• No results found

Lecture Outlines Chapter 17 Physics, 3

N/A
N/A
Protected

Academic year: 2021

Share "Lecture Outlines Chapter 17 Physics, 3"

Copied!
85
0
0

Loading.... (view fulltext now)

Full text

(1)

© 2007 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.

Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Lecture Outlines Chapter 17

Physics, 3rd Edition James S. Walker

(2)

Chapter 18 The Laws of

Thermodynamics

(3)

Units of Chapter 18

• The Zeroth Law of Thermodynamics

• The First Law of Thermodynamics

• Thermal Processes

• Specific Heats for an Ideal Gas: Constant Pressure, Constant Volume

• The Second Law of Thermodynamics

• Heat Engines and the Carnot Cycle

(4)

Units of Chapter 18

• Refrigerators, Air Conditioners, and Heat Pumps

• Entropy

• Order, Disorder, and Entropy

• The Third Law of Thermodynamics

(5)

18-1 The Zeroth Law of Thermodynamics

We have already discussed the zeroth law, and include it here for completeness:

If object A is in thermal equilibrium with object C,

and object B is separately in thermal equilibrium with

object C, then objects A and B will be in thermal

equilibrium if they are

placed in thermal contact.

(6)

18-2 The First Law of Thermodynamics

The first law of thermodynamics is a statement of the conservation of energy.

If a system’s volume is constant, and heat is added, its internal energy increases.

(7)

18-2 The First Law of Thermodynamics

If a system does work on the external world, and no heat is added, its internal energy decreases.

(8)

18-2 The First Law of Thermodynamics

Combining these gives the first law of

thermodynamics. The change in a system’s

internal energy is related to the heat Q and the work W as follows:

It is vital to keep track of the signs of Q and W.

(9)

18-2 The First Law of Thermodynamics

The internal energy of the system depends only on its temperature. The work done and the heat added, however, depend on the details of the process involved.

(10)

Example 18-1 Heat, Work, and Internal Energy

På en joggningstur på stranden utför en person W = 430 kJ och avger Q = - 380 kJ. Vad är ändringen i den inre energin? När personen övergår till promenad, avgår Q = - 120 kJ och ΔU = - 260 kJ. Vad blev W?

(11)

Example 18-1 Heat, Work, and Internal Energy

På en joggningstur på stranden utför en person arbetet 430 kJ och avger värmet 380 kJ. Vad är ändringen i den inre energin?

ΔU = Q - W = - 380 kJ - 430 kJ = - 810 kJ

När personen övergår till promenad, avgår

värmet 120 kJ och ändringen i inre energi blir - 260 kJ. Vad blir W?

ΔU = Q - W ger

W = Q - ΔU = -120 kJ – (- 260 kJ) = 140 kJ

(12)

18-3 Thermal Processes

We will assume that all processes we discuss are quasi-static – they are slow enough that the system is always in equilibrium.

We also assume they are reversible:

For a process to be reversible, it must be possible to return both the system and its surroundings to exactly the same states they were in before the process began.

(13)

18-3 Thermal Processes

This is an idealized reversible process. The gas is compressed; the temperature is constant, so heat leaves the gas. As the gas expands, it

draws heat from the reservoir, returning the gas and the reservoir to their initial states. The

piston is assumed frictionless.

(14)

18-3 Thermal Processes

Work done by an expanding gas, constant pressure (isobar process): (18-4)

(15)

Exercise 18-1

En gas med det konstanta trycket 150 kPa

expanderar från ursprungsvolymen 0,76 m3 till 0,92 m3. Hur stort arbete utför gasen?

W = PΔV = 150 kPa(0,92 – 0,76)m3 = 24 kJ

(16)

Example 18-2 Work Area

(17)

Example 18-2

En gas expanderar från ursprungsvolymen 0,40 m3 till 0,62 m3 under det att trycket ökar linjärt från 110 kPa till 230 kPa. Hur stort arbete utför gasen? (W = PΔV)

”Kvadraten” ger arbetet W1 = 110 kPa(0,62 – 0,40)m3 = 24,2 kJ

”Triangeln” ger arbetet

W2 = {(230 – 110)kPa(0,22 m3)}/2 = 13,2 kJ W = 37 kJ

(18)

18-3 Thermal Processes

If the volume stays constant (isochor process), nothing moves and no work is done.

