle, plead

T . The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.

(9)

ch S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ch dS ev dN ev N 1 0.5 1 1.5 2 2.5 3 3.5 2.5 GeV ≤ lead T 0.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (a) ch S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ch dS ev dN ev N 1 0.5 1 1.5 2 2.5 3 3.5 5 GeV ≤ lead T 2.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (b) ch S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ch dS ev dN ev N 1 0.5 1 1.5 2 2.5 3 3.5 lead 7.5 GeV T 5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (c) ch S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ch dS ev dN ev N 1 0.5 1 1.5 2 2.5 3 3.5 lead 10 GeV T 7.5 GeV < p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (d) ch S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 MC/Data 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ch dS ev dN ev N 1 1 2 3 4 5 > 10 GeV lead T p ATLAS = 7 TeV s Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (e)

FIG. 5 (color online). Normalized distributions of transverse sphericity using at least six charged particles with pT> 0:5 GeV and jj < 2:5 for different requirements on the transverse momentum of the leading charged-particle, plead

T . The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.

(10)

(a) [GeV] T p ∑ 0 20 40 60 80 100 120 140 MC/Data 0.9 0.95 1 0 20 40 60 80 100 120 140 > chτ < 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 s = 7 TeV ATLAS Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (b) ch N 10 20 30 40 50 60 70 MC/Data 0.92 0.94 0.96 0.98 1 10 20 30 40 50 60 70 > ch M <T 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 s = 7 TeV ATLAS Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (c) [GeV] T p ∑ 20 40 60 80 100 120 140 20 40 60 80 100 120 140 MC/Data 0.9 0.95 1 20 40 60 80 100 120 140 > ch M <T 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 s = 7 TeV ATLAS Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (d) ch N 10 20 30 40 50 60 70 MC/Data 0.9 0.95 1 10 20 30 40 50 60 70 > ch <S 0.45 0.5 0.55 0.6 0.65 0.7 0.75 s = 7 TeV ATLAS Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (e) [GeV] T p ∑ MC/Data 0.850.8 0.9 0.95 1 1.05 20 40 60 80 100 120 140 > ch <S 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 s = 7 TeV ATLAS Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2 (f) ch N 10 20 30 40 50 60 70 MC/Data 0.85 0.9 0.95 1 > chτ < 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 s = 7 TeV ATLAS Data 2010 PYTHIA 6 AMBT2B PYTHIA 6 DW PYTHIA 6 Z1 PYTHIA 8 A2 Herwig++ UE7-2

FIG. 6 (color online). Mean values of the complement of transverse thrust, transverse thrust minor, and transverse sphericity (top to bottom) using at least six charged particles with pT> 0:5 GeV and jj < 2:5 versus charged-particle multiplicity of the event (left) and versus charged-particle transverse momentum scalar sum of the event (right). The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.

(11)

underlying event data, is expected to perform better in events characterized by a hard scatter, resulting in higher plead

T values. However, the minimum-bias A2 tune shows a similar or slightly better level of agreement with data for the high plead

T distributions, possibly indicating that the improved MPI modeling compared toPYTHIA6tunes does play a role. All models tend to better reproduce the data selected with the higher plead

T ranges.

The mean values of event shape observables as functions of Nch and PpT are shown in Fig. 6. They are seen to increase with Nch, but the increase is less marked at values of Nch above about 30. For low values of Nch, the mean values of the event shape variables correspond to less spherical events, while the average values for large multi-plicity are largely consistent with the positions of the maxima of the corresponding distributions for the lowest plead

T range. A similar trend is seen for distributions as a function of PpT; however, for PpT over 100 GeV, the mean starts to decrease again, indicative of a dijet topology. In general, the MC models predict fewer high-sphericity events than are seen in the data. With the ex-ception ofPYTHIA 6 DW, the MC models seem to predict the behavior with multiplicity reasonably well in Fig. 6. However, the MC predictions are seen to differ in shape at very highPpT, where the decrease of mean values hap-pens in the MC predictions before the data. The behavior of

mean transverse sphericity as a function of multiplicity measured by the ALICE Collaboration [8] exhibits a simi-lar behavior to that observed here, with the data lying at values higher than predicted by the MC models.

X. CONCLUSIONS

The event shape observables, transverse thrust, trans-verse thrust minor, and transtrans-verse sphericity, have been measured in inelastic proton–proton collisions at pffiffiffis¼ 7 TeV requiring at least six charged particles per event selected by a minimum-bias trigger. The distributions and mean values have been compared to predictions of differ-ent MC models tuned to inclusive particle distributions and underlying event data. The dependence of the event shapes on the number of charged particles, on the sum of charged-particle pTand on the leading charged-particle pThas been studied.

The distributions of all three event shape variables show an evolution toward less spherical events as plead

T increases, but the effect is smaller for transverse thrust and thrust minor compared to transverse sphericity. The dependence of the event shape mean values as functions of Nch and P

pTis similar, due the correlation between the two var-iables [19]. For each variable, the evolution toward a more spherical event shape with increasing multiplicity is rapid TABLE IV. Mean, rms, and skewness for each event shape distribution is shown, in different intervals of plead

T . Combined statistical and systematic uncertainty is shown, where the systematic uncertainty is obtained from the difference of unfolded results using

PYTHIA6andHERWIG++MC predictions.

1 - Transverse thrust plead

T range Mean rms Skewness

0:5 GeV < pleadT  2:5 GeV 0:227  0:002 0:064  0:008 0:54  0:03

2:5 GeV < plead T  5:0 GeV 0:240  0:006 0:062  0:001 0:68  0:04 5:0 GeV < plead T  7:5 GeV 0:227  0:007 0:065  0:003 0:55  0:04 7:5 GeV < plead T  10 GeV 0:210  0:010 0:068  0:005 0:36  0:09 plead T > 10 GeV 0:185  0:011 0:070  0:006 0:11  0:28 Thrust minor plead

T range Mean rms Skewness

0:5 GeV < plead T  2:5 GeV 0:508  0:002 0:090  0:010 0:70  0:05 2:5 GeV < plead T  5:0 GeV 0:514  0:005 0:087  0:012 0:89  0:05 5:0 GeV < plead T  7:5 GeV 0:490  0:006 0:099  0:010 0:76  0:05 7:5 GeV < plead T  10 GeV 0:459  0:007 0:107  0:009 0:54  0:08 plead T > 10 GeV 0:415  0:010 0:117  0:011 0:28  0:13 Transverse sphericity plead

T range Mean rms Skewness

0:5 GeV < plead T  2:5 GeV 0:618  0:005 0:190  0:006 0:35  0:05 2:5 GeV < plead T  5:0 GeV 0:579  0:013 0:204  0:003 0:28  0:12 5:0 GeV < plead T  7:5 GeV 0:449  0:019 0:206  0:002 0:16  0:24 7:5 GeV < plead T  10 GeV 0:337  0:017 0:183  0:004 0:57  0:09 plead T > 10 GeV 0:230  0:024 0:157  0:007 1:06  0:04

(12)

initially and slows at higher multiplicities. All tested MC generators underestimate the fraction of events of spherical character and none reproduces accurately the event shape distributions. The MC tunes based on the properties of the underlying event show in general better agreement with the data than those based on the inclusive distributions mea-sured in minimum-bias events. ThePYTHIA6MC generator with the Z1 tune provides the most accurate description of the observed distributions presented in this analysis, but the level of agreement is still not satisfactory over the whole range of the data. These measurements provide informa-tion complementary to inclusive particle distribuinforma-tions and thus they are useful for improving the MC description of inelastic proton–proton collisions at the LHC.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China;

COLCIENCIAS, Colombia; MSMT CR, MPO CR, and

VSC CR, Czech Republic; DNRF, DNSRC, and

Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland;

GRICES and FCT, Portugal; MERYS (MECTS),

Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowl-edged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] A. Banfi, G. P. Salam, and G. Zanderighi,J. High Energy Phys. 08 (2004) 062.

[2] A. Banfi, G. P. Salam, and G. Zanderighi,J. High Energy Phys. 06 (2010) 038.

[3] ATLAS Collaboration,JINST 3, S08003 (2008). [4] T. Akesson et al.,Phys. Lett. 128B, 354 (1983). [5] C. Albajar et al.,Z. Phys. C 36, 33 (1987).

[6] R. Ansari et al. (UA2 Collaboration),Z. Phys. C 36, 175 (1987).

[7] CDF Collaboration,Phys. Rev. D 83, 112007 (2011). [8] ALICE Collaboration,Eur. Phys. J. C 72, 2124 (2012). [9] CMS Collaboration,Phys. Lett. B 699, 48 (2011). [10] ATLAS Collaboration,Eur. Phys. J. C 72, 2211 (2012). [11] P. A. Movilla Fernandez, S. Bethke, O. Biebel, and S.

Kluth,Eur. Phys. J. C 22, 1 (2001).

[12] ZEUS Collaboration,Eur. Phys. J. C 27, 531 (2003). [13] L3 Collaboration,Phys. Lett. B 536, 217 (2002). [14] ALEPH Collaboration,Eur. Phys. J. C 35, 457 (2004). [15] DELPHI Collaboration,Eur. Phys. J. C 37, 1 (2004). [16] OPAL Collaboration,Eur. Phys. J. C 40, 287 (2005). [17] H1 Collaboration,Eur. Phys. J. C 46, 343 (2006). [18] K. Wraight and P. Skands,Eur. Phys. J. C 71, 1628 (2011). [19] ATLAS Collaboration,New J. Phys. 13, 053033 (2011). [20] ATLAS Collaboration,Phys. Rev. D 83, 112001 (2011). [21] ATLAS Collaboration,Eur. Phys. J. C 71, 1636 (2011). [22] CMS Collaboration,Phys. Rev. Lett. 105, 022002 (2010). [23] CMS Collaboration,J. High Energy Phys. 09 (2011) 109.

[24] ALICE Collaboration,Eur. Phys. J. C 68, 345 (2010). [25] ALICE Collaboration, J. High Energy Phys. 07 (2012)

116.

[26] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinatesðr; Þ are used in the transverse plane,  being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle as  ¼  ln tan ð =2Þ. [27] J. Bjorken and S. J. Brodsky,Phys. Rev. D 1, 1416 (1970). [28] G. Hanson et al.,Phys. Rev. Lett. 35, 1609 (1975). [29] ATLAS Collaboration,Eur. Phys. J. C 72, 1849 (2012). [30] T. Sjostrand, S. Mrenna, and P. Skands,J. High Energy

Phys. 05 (2006) 026.

[31] T. Sjostrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).

[32] M. Bahr et al.,Eur. Phys. J. C 58, 639 (2008). [33] S. Gieseke et al.,arXiv:1102.1672.

[34] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2011-008, 2011,http://cdsweb.cern.ch/record/1345343. [35] A. Sherstnev and R. Thorne,Eur. Phys. J. C 55, 553 (2008). [36] ATLAS Collaboration, Report No.

ATL-PHYS-PUB-2011-009, 2011,http://cdsweb.cern.ch/record/1363300. [37] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky,

(13)

[38] R. Field, Talk presented at the Fermilab MC Tuning Workshop, Fermilab, 2002.

[39] H. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J. F. Owens, J. Pumplin, and W. K. Tung (CTEQ Collaboration),

Eur. Phys. J. C 12, 375 (2000).

[40] R. Field,Acta Phys. Pol. B 42, 2631 (2011).

[41] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2011-014, 2011,http://cdsweb.cern.ch/record/1400677.

[42] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,

Eur. Phys. J. C 63, 189 (2009).

[43] S. Gieseke, C. Rohr, and A. Siodmok,arXiv:1110.2675.

[44] ATLAS Collaboration, Eur. Phys. J. C 70, 823

(2010).

[45] S. Agostinelli et al. (The Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

G. Aad,48T. Abajyan,21B. Abbott,111J. Abdallah,12S. Abdel Khalek,115A. A. Abdelalim,49O. Abdinov,11 R. Aben,105B. Abi,112M. Abolins,88O. S. AbouZeid,158H. Abramowicz,153H. Abreu,136E. Acerbi,89a,89b B. S. Acharya,164a,164bL. Adamczyk,38D. L. Adams,25T. N. Addy,56J. Adelman,176S. Adomeit,98P. Adragna,75 T. Adye,129S. Aefsky,23J. A. Aguilar-Saavedra,124b,bM. Agustoni,17M. Aharrouche,81S. P. Ahlen,22F. Ahles,48 A. Ahmad,148M. Ahsan,41G. Aielli,133a,133bT. Akdogan,19aT. P. A. A˚ kesson,79G. Akimoto,155A. V. Akimov,94

M. S. Alam,2M. A. Alam,76J. Albert,169S. Albrand,55M. Aleksa,30I. N. Aleksandrov,64F. Alessandria,89a C. Alexa,26aG. Alexander,153G. Alexandre,49T. Alexopoulos,10M. Alhroob,164a,164cM. Aliev,16G. Alimonti,89a

J. Alison,120B. M. M. Allbrooke,18P. P. Allport,73S. E. Allwood-Spiers,53J. Almond,82A. Aloisio,102a,102b R. Alon,172A. Alonso,79F. Alonso,70B. Alvarez Gonzalez,88M. G. Alviggi,102a,102bK. Amako,65C. Amelung,23 V. V. Ammosov,128,aA. Amorim,124a,cN. Amram,153C. Anastopoulos,30L. S. Ancu,17N. Andari,115T. Andeen,35 C. F. Anders,58bG. Anders,58aK. J. Anderson,31A. Andreazza,89a,89bV. Andrei,58aX. S. Anduaga,70P. Anger,44