(19)

Active Example 18-1 Find the Total Work

(20)

Active Example 18-1 Find the Total Work

En gas undergår en trestegs process enligt figur 18-7. Hur stort arbete utför gasen under

processen från A till B?

Längs 1 är arbetet W1 = 120kPa(0,40 m3 - 0,25 m3) = 18 kJ

W2 = 0 (isochor process)

Längs 3 ger ”kvadraten” arbetet W3k = 120 kPa(0,54 – 0,40)m3 = 16,8 kJ

och ”triangeln” ger arbetet

W3t = {(180 – 120)kPa(0,14 m3)}/2 = 4,2 kJ W = 39 kJ

(21)

18-3 Thermal Processes

If the temperature is constant (isoterm process), the pressure varies inversely with the volume.

[PV=NkT]

(22)

18-3 Thermal Processes

The work done is the area under the curve:

W = ∫P•dV = {P =NkT/V} = NkT∫dV/V=NkT•ln(Vf / Vi)

(23)

Example 18-3 Heat Flow

(24)

Example 18-3 Heat Flow

En cylinder innehåller 0,50 mol av en monoatomisk gas med temperaturen 310 K. När gasen expanderar isotermt, från ursprungsvolymen 0,31 m3 till 0,45 m3, utför gasen ett arbete. Hur stor mängd värme Q

måste tillföras gasen, för att temperaturen skall kunna hållas konstant? ΔU = Q – W (18-3)

Gasen utför arbetet (W > 0) W = NkT•ln(Vf/Vi) = nRT•ln(Vf / Vi) =

0,50 mol•8,31 J/(mol •K)•310K•ln(1,4516) = 480 J Ändringen i den inre energin ΔU = 0, eftersom den bara beror på temperaturen (U = 3NkT/2, 17-15) Q = ΔU + W = 480 J

(25)

Conceptual Checkpoint 18-1 Ideal or Not?

Inre energin för en viss gas ökar då den komprimeras isotermt. Är gasen ideal?

(26)

18-3 Thermal Processes

An adiabatic process is one in which no heat flows into or out of the system. The adiabatic P-V curve is similar to the isothermal one, but is steeper. One way to ensure that a process is adiabatic is to insulate the system.

(27)

Conceptual Checkpoint 18-2 Pressure versus Volume Vägen (i)i är en isoterm. Vilken väg är den adiabatiska?

(28)

Example 18-4 Work into Energy När en viss gas komprimeras adiabatiskt så görs arbetet (på gasen W<0) 640 J. Vad är ändringen i inre energin? ΔU = Q – W

(29)

Another way to ensure that a process is

effectively adiabatic is to have the volume

change occur very quickly. In this case, heat has no time to flow in or out of the system.

18-3 Thermal Processes

(30)

18-3 Thermal Processes

Here is a summary of the different types of thermal processes:

(31)

18-4 Specific Heats for an Ideal Gas:

Constant Pressure, Constant Volume

Specific heats for ideal gases must be quoted either at constant pressure or at constant

volume. For a constant-volume process,

(32)

18-4 Specific Heats for an Ideal Gas:

Constant Pressure, Constant Volume

At constant pressure,

(33)

Conceptual Checkpoint 18-3 Comparing Specific Heats

Hur är stort är det molära specifika värmet Cv (vid konstant volym), jämfört med det molära specifika värmet Cp (vid konstant tryck)? > = < ?

Hint: Se på figurerna 18-12 och 18-13 (som finns på de två föregående slides, eller i nödfall nästa)!