A. Angerami,35F. Anghinolfi,30A. Anisenkov,107N. Anjos,124aA. Annovi,47A. Antonaki,9M. Antonelli,47 A. Antonov,96J. Antos,144bF. Anulli,132aM. Aoki,101S. Aoun,83L. Aperio Bella,5R. Apolle,118,dG. Arabidze,88 I. Aracena,143Y. Arai,65A. T. H. Arce,45S. Arfaoui,148J-F. Arguin,15E. Arik,19a,aM. Arik,19aA. J. Armbruster,87

O. Arnaez,81V. Arnal,80C. Arnault,115A. Artamonov,95G. Artoni,132a,132bD. Arutinov,21S. Asai,155 R. Asfandiyarov,173S. Ask,28B. A˚ sman,146a,146bL. Asquith,6K. Assamagan,25A. Astbury,169M. Atkinson,165

B. Aubert,5E. Auge,115K. Augsten,127M. Aurousseau,145aG. Avolio,163R. Avramidou,10D. Axen,168 G. Azuelos,93,eY. Azuma,155M. A. Baak,30G. Baccaglioni,89aC. Bacci,134a,134bA. M. Bach,15H. Bachacou,136

K. Bachas,30M. Backes,49M. Backhaus,21E. Badescu,26aP. Bagnaia,132a,132bS. Bahinipati,3Y. Bai,33a D. C. Bailey,158T. Bain,158J. T. Baines,129O. K. Baker,176M. D. Baker,25S. Baker,77E. Banas,39P. Banerjee,93

Sw. Banerjee,173D. Banfi,30A. Bangert,150V. Bansal,169H. S. Bansil,18L. Barak,172S. P. Baranov,94 A. Barbaro Galtieri,15T. Barber,48E. L. Barberio,86D. Barberis,50a,50bM. Barbero,21D. Y. Bardin,64T. Barillari,99

M. Barisonzi,175T. Barklow,143N. Barlow,28B. M. Barnett,129R. M. Barnett,15A. Baroncelli,134aG. Barone,49 A. J. Barr,118F. Barreiro,80J. Barreiro Guimara˜es da Costa,57P. Barrillon,115R. Bartoldus,143A. E. Barton,71 V. Bartsch,149A. Basye,165R. L. Bates,53L. Batkova,144aJ. R. Batley,28A. Battaglia,17M. Battistin,30F. Bauer,136

H. S. Bawa,143,fS. Beale,98T. Beau,78P. H. Beauchemin,161R. Beccherle,50aP. Bechtle,21H. P. Beck,17 A. K. Becker,175S. Becker,98M. Beckingham,138K. H. Becks,175A. J. Beddall,19cA. Beddall,19cS. Bedikian,176

V. A. Bednyakov,64C. P. Bee,83L. J. Beemster,105M. Begel,25S. Behar Harpaz,152M. Beimforde,99 C. Belanger-Champagne,85P. J. Bell,49W. H. Bell,49G. Bella,153L. Bellagamba,20aF. Bellina,30M. Bellomo,30

A. Belloni,57O. Beloborodova,107,gK. Belotskiy,96O. Beltramello,30O. Benary,153D. Benchekroun,135a K. Bendtz,146a,146bN. Benekos,165Y. Benhammou,153E. Benhar Noccioli,49J. A. Benitez Garcia,159b

D. P. Benjamin,45M. Benoit,115J. R. Bensinger,23K. Benslama,130S. Bentvelsen,105D. Berge,30 E. Bergeaas Kuutmann,42N. Berger,5F. Berghaus,169E. Berglund,105J. Beringer,15P. Bernat,77R. Bernhard,48 C. Bernius,25T. Berry,76C. Bertella,83A. Bertin,20a,20bF. Bertolucci,122a,122bM. I. Besana,89a,89bG. J. Besjes,104

N. Besson,136S. Bethke,99W. Bhimji,46R. M. Bianchi,30M. Bianco,72a,72bO. Biebel,98S. P. Bieniek,77 K. Bierwagen,54J. Biesiada,15M. Biglietti,134aH. Bilokon,47M. Bindi,20a,20bS. Binet,115A. Bingul,19c C. Bini,132a,132bC. Biscarat,178B. Bittner,99K. M. Black,22R. E. Blair,6J.-B. Blanchard,136G. Blanchot,30

T. Blazek,144aC. Blocker,23J. Blocki,39A. Blondel,49W. Blum,81U. Blumenschein,54G. J. Bobbink,105 V. B. Bobrovnikov,107S. S. Bocchetta,79A. Bocci,45C. R. Boddy,118M. Boehler,48J. Boek,175N. Boelaert,36

J. A. Bogaerts,30A. Bogdanchikov,107A. Bogouch,90,aC. Bohm,146aJ. Bohm,125V. Boisvert,76T. Bold,38 V. Boldea,26aN. M. Bolnet,136M. Bomben,78M. Bona,75M. Boonekamp,136C. N. Booth,139S. Bordoni,78 C. Borer,17A. Borisov,128G. Borissov,71I. Borjanovic,13aM. Borri,82S. Borroni,87V. Bortolotto,134a,134bK. Bos,105

(14)

D. Boscherini,20aM. Bosman,12H. Boterenbrood,105J. Bouchami,93J. Boudreau,123E. V. Bouhova-Thacker,71 D. Boumediene,34C. Bourdarios,115N. Bousson,83A. Boveia,31J. Boyd,30I. R. Boyko,64I. Bozovic-Jelisavcic,13b

J. Bracinik,18P. Branchini,134aA. Brandt,8G. Brandt,118O. Brandt,54U. Bratzler,156B. Brau,84J. E. Brau,114 H. M. Braun,175,aS. F. Brazzale,164a,164cB. Brelier,158J. Bremer,30K. Brendlinger,120R. Brenner,166S. Bressler,172

D. Britton,53F. M. Brochu,28I. Brock,21R. Brock,88F. Broggi,89aC. Bromberg,88J. Bronner,99G. Brooijmans,35 T. Brooks,76W. K. Brooks,32bG. Brown,82H. Brown,8P. A. Bruckman de Renstrom,39D. Bruncko,144b R. Bruneliere,48S. Brunet,60A. Bruni,20aG. Bruni,20aM. Bruschi,20aT. Buanes,14Q. Buat,55F. Bucci,49 J. Buchanan,118P. Buchholz,141R. M. Buckingham,118A. G. Buckley,46S. I. Buda,26aI. A. Budagov,64B. Budick,108

V. Bu¨scher,81L. Bugge,117O. Bulekov,96A. C. Bundock,73M. Bunse,43T. Buran,117H. Burckhart,30S. Burdin,73 T. Burgess,14S. Burke,129E. Busato,34P. Bussey,53C. P. Buszello,166B. Butler,143J. M. Butler,22C. M. Buttar,53

J. M. Butterworth,77W. Buttinger,28M. Byszewski,30S. Cabrera Urba´n,167D. Caforio,20a,20bO. Cakir,4a P. Calafiura,15G. Calderini,78P. Calfayan,98R. Calkins,106L. P. Caloba,24aR. Caloi,132a,132bD. Calvet,34S. Calvet,34 R. Camacho Toro,34P. Camarri,133a,133bD. Cameron,117L. M. Caminada,15R. Caminal Armadans,12S. Campana,30 M. Campanelli,77V. Canale,102a,102bF. Canelli,31,hA. Canepa,159aJ. Cantero,80R. Cantrill,76L. Capasso,102a,102b

M. D. M. Capeans Garrido,30I. Caprini,26aM. Caprini,26aD. Capriotti,99M. Capua,37a,37bR. Caputo,81 R. Cardarelli,133aT. Carli,30G. Carlino,102aL. Carminati,89a,89bB. Caron,85S. Caron,104E. Carquin,32b G. D. Carrillo Montoya,173A. A. Carter,75J. R. Carter,28J. Carvalho,124a,iD. Casadei,108M. P. Casado,12

M. Cascella,122a,122bC. Caso,50a,50b,aA. M. Castaneda Hernandez,173,jE. Castaneda-Miranda,173

V. Castillo Gimenez,167N. F. Castro,124aG. Cataldi,72aP. Catastini,57A. Catinaccio,30J. R. Catmore,30A. Cattai,30 G. Cattani,133a,133bS. Caughron,88V. Cavaliere,165P. Cavalleri,78D. Cavalli,89aM. Cavalli-Sforza,12 V. Cavasinni,122a,122bF. Ceradini,134a,134bA. S. Cerqueira,24bA. Cerri,30L. Cerrito,75F. Cerutti,47S. A. Cetin,19b

A. Chafaq,135aD. Chakraborty,106I. Chalupkova,126K. Chan,3P. Chang,165B. Chapleau,85J. D. Chapman,28 J. W. Chapman,87E. Chareyre,78D. G. Charlton,18V. Chavda,82C. A. Chavez Barajas,30S. Cheatham,85 S. Chekanov,6S. V. Chekulaev,159aG. A. Chelkov,64M. A. Chelstowska,104C. Chen,63H. Chen,25S. Chen,33c X. Chen,173Y. Chen,35A. Cheplakov,64R. Cherkaoui El Moursli,135eV. Chernyatin,25E. Cheu,7S. L. Cheung,158

L. Chevalier,136G. Chiefari,102a,102bL. Chikovani,51a,aJ. T. Childers,30A. Chilingarov,71G. Chiodini,72a A. S. Chisholm,18R. T. Chislett,77A. Chitan,26aM. V. Chizhov,64G. Choudalakis,31S. Chouridou,137 I. A. Christidi,77A. Christov,48D. Chromek-Burckhart,30M. L. Chu,151J. Chudoba,125G. Ciapetti,132a,132b A. K. Ciftci,4aR. Ciftci,4aD. Cinca,34V. Cindro,74C. Ciocca,20a,20bA. Ciocio,15M. Cirilli,87P. Cirkovic,13b

M. Citterio,89aM. Ciubancan,26aA. Clark,49P. J. Clark,46R. N. Clarke,15W. Cleland,123J. C. Clemens,83 B. Clement,55C. Clement,146a,146bY. Coadou,83M. Cobal,164a,164cA. Coccaro,138J. Cochran,63J. G. Cogan,143 J. Coggeshall,165E. Cogneras,178J. Colas,5S. Cole,106A. P. Colijn,105N. J. Collins,18C. Collins-Tooth,53J. Collot,55

T. Colombo,119a,119bG. Colon,84P. Conde Muin˜o,124aE. Coniavitis,118M. C. Conidi,12S. M. Consonni,89a,89b V. Consorti,48S. Constantinescu,26aC. Conta,119a,119bG. Conti,57F. Conventi,102a,kM. Cooke,15B. D. Cooper,77

A. M. Cooper-Sarkar,118K. Copic,15T. Cornelissen,175M. Corradi,20aF. Corriveau,85,lA. Cortes-Gonzalez,165 G. Cortiana,99G. Costa,89aM. J. Costa,167D. Costanzo,139D. Coˆte´,30L. Courneyea,169G. Cowan,76C. Cowden,28

B. E. Cox,82K. Cranmer,108F. Crescioli,122a,122bM. Cristinziani,21G. Crosetti,37a,37bS. Cre´pe´-Renaudin,55 C.-M. Cuciuc,26aC. Cuenca Almenar,176T. Cuhadar Donszelmann,139M. Curatolo,47C. J. Curtis,18C. Cuthbert,150 P. Cwetanski,60H. Czirr,141P. Czodrowski,44Z. Czyczula,176S. D’Auria,53M. D’Onofrio,73A. D’Orazio,132a,132b M. J. Da Cunha Sargedas De Sousa,124aC. Da Via,82W. Dabrowski,38A. Dafinca,118T. Dai,87C. Dallapiccola,84

M. Dam,36M. Dameri,50a,50bD. S. Damiani,137H. O. Danielsson,30V. Dao,49G. Darbo,50aG. L. Darlea,26b J. A. Dassoulas,42W. Davey,21T. Davidek,126N. Davidson,86R. Davidson,71E. Davies,118,dM. Davies,93 O. Davignon,78A. R. Davison,77Y. Davygora,58aE. Dawe,142I. Dawson,139R. K. Daya-Ishmukhametova,23K. De,8

R. de Asmundis,102aS. De Castro,20a,20bS. De Cecco,78J. de Graat,98N. De Groot,104P. de Jong,105 C. De La Taille,115H. De la Torre,80F. De Lorenzi,63L. de Mora,71L. De Nooij,105D. De Pedis,132aA. De Salvo,132a

U. De Sanctis,164a,164cA. De Santo,149J. B. De Vivie De Regie,115G. De Zorzi,132a,132bW. J. Dearnaley,71 R. Debbe,25C. Debenedetti,46B. Dechenaux,55D. V. Dedovich,64J. Degenhardt,120C. Del Papa,164a,164c J. Del Peso,80T. Del Prete,122a,122bT. Delemontex,55M. Deliyergiyev,74A. Dell’Acqua,30L. Dell’Asta,22

M. Della Pietra,102a,kD. della Volpe,102a,102bM. Delmastro,5P. A. Delsart,55C. Deluca,105S. Demers,176 M. Demichev,64B. Demirkoz,12,mJ. Deng,163S. P. Denisov,128D. Derendarz,39J. E. Derkaoui,135dF. Derue,78

(15)

R. Dhullipudi,25,nA. Di Ciaccio,133a,133bL. Di Ciaccio,5A. Di Girolamo,30B. Di Girolamo,30S. Di Luise,134a,134b A. Di Mattia,173B. Di Micco,30R. Di Nardo,47A. Di Simone,133a,133bR. Di Sipio,20a,20bM. A. Diaz,32aE. B. Diehl,87