(34)

18-4 Specific Heats for an Ideal Gas:

Constant Pressure, Constant Volume

Both CV and CP can be calculated for a

monatomic ideal gas using the first law of thermodynamics.

(35)

18-4 Specific Heats for an Ideal Gas: Constant Pressure, Constant Volume

Både CV och CP kan beräknas för en enatomig ideal gas genom att använda första huvudsatsen (18-3) ΔU = Q – W För en process vid konstant volym är W = 0, så att Q(v) = ΔU = (17-15) = 3nRΔT/2 = (16-11)= nCvΔT Cv = 3R/2 (18-6) För en process vid konstant tryck är W = P ΔV = (ideal gas) = nR ΔT Då blir Q(p) = ΔU + W = 3nR ΔT/2 + nR ΔT = nCpΔT Cp = 5R/2 (18-7)

(36)

18-4 Specific Heats for an Ideal Gas:

Constant Pressure, Constant Volume

Although this calculation was done for an ideal, monatomic gas, it works well for real gases.

(37)

Exercise 18-2

Beräknade värmet som behövs för att värma 0,200 mol av en enatomisk, ideal gas 5,00° C a) under

konstant volym och b) under konstant tryck.

För en process vid konstant volym är W = 0, så att Q(v) = nCvΔT = (Cv = 3R/2) = = 0,200 mol•1,5•8,31 J/(mol•K) •5,00 K = 12,5 J

För en process vid konstant tryck är Q(p) = nCpΔT = (Cp = 5R/2) =

= 0,200 mol•2,5•8,31 J/(mol•K) •5,00 K = 20,8 J

(38)

18-4 Specific Heats for an Ideal Gas:

Constant Pressure, Constant Volume

The P-V curve for an adiabat is given by

where

(39)

Example 18-5 Hot Air

(40)

Example 18-5 Hot Air

En behållare med ursprungsvolymen 0,0625 m3

innehåller 2,50 mol av en enatomig ideal gas med temperaturen 315 K. Gasen sammanpressas

adiabatiskt till volymen 0,0350 m3. Vad blir då

gasens a) tryck b) temperatur?

Ideal gas, så PV = nRT gäller, således är

Pi=2,50 mol•8,31 J/(mol•K)•315 K/0,0625m3=104,7 kPa Adiabatisk process gäller dvs PVγ = konstant

PiViγ = PfVfγ

Pf = 104,7 kPa (0,0625/0,0350)5/3 = 275,2 kPa

T=275,2 kPa•0,0350 m /2,50 mol•8,31 J/(mol•K)=464 K

(41)

18-5 The Second Law of Thermodynamics

We observe that heat always flows

spontaneously from a warmer object to a

cooler one, although the opposite would not violate the conservation of energy. This

direction of heat flow is one of the ways of expressing the second law of

thermodynamics:

When objects of different temperatures are brought into thermal contact, the spontaneous flow of heat that results is always from the high temperature object to the low temperature object. Spontaneous heat flow never proceeds in the reverse direction.

(42)

18-6 Heat Engines and the Carnot Cycle

A heat engine is a device that converts heat into work. A classic example is the steam engine.

Fuel heats the water; the vapor expands and does work against the piston; the vapor

condenses back into water again and the cycle

repeats.

(43)

18-6 Heat Engines and the Carnot Cycle

All heat engines have:

• a high-temperature reservoir

• a low-temperature reservoir

• a cyclical engine

These are illustrated schematically here.

(44)

18-6 Heat Engines and the Carnot Cycle

An amount of heat Qh is supplied from the hot

reservoir to the engine during each cycle. Of that heat, some appears as work, and the rest, Qc, is given off as waste heat to the cold reservoir.

The efficiency is the fraction of the heat

supplied to the engine that appears as work.

(45)

18-6 Heat Engines and the Carnot Cycle

The efficiency can also be written:

In order for the engine to run, there must be a temperature difference; otherwise heat will not be transferred.

(46)

Example 18-6 Heat into Work

(47)

Example 18-6 Heat into Work

En värmemaskin med verkningsgraden 24,0 % utför 1250 J arbete. Bestäm Qh och Qc.