J. Dietrich,42T. A. Dietzsch,58aS. Diglio,86K. Dindar Yagci,40J. Dingfelder,21F. Dinut,26aC. Dionisi,132a,132b P. Dita,26aS. Dita,26aF. Dittus,30F. Djama,83T. Djobava,51bM. A. B. do Vale,24cA. Do Valle Wemans,124a,o T. K. O. Doan,5M. Dobbs,85R. Dobinson,30,aD. Dobos,30E. Dobson,30,pJ. Dodd,35C. Doglioni,49T. Doherty,53 Y. Doi,65,aJ. Dolejsi,126I. Dolenc,74Z. Dolezal,126B. A. Dolgoshein,96,aT. Dohmae,155M. Donadelli,24dJ. Donini,34

J. Dopke,30A. Doria,102aA. Dos Anjos,173A. Dotti,122a,122bM. T. Dova,70A. D. Doxiadis,105A. T. Doyle,53 M. Dris,10J. Dubbert,99S. Dube,15E. Duchovni,172G. Duckeck,98D. Duda,175A. Dudarev,30F. Dudziak,63 M. Du¨hrssen,30I. P. Duerdoth,82L. Duflot,115M-A. Dufour,85L. Duguid,76M. Dunford,30H. Duran Yildiz,4a R. Duxfield,139M. Dwuznik,38F. Dydak,30M. Du¨ren,52J. Ebke,98S. Eckweiler,81K. Edmonds,81W. Edson,2 C. A. Edwards,76N. C. Edwards,53W. Ehrenfeld,42T. Eifert,143G. Eigen,14K. Einsweiler,15E. Eisenhandler,75

T. Ekelof,166M. El Kacimi,135cM. Ellert,166S. Elles,5F. Ellinghaus,81K. Ellis,75N. Ellis,30J. Elmsheuser,98 M. Elsing,30D. Emeliyanov,129R. Engelmann,148A. Engl,98B. Epp,61J. Erdmann,54A. Ereditato,17D. Eriksson,146a J. Ernst,2M. Ernst,25J. Ernwein,136D. Errede,165S. Errede,165E. Ertel,81M. Escalier,115H. Esch,43C. Escobar,123

X. Espinal Curull,12B. Esposito,47F. Etienne,83A. I. Etienvre,136E. Etzion,153D. Evangelakou,54H. Evans,60 L. Fabbri,20a,20bC. Fabre,30R. M. Fakhrutdinov,128S. Falciano,132aY. Fang,173M. Fanti,89a,89bA. Farbin,8

A. Farilla,134aJ. Farley,148T. Farooque,158S. Farrell,163S. M. Farrington,170P. Farthouat,30F. Fassi,167 P. Fassnacht,30D. Fassouliotis,9B. Fatholahzadeh,158A. Favareto,89a,89bL. Fayard,115S. Fazio,37a,37bR. Febbraro,34

P. Federic,144aO. L. Fedin,121W. Fedorko,88M. Fehling-Kaschek,48L. Feligioni,83D. Fellmann,6C. Feng,33d E. J. Feng,6A. B. Fenyuk,128J. Ferencei,144bW. Fernando,6S. Ferrag,53J. Ferrando,53V. Ferrara,42A. Ferrari,166

P. Ferrari,105R. Ferrari,119aD. E. Ferreira de Lima,53A. Ferrer,167D. Ferrere,49C. Ferretti,87 A. Ferretto Parodi,50a,50bM. Fiascaris,31F. Fiedler,81A. Filipcˇicˇ,74F. Filthaut,104M. Fincke-Keeler,169 M. C. N. Fiolhais,124a,iL. Fiorini,167A. Firan,40G. Fischer,42M. J. Fisher,109M. Flechl,48I. Fleck,141J. Fleckner,81

P. Fleischmann,174S. Fleischmann,175T. Flick,175A. Floderus,79L. R. Flores Castillo,173M. J. Flowerdew,99 T. Fonseca Martin,17A. Formica,136A. Forti,82D. Fortin,159aD. Fournier,115H. Fox,71P. Francavilla,12 M. Franchini,20a,20bS. Franchino,119a,119bD. Francis,30T. Frank,172S. Franz,30M. Fraternali,119a,119bS. Fratina,120

S. T. French,28C. Friedrich,42F. Friedrich,44R. Froeschl,30D. Froidevaux,30J. A. Frost,28C. Fukunaga,156 E. Fullana Torregrosa,30B. G. Fulsom,143J. Fuster,167C. Gabaldon,30O. Gabizon,172T. Gadfort,25S. Gadomski,49 G. Gagliardi,50a,50bP. Gagnon,60C. Galea,98E. J. Gallas,118V. Gallo,17B. J. Gallop,129P. Gallus,125K. K. Gan,109

Y. S. Gao,143,fA. Gaponenko,15F. Garberson,176M. Garcia-Sciveres,15C. Garcı´a,167J. E. Garcı´a Navarro,167 R. W. Gardner,31N. Garelli,30H. Garitaonandia,105V. Garonne,30C. Gatti,47G. Gaudio,119aB. Gaur,141 L. Gauthier,136P. Gauzzi,132a,132bI. L. Gavrilenko,94C. Gay,168G. Gaycken,21E. N. Gazis,10P. Ge,33dZ. Gecse,168

C. N. P. Gee,129D. A. A. Geerts,105Ch. Geich-Gimbel,21K. Gellerstedt,146a,146bC. Gemme,50aA. Gemmell,53 M. H. Genest,55S. Gentile,132a,132bM. George,54S. George,76P. Gerlach,175A. Gershon,153C. Geweniger,58a H. Ghazlane,135bN. Ghodbane,34B. Giacobbe,20aS. Giagu,132a,132bV. Giakoumopoulou,9V. Giangiobbe,12 F. Gianotti,30B. Gibbard,25A. Gibson,158S. M. Gibson,30D. Gillberg,29A. R. Gillman,129D. M. Gingrich,3,e J. Ginzburg,153N. Giokaris,9M. P. Giordani,164cR. Giordano,102a,102bF. M. Giorgi,16P. Giovannini,99P. F. Giraud,136 D. Giugni,89aM. Giunta,93P. Giusti,20aB. K. Gjelsten,117L. K. Gladilin,97C. Glasman,80J. Glatzer,48A. Glazov,42

K. W. Glitza,175G. L. Glonti,64J. R. Goddard,75J. Godfrey,142J. Godlewski,30M. Goebel,42T. Go¨pfert,44 C. Goeringer,81C. Go¨ssling,43S. Goldfarb,87T. Golling,176A. Gomes,124a,cL. S. Gomez Fajardo,42R. Gonc¸alo,76 J. Goncalves Pinto Firmino Da Costa,42L. Gonella,21S. Gonzalez,173S. Gonza´lez de la Hoz,167G. Gonzalez Parra,12 M. L. Gonzalez Silva,27S. Gonzalez-Sevilla,49J. J. Goodson,148L. Goossens,30P. A. Gorbounov,95H. A. Gordon,25 I. Gorelov,103G. Gorfine,175B. Gorini,30E. Gorini,72a,72bA. Gorisˇek,74E. Gornicki,39B. Gosdzik,42A. T. Goshaw,6