Ekvation 18-12 e = W/Qh = (Qh – Qc)/Qh = 1 – Qc/Qh

Qh = W/0,24 = 5210 J (5208 J) Qc = Qh(1 –e) = 3960 J (3958 J)

(48)

18-6 Heat Engines and the Carnot Cycle

The maximum-efficiency heat engine is described in Carnot’s theorem:

If an engine operating between two constant- temperature reservoirs is to have maximum

efficiency, it must be an engine in which all processes are reversible. In addition, all reversible engines

operating between the same two temperatures, Tc and Th, have the same efficiency.

This is an idealization; no real engine can be perfectly reversible.

(49)

18-6 Heat Engines and the Carnot Cycle

If the efficiency depends only on the two

temperatures, the ratio of the temperatures must be the same as the ratio of the transferred heats.

Therefore, the maximum efficiency of a heat engine can be written:

(50)

18-6 Heat Engines and the Carnot Cycle

The maximum work a heat engine can do is then:

If the two reservoirs are at the same

temperature, the efficiency is zero; the

smaller the ratio of the cold temperature to the hot temperature, the closer the efficiency will be to 1.

(51)

Conceptual Checkpoint 18-4 Comparing Efficiencies

Anta att en värmemaskin kan arbeta på två olika sätt.

I det ena processen arbeter den mellan

temperaturerna 400 K/200K och i det andra mellan 600 K/400K. Är verkningsgraden i den första

processen > = < än i det andra?

Ekvation 18-14 Wmax = emaxQh= (1 – Tc/Th )Qh

(52)

Active Example 18-2 Find the Temperature

(53)

Active Example 18-2 Find the Temperature

Om värmemaskinen i exemple 18-6 arbeter med maximal effektivitet och dess kalla reservoar hålls vid temperaturen 295 K, vad är då temperaturen på den varma reservoaren?

Värmemaskinens verkningsgraden 24,0 % är

maximal. Ekvation 18-14 ger då e = 1 – Tc/Th

Th = Tc/(1 – e) = 388 K

(54)

18-7 Refrigerators, Air Conditioners, and Heat Pumps

While heat will flow spontaneously only from a higher temperature to a lower one, it can be

made to flow the other way if work is done on the system. Refrigerators, air conditioners,

and heat pumps all use work to transfer heat from a cold object to a hot object.

(55)

Figure 18-17

Cooling and heating devices

(56)

18-7 Refrigerators, Air Conditioners, and Heat Pumps

If we compare the heat engine and the refrigerator, we see that the refrigerator is basically a heat engine running

backwards – it uses work to extract heat from the cold

reservoir (the inside of the refrigerator) and exhausts to the kitchen. Note that

- more heat is exhausted to the kitchen than is removed from the refrigerator.

(57)

18-7 Refrigerators, Air Conditioners, and Heat Pumps

An ideal refrigerator would remove the most heat from the interior while requiring the

smallest amount of work. This ratio is called the coefficient of performance, COP:

Typical refrigerators have COP values between 2 and 6. Bigger is better!

(58)

Exercise 18-3

Ett kylskåp har ett COP-värde av 2,5. Hur mycket arbete måste tillföras kylskåpet för att

värmemängden 225 J skall föras bort?

Ekvation 18-15 ger W = Qc/COP = 225 J/2,5 = 90 J

(dvs 225 J + 90 J värme i köket)

(59)

18-7 Refrigerators, Air Conditioners, and Heat Pumps

An air conditioner is

essentially identical to a

refrigerator; the cold reservoir is the interior of the house or other space being cooled, and the hot reservoir is outdoors.

Exhausting an air conditioner within the house will result in the house becoming warmer, just as keeping the refrigerator door open will result in the

kitchen becoming warmer.

(60)

Conceptual Checkpoint 18-5 Room Temperature

Tidsbrist har gjort att en ”air conditioner” tillfälligt ställs på matsalsbordet i väntan på en placering på sin rätta plats. Blir nu matsalen

varmare/kallare/ingen skillnad?