M. Gosselink,105M. I. Gostkin,64I. Gough Eschrich,163M. Gouighri,135aD. Goujdami,135cM. P. Goulette,49 A. G. Goussiou,138C. Goy,5S. Gozpinar,23I. Grabowska-Bold,38P. Grafstro¨m,20a,20bK-J. Grahn,42 F. Grancagnolo,72aS. Grancagnolo,16V. Grassi,148V. Gratchev,121N. Grau,35H. M. Gray,30J. A. Gray,148 E. Graziani,134aO. G. Grebenyuk,121T. Greenshaw,73Z. D. Greenwood,25,nK. Gregersen,36I. M. Gregor,42 P. Grenier,143J. Griffiths,8N. Grigalashvili,64A. A. Grillo,137S. Grinstein,12Ph. Gris,34Y. V. Grishkevich,97 J.-F. Grivaz,115E. Gross,172J. Grosse-Knetter,54J. Groth-Jensen,172K. Grybel,141D. Guest,176C. Guicheney,34

S. Guindon,54U. Gul,53H. Guler,85,qJ. Gunther,125B. Guo,158J. Guo,35P. Gutierrez,111N. Guttman,153 O. Gutzwiller,173C. Guyot,136C. Gwenlan,118C. B. Gwilliam,73A. Haas,143S. Haas,30C. Haber,15

(16)

H. K. Hadavand,40D. R. Hadley,18P. Haefner,21F. Hahn,30S. Haider,30Z. Hajduk,39H. Hakobyan,177D. Hall,118 J. Haller,54K. Hamacher,175P. Hamal,113M. Hamer,54A. Hamilton,145b,rS. Hamilton,161L. Han,33bK. Hanagaki,116 K. Hanawa,160M. Hance,15C. Handel,81P. Hanke,58aJ. R. Hansen,36J. B. Hansen,36J. D. Hansen,36P. H. Hansen,36

P. Hansson,143K. Hara,160G. A. Hare,137T. Harenberg,175S. Harkusha,90D. Harper,87R. D. Harrington,46 O. M. Harris,138J. Hartert,48F. Hartjes,105T. Haruyama,65A. Harvey,56S. Hasegawa,101Y. Hasegawa,140 S. Hassani,136S. Haug,17M. Hauschild,30R. Hauser,88M. Havranek,21C. M. Hawkes,18R. J. Hawkings,30 A. D. Hawkins,79D. Hawkins,163T. Hayakawa,66T. Hayashi,160D. Hayden,76C. P. Hays,118H. S. Hayward,73 S. J. Haywood,129M. He,33dS. J. Head,18V. Hedberg,79L. Heelan,8S. Heim,88B. Heinemann,15S. Heisterkamp,36

L. Helary,22C. Heller,98M. Heller,30S. Hellman,146a,146bD. Hellmich,21C. Helsens,12R. C. W. Henderson,71 M. Henke,58aA. Henrichs,54A. M. Henriques Correia,30S. Henrot-Versille,115C. Hensel,54T. Henß,175 C. M. Hernandez,8Y. Herna´ndez Jime´nez,167R. Herrberg,16G. Herten,48R. Hertenberger,98L. Hervas,30 G. G. Hesketh,77N. P. Hessey,105E. Higo´n-Rodriguez,167J. C. Hill,28K. H. Hiller,42S. Hillert,21S. J. Hillier,18

I. Hinchliffe,15E. Hines,120M. Hirose,116F. Hirsch,43D. Hirschbuehl,175J. Hobbs,148N. Hod,153 M. C. Hodgkinson,139P. Hodgson,139A. Hoecker,30M. R. Hoeferkamp,103J. Hoffman,40D. Hoffmann,83

M. Hohlfeld,81M. Holder,141S. O. Holmgren,146aT. Holy,127J. L. Holzbauer,88T. M. Hong,120 L. Hooft van Huysduynen,108S. Horner,48J-Y. Hostachy,55S. Hou,151A. Hoummada,135aJ. Howard,118 J. Howarth,82I. Hristova,16J. Hrivnac,115T. Hryn’ova,5P. J. Hsu,81S.-C. Hsu,15D. Hu,35Z. Hubacek,127F. Hubaut,83 F. Huegging,21T. A. Huelsing,81A. Huettmann,42T. B. Huffman,118E. W. Hughes,35G. Hughes,71M. Huhtinen,30

M. Hurwitz,15U. Husemann,42N. Huseynov,64,sJ. Huston,88J. Huth,57G. Iacobucci,49G. Iakovidis,10 M. Ibbotson,82I. Ibragimov,141L. Iconomidou-Fayard,115J. Idarraga,115P. Iengo,102aO. Igonkina,105Y. Ikegami,65

M. Ikeno,65D. Iliadis,154N. Ilic,158T. Ince,21J. Inigo-Golfin,30P. Ioannou,9M. Iodice,134aK. Iordanidou,9 V. Ippolito,132a,132bA. Irles Quiles,167C. Isaksson,166M. Ishino,67M. Ishitsuka,157R. Ishmukhametov,40 C. Issever,118S. Istin,19aA. V. Ivashin,128W. Iwanski,39H. Iwasaki,65J. M. Izen,41V. Izzo,102aB. Jackson,120 J. N. Jackson,73P. Jackson,1M. R. Jaekel,30V. Jain,60K. Jakobs,48S. Jakobsen,36T. Jakoubek,125J. Jakubek,127

D. K. Jana,111E. Jansen,77H. Jansen,30A. Jantsch,99M. Janus,48G. Jarlskog,79L. Jeanty,57I. Jen-La Plante,31 D. Jennens,86P. Jenni,30A. E. Loevschall-Jensen,36P. Jezˇ,36S. Je´ze´quel,5M. K. Jha,20aH. Ji,173W. Ji,81J. Jia,148 Y. Jiang,33bM. Jimenez Belenguer,42S. Jin,33aO. Jinnouchi,157M. D. Joergensen,36D. Joffe,40M. Johansen,146a,146b K. E. Johansson,146aP. Johansson,139S. Johnert,42K. A. Johns,7K. Jon-And,146a,146bG. Jones,170R. W. L. Jones,71

T. J. Jones,73C. Joram,30P. M. Jorge,124aK. D. Joshi,82J. Jovicevic,147T. Jovin,13bX. Ju,173C. A. Jung,43 R. M. Jungst,30V. Juranek,125P. Jussel,61A. Juste Rozas,12S. Kabana,17M. Kaci,167A. Kaczmarska,39P. Kadlecik,36

M. Kado,115H. Kagan,109M. Kagan,57E. Kajomovitz,152S. Kalinin,175L. V. Kalinovskaya,64S. Kama,40 N. Kanaya,155M. Kaneda,30S. Kaneti,28T. Kanno,157V. A. Kantserov,96J. Kanzaki,65B. Kaplan,108A. Kapliy,31 J. Kaplon,30D. Kar,53M. Karagounis,21K. Karakostas,10M. Karnevskiy,42V. Kartvelishvili,71A. N. Karyukhin,128 L. Kashif,173G. Kasieczka,58bR. D. Kass,109A. Kastanas,14M. Kataoka,5Y. Kataoka,155E. Katsoufis,10J. Katzy,42 V. Kaushik,7K. Kawagoe,69T. Kawamoto,155G. Kawamura,81M. S. Kayl,105S. Kazama,155V. A. Kazanin,107 M. Y. Kazarinov,64R. Keeler,169R. Kehoe,40M. Keil,54G. D. Kekelidze,64J. S. Keller,138M. Kenyon,53O. Kepka,125 N. Kerschen,30B. P. Kersˇevan,74S. Kersten,175K. Kessoku,155J. Keung,158F. Khalil-zada,11H. Khandanyan,146a,146b A. Khanov,112D. Kharchenko,64A. Khodinov,96A. Khomich,58aT. J. Khoo,28G. Khoriauli,21A. Khoroshilov,175 V. Khovanskiy,95E. Khramov,64J. Khubua,51bH. Kim,146a,146bS. H. Kim,160N. Kimura,171O. Kind,16B. T. King,73

M. King,66R. S. B. King,118J. Kirk,129A. E. Kiryunin,99T. Kishimoto,66D. Kisielewska,38T. Kitamura,66 T. Kittelmann,123K. Kiuchi,160E. Kladiva,144bM. Klein,73U. Klein,73K. Kleinknecht,81M. Klemetti,85A. Klier,172

P. Klimek,146a,146bA. Klimentov,25R. Klingenberg,43J. A. Klinger,82E. B. Klinkby,36T. Klioutchnikova,30 P. F. Klok,104S. Klous,105E.-E. Kluge,58aT. Kluge,73P. Kluit,105S. Kluth,99N. S. Knecht,158E. Kneringer,61 E. B. F. G. Knoops,83A. Knue,54B. R. Ko,45T. Kobayashi,155M. Kobel,44M. Kocian,143P. Kodys,126K. Ko¨neke,30

A. C. Ko¨nig,104S. Koenig,81L. Ko¨pke,81F. Koetsveld,104P. Koevesarki,21T. Koffas,29E. Koffeman,105 L. A. Kogan,118S. Kohlmann,175F. Kohn,54Z. Kohout,127T. Kohriki,65T. Koi,143G. M. Kolachev,107,a H. Kolanoski,16V. Kolesnikov,64I. Koletsou,89aJ. Koll,88M. Kollefrath,48A. A. Komar,94Y. Komori,155T. Kondo,65

T. Kono,42,tA. I. Kononov,48R. Konoplich,108,uN. Konstantinidis,77S. Koperny,38K. Korcyl,39K. Kordas,154 A. Korn,118A. Korol,107I. Korolkov,12E. V. Korolkova,139V. A. Korotkov,128O. Kortner,99S. Kortner,99 V. V. Kostyukhin,21S. Kotov,99V. M. Kotov,64A. Kotwal,45C. Kourkoumelis,9V. Kouskoura,154A. Koutsman,159a

(17)

G. Kramberger,74M. W. Krasny,78A. Krasznahorkay,108J. K. Kraus,21S. Kreiss,108F. Krejci,127J. Kretzschmar,73 N. Krieger,54P. Krieger,158K. Kroeninger,54H. Kroha,99J. Kroll,120J. Kroseberg,21J. Krstic,13aU. Kruchonak,64 H. Kru¨ger,21T. Kruker,17N. Krumnack,63Z. V. Krumshteyn,64T. Kubota,86S. Kuday,4aS. Kuehn,48A. Kugel,58c

T. Kuhl,42D. Kuhn,61V. Kukhtin,64Y. Kulchitsky,90S. Kuleshov,32bC. Kummer,98M. Kuna,78J. Kunkle,120 A. Kupco,125H. Kurashige,66M. Kurata,160Y. A. Kurochkin,90V. Kus,125E. S. Kuwertz,147M. Kuze,157J. Kvita,142

R. Kwee,16A. La Rosa,49L. La Rotonda,37a,37bL. Labarga,80J. Labbe,5S. Lablak,135aC. Lacasta,167 F. Lacava,132a,132bH. Lacker,16D. Lacour,78V. R. Lacuesta,167E. Ladygin,64R. Lafaye,5B. Laforge,78T. Lagouri,80

S. Lai,48E. Laisne,55M. Lamanna,30L. Lambourne,77C. L. Lampen,7W. Lampl,7E. Lancon,136U. Landgraf,48 M. P. J. Landon,75J. L. Lane,82V. S. Lang,58aC. Lange,42A. J. Lankford,163F. Lanni,25K. Lantzsch,175S. Laplace,78 C. Lapoire,21J. F. Laporte,136T. Lari,89aA. Larner,118M. Lassnig,30P. Laurelli,47V. Lavorini,37a,37bW. Lavrijsen,15

P. Laycock,73O. Le Dortz,78E. Le Guirriec,83C. Le Maner,158E. Le Menedeu,12T. LeCompte,6

F. Ledroit-Guillon,55H. Lee,105J. S. H. Lee,116S. C. Lee,151L. Lee,176M. Lefebvre,169M. Legendre,136F. Legger,98 C. Leggett,15M. Lehmacher,21G. Lehmann Miotto,30X. Lei,7M. A. L. Leite,24dR. Leitner,126D. Lellouch,172

B. Lemmer,54V. Lendermann,58aK. J. C. Leney,145bT. Lenz,105G. Lenzen,175B. Lenzi,30K. Leonhardt,44 S. Leontsinis,10F. Lepold,58aC. Leroy,93J-R. Lessard,169C. G. Lester,28C. M. Lester,120J. Leveˆque,5D. Levin,87 L. J. Levinson,172A. Lewis,118G. H. Lewis,108A. M. Leyko,21M. Leyton,16B. Li,83H. Li,173,vS. Li,33b,wX. Li,87

Z. Liang,118,xH. Liao,34B. Liberti,133aP. Lichard,30M. Lichtnecker,98K. Lie,165W. Liebig,14C. Limbach,21 A. Limosani,86M. Limper,62S. C. Lin,151,yF. Linde,105J. T. Linnemann,88E. Lipeles,120A. Lipniacka,14 T. M. Liss,165D. Lissauer,25A. Lister,49A. M. Litke,137C. Liu,29D. Liu,151H. Liu,87J. B. Liu,87L. Liu,87M. Liu,33b

Y. Liu,33bM. Livan,119a,119bS. S. A. Livermore,118A. Lleres,55J. Llorente Merino,80S. L. Lloyd,75 E. Lobodzinska,42P. Loch,7W. S. Lockman,137T. Loddenkoetter,21F. K. Loebinger,82A. Loginov,176C. W. Loh,168