(Jämför med ”kylskåpstalet”)

(61)

18-7 Refrigerators, Air Conditioners, and Heat Pumps

Finally, a heat pump is the same as an air conditioner, except with the reservoirs reversed. Heat is removed from the cold reservoir

outside, and exhausted into the house, keeping it warm. Note that the work the pump does actually contributes to the desired result (a warmer house) in this case.

(62)

Example 18-7 Pumping Heat

(63)

18-7 Refrigerators, Air Conditioners, and Heat Pumps

In an ideal heat pump with two operating

temperatures (cold and hot), the Carnot relationship holds; the work needed to add heat Qh to a room is:

The COP for a heat pump:

(64)

Example 18-7 Pumping Heat + Exercise 18-4

En ideal värmepump som uppfyller Carnotrelationen W = Qh – Qc = Qh(1 - Qc/Qh) = Qh(1 – Tc/Th) = 275 J

används för att värma ett rum till 293 K. Hur mycket värme tillförs rummet om utomhustemperaturen är a) 273 k?

Qh = W/(1-Tc / Th) = 4,03 kJ (COP ≈ 15) b) 263 K?

Qh = p.s.s. = 2,69 kJ (COP ≈ 10)

Exercise 18-4 Värmepump med COP ≡ Qh/W = 3,5 tillför 2,5 kJ. W = ? (714 J)

(65)

18-8 Entropy

A reversible engine has the following relation between the heat transferred and the reservoir temperatures

(Carnotrelationen):

Rewriting,

This quantity, Q/T, is the same for both reservoirs, and is defined as the change in entropy.

(66)

18-8 Entropy

For this definition to be valid, the heat transfer must be reversible.

In a reversible heat engine, it can be shown that the entropy does not change.

(67)

Example 18-8 Melts in Your Hand Beräkna entropiändringen då 0,125 kg is av 0°C smälter. Anta att smältningen är reversibel.

Q = mL = 0,125 kg•335 kJ/kg ΔS=Q/T=41875 J/273 K= 153 J/K

(68)

18-8 Entropy

A real engine will operate at a lower efficiency than a reversible engine; this means that less heat is converted to work. Therefore,

Any irreversible process results in an increase of entropy.

(69)

18-8 Entropy

To generalize:

• The total entropy of the universe increases whenever an irreversible process occurs.

• The total entropy of the universe is unchanged whenever a reversible process occurs.

Since all real processes are irreversible, the

entropy of the universe continually increases. If entropy decreases in a system due to work

being done on it, a greater increase in entropy occurs outside the system.

(70)

Example 18-9 Entropy Is Not Conserved! Beräkna entropiändringen nedan ΔSh = - Q/Th = - 1,82 J/K; ΔSc = Q/Tc = 3,44 J/K; ΔS = ΔSh + ΔSc = 1,62 J/K

(71)

18-8 Entropy

As the total entropy of the universe

increases, its ability to do work decreases.

The excess heat exhausted during an

irreversible process cannot be recovered;

doing that would require a decrease in entropy, which is not possible.

(72)

Active Example 18-3 Find the Work

(73)

Active Example 18-3 Find the Work

En reversibel värmemaskin arbetar mellan

temperaturerna Th och Tc enligt figur. Bestäm W då Qh= 1050 J.

W = Qh(1 – Tc/Th) = 494 J

Lägg märke till att ΔS = ΔSh + ΔSc = 0 (som väntat?!) ΔSh = -1050 J/576 K = - 1,82 J/K

ΔSc = 556 J/305 K = 1,82 J/K

(74)

18-9 Order, Disorder, and Entropy

Entropy can be thought of as the increase in disorder in the universe. In this diagram, the end state is less ordered than the initial state – the separation between low and high

temperature areas has been lost.