T. Lohse,16K. Lohwasser,48M. Lokajicek,125V. P. Lombardo,5R. E. Long,71L. Lopes,124aD. Lopez Mateos,57 J. Lorenz,98N. Lorenzo Martinez,115M. Losada,162P. Loscutoff,15F. Lo Sterzo,132a,132bM. J. Losty,159a,aX. Lou,41

A. Lounis,115K. F. Loureiro,162J. Love,6P. A. Love,71A. J. Lowe,143,fF. Lu,33aH. J. Lubatti,138C. Luci,132a,132b A. Lucotte,55A. Ludwig,44D. Ludwig,42I. Ludwig,48J. Ludwig,48F. Luehring,60G. Luijckx,105W. Lukas,61

D. Lumb,48L. Luminari,132aE. Lund,117B. Lund-Jensen,147B. Lundberg,79J. Lundberg,146a,146b

O. Lundberg,146a,146bJ. Lundquist,36M. Lungwitz,81D. Lynn,25E. Lytken,79H. Ma,25L. L. Ma,173G. Maccarrone,47 A. Macchiolo,99B. Macˇek,74J. Machado Miguens,124aR. Mackeprang,36R. J. Madaras,15H. J. Maddocks,71 W. F. Mader,44R. Maenner,58cT. Maeno,25P. Ma¨ttig,175S. Ma¨ttig,81L. Magnoni,163E. Magradze,54K. Mahboubi,48

S. Mahmoud,73G. Mahout,18C. Maiani,136C. Maidantchik,24aA. Maio,124a,cS. Majewski,25Y. Makida,65 N. Makovec,115P. Mal,136B. Malaescu,30Pa. Malecki,39P. Malecki,39V. P. Maleev,121F. Malek,55U. Mallik,62

D. Malon,6C. Malone,143S. Maltezos,10V. Malyshev,107S. Malyukov,30R. Mameghani,98J. Mamuzic,13b A. Manabe,65L. Mandelli,89aI. Mandic´,74R. Mandrysch,16J. Maneira,124aA. Manfredini,99P. S. Mangeard,88

L. Manhaes de Andrade Filho,24bJ. A. Manjarres Ramos,136A. Mann,54P. M. Manning,137 A. Manousakis-Katsikakis,9B. Mansoulie,136A. Mapelli,30L. Mapelli,30L. March,80J. F. Marchand,29 F. Marchese,133a,133bG. Marchiori,78M. Marcisovsky,125C. P. Marino,169F. Marroquim,24aZ. Marshall,30 F. K. Martens,158L. F. Marti,17S. Marti-Garcia,167B. Martin,30B. Martin,88J. P. Martin,93T. A. Martin,18

V. J. Martin,46B. Martin dit Latour,49S. Martin-Haugh,149M. Martinez,12V. Martinez Outschoorn,57 A. C. Martyniuk,169M. Marx,82F. Marzano,132aA. Marzin,111L. Masetti,81T. Mashimo,155R. Mashinistov,94

J. Masik,82A. L. Maslennikov,107I. Massa,20a,20bG. Massaro,105N. Massol,5P. Mastrandrea,148

A. Mastroberardino,37a,37bT. Masubuchi,155P. Matricon,115H. Matsunaga,155T. Matsushita,66C. Mattravers,118,d J. Maurer,83S. J. Maxfield,73A. Mayne,139R. Mazini,151M. Mazur,21L. Mazzaferro,133a,133bM. Mazzanti,89a

J. Mc Donald,85S. P. Mc Kee,87A. McCarn,165R. L. McCarthy,148T. G. McCarthy,29N. A. McCubbin,129 K. W. McFarlane,56,aJ. A. Mcfayden,139G. Mchedlidze,51bT. Mclaughlan,18S. J. McMahon,129 R. A. McPherson,169,lA. Meade,84J. Mechnich,105M. Mechtel,175M. Medinnis,42R. Meera-Lebbai,111 T. Meguro,116R. Mehdiyev,93S. Mehlhase,36A. Mehta,73K. Meier,58aB. Meirose,79C. Melachrinos,31 B. R. Mellado Garcia,173F. Meloni,89a,89bL. Mendoza Navas,162Z. Meng,151,vA. Mengarelli,20a,20bS. Menke,99

E. Meoni,161K. M. Mercurio,57P. Mermod,49L. Merola,102a,102bC. Meroni,89aF. S. Merritt,31H. Merritt,109 A. Messina,30,zJ. Metcalfe,25A. S. Mete,163C. Meyer,81C. Meyer,31J-P. Meyer,136J. Meyer,174J. Meyer,54 T. C. Meyer,30J. Miao,33dS. Michal,30L. Micu,26aR. P. Middleton,129S. Migas,73L. Mijovic´,136G. Mikenberg,172

M. Mikestikova,125M. Mikuzˇ,74D. W. Miller,31R. J. Miller,88W. J. Mills,168C. Mills,57A. Milov,172

Figure

FIG. 1 (color online). The distribution of the transverse mo- mo-mentum of all tracks and of the leading transverse momo-mentum track in data at detector level
FIG. 2 (color online). The generated and reconstructed MC distributions of the complement of transverse thrust, the thrust minor, and the transverse sphericity are shown in the top part of each plot for the lowest p lead T range
FIG. 3 (color online). Normalized distributions of the complement of transverse thrust using at least six charged particles with p T &gt; 0:5 GeV and jj &lt; 2:5 for different requirements on the transverse momentum of the leading charged-particle, p lead
FIG. 4 (color online). Normalized distributions of transverse thrust minor using at least six charged particles with p T &gt; 0:5 GeV and jj &lt; 2:5 for different requirements on the transverse momentum of the leading charged-particle, p lead T
+3

References

Related documents

I denna slutsats besvarar jag mina frågeställningar sammanfattningsvis utefter mitt resultat och min diskussion. Det som kan ses är att socialarbetarna inte upplever att det finns

Police area Middle Scania was chosen as an area of significance for this thesis due to my personal interest and the interest of the local police to get a better understanding of

• uppmärksamma betydelsen av föräldrarnas inställning för barns lärande i matematik, • arbeta med fördomar och negativa attityder till matematik som finns hos många vuxna,

Resultatet kan kanske knytas ihop med sjuksköterskornas otillfredsställande kunskap om riktlinjer kring det aktuella ämnet och detta kan innebära att patienter som har ett

angående ej HLR-beslut, men alla sjuksköterskor ansåg att patienten och anhöriga ska bli informerade samt att sjuksköterskorna ville vara närvarande när beslutet gavs, något som de

One way of achieving such economy is to alter an already existing expression&#34; (Nilsen, 1981). The photograph of figure 11 is a graffito located at Nile street right next to

(2) Now, the biolm growth is much slower than the diusion of nutrients, so we may, at each time t, use the steady state solution of (1) to model the distribution of the

Similarly, the study in [ 18 ] developed a passive technique of alteration detection that explores video streams and extracts file format structures of the videos from