(75)

18-9 Order, Disorder, and Entropy

If we look at the ultimate fate of the universe in light of the continual increase in entropy, we might envision a future in which the entire universe would have come to the same

temperature. At this point, it would no longer be possible to do any work, nor would any type of life be possible. This is referred to as the “heat death” of the universe.

(76)

18-9 Order, Disorder, and Entropy

So if entropy is continually increasing, how is life possible? How is it that species can evolve into ever more complex forms? Doesn’t this

violate the second law of thermodynamics?

No – life and increasing complexity can exist because they use energy to drive their

functioning. The overall entropy of the universe is still increasing. When a living entity stops

using energy, it dies, and its entropy can increase rather quickly.

(77)

18-10 The Third Law of Thermodynamics

Absolute zero is a temperature that an object can get arbitrarily close to, but never attain.

Temperatures as low as 2.0 x 10-8 K have been achieved in the laboratory, but absolute zero will remain ever elusive – there is simply nowhere to

“put” that last little bit of energy.

This is the third law of thermodynamics:

It is impossible to lower the temperature of an object to absolute zero in a finite number of steps.

(78)

Summary of Chapter 18

• When two objects have the same temperature, they are in thermal equilibrium.

• The first law of thermodynamics is a statement of energy conservation that includes heat.

• The internal energy of a system depends only on its temperature, pressure, and volume.

• A quasi-static process is one in which the

system may be considered to be in equilibrium at all times.

(79)

Summary of Chapter 18

• In a reversible process it is possible to return the system and its surroundings to their initial states.

• Irreversible processes cannot be undone.

• The work done during a process is equal to the area under the curve in the PV plot.

• The work done at constant pressure is

• The work done at constant volume is zero.

• The work done in an isothermal expansion is

(80)

Summary of Chapter 18

• An adiabatic process is one where no heat transfer occurs.

• The value of the specific heat depends on

whether it is at constant pressure or at constant volume.

• Molar specific heat is defined by:

• For a monatomic gas at constant volume:

• For a monatomic gas at constant pressure:

(81)

Summary of Chapter 18

• In a PV plot, is constant, where

• For a monatomic ideal gas,

• The spontaneous flow of heat between objects in thermal equilibrium is always from the hotter one to the colder one.

• A heat engine converts heat into work.

• Efficiency of a heat engine:

(82)

Summary of Chapter 18

• A reversible engine has the maximum possible efficiency,

• The maximum possible work:

• Refrigerators, air conditioners, and heat pumps use work to transfer heat from a cold region to a hot region.

(83)

Summary of Chapter 18

• Coefficient of performance of a refrigerator:

• Work done by an ideal heat pump:

• Coefficient of performance for a heat pump:

(84)

Summary of Chapter 18

• Change of entropy during a reversible heat exchange:

• Total entropy of the universe increases

whenever an irreversible process occurs; total entropy is unchanged after an ideal reversible process.

• Entropy is a measure of disorder.

• The heat death of the universe will occur when everything is the same temperature and no more work can be done.

(85)

Summary of Chapter 18

• It is impossible to lower the temperature of an object to absolute zero in a finite number of

steps.

References

Related documents

Work-Energy Theorem: The total work done on an object is equal to its change in kinetic

Conservative force: the work it does is stored in the form of energy that can be released at a later time.. Example of a conservative

The total mass multiplied by the acceleration of the center of mass is equal to the net external force:. The center of mass accelerates

kinetic energy of a rolling object is a multiple of the kinetic energy of translation... Example 10-5 Like a Rolling Disk. Bestäm a) translationsenergin b)

Gravitational potential energy of an object of mass m a distance r from the Earth’s center:.. 12-4 Gravitational

13-3 Connections between Uniform Circular Motion (likformig cirkulär rörelse) and Simple

Archimedes’ Principle: An object completely immersed in a fluid experiences an upward buoyant force equal in magnitude to the?. weight of fluid displaced by

That is, temperature is the only factor that determines whether two objects in thermal contact are in thermal equilibrium or not.... 16-1 Temperature and the Zeroth Law of