• No results found

Search for Quantum Black Hole Production in High-Invariant-Mass Lepton plus Jet Final States Using pp Collisions at root s=8 TeV and the ATLAS Detector

N/A
N/A
Protected

Academic year: 2021

Share "Search for Quantum Black Hole Production in High-Invariant-Mass Lepton plus Jet Final States Using pp Collisions at root s=8 TeV and the ATLAS Detector"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

Search for Quantum Black Hole Production in High-Invariant-Mass

Lepton þ Jet Final

States Using

pp Collisions at

p

ffiffi

s

¼ 8 TeV and the ATLAS Detector

G. Aad et al.* (ATLAS Collaboration)

(Received 8 November 2013; published 5 March 2014)

This Letter presents a search for quantum black-hole production using20:3 fb−1of data collected with the ATLAS detector in pp collisions at the LHC atpffiffiffis¼ 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeVor more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the leptonþ jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.

DOI:10.1103/PhysRevLett.112.091804 PACS numbers: 13.85.Qk, 04.50.Cd, 04.50.Gh

Quantum black holes (QBHs)[1,2]are predicted in low-scale quantum gravity theories that offer solutions to the mass hierarchy problem of the standard model (SM) by lowering the scale of quantum gravity (MD) from the

Planck scale (∼1016 TeV) to a value of about 1 TeV. In models with large extra dimensions such as the Arkani-Hamed–Dimopoulous–Dvali (ADD) model[3–5], only the gravitational field is allowed to penetrate the n extra dimensions, while all SM fields are localized in the usual four-dimensional space-time. QBHs with masses near MD,

postulated to conserve total angular momentum, color, and electric charge, may decay to two particles [2,6]. The behavior of QBHs is distinct from semiclassical black holes that decay via Hawking radiation to a large number of objects[7]. Searches for semiclassical black holes typically require three or more objects[8,9].

The quantum approximations used in the modeling of black hole production are valid when black hole masses are above a minimal threshold mass, Mth, which is taken to be

equivalent to the QBH inverse gravitational radius. If the QBHs investigated in this Letter are accessible at the Large Hadron Collider (LHC)[10], they can produce leptonþ jet final states[2,6], motivating this first dedicated search for high-invariant-mass final states with a single electron (e) or a single muon (μ), and at least one jet. Two-particle QBH decays to a final state consisting of a lepton and a quark-jet violate lepton and baryon number conservation, producing a distinctive signal for physics beyond the SM. Previous searches for QBHs relied on signatures such as dijet mass

distributions [11,12], generic multiobject configurations [9], and photonþ jet final states[13].

The largest QBH cross section for the final states considered is predicted for the collision of two u quarks (σuu), which produces charge þ4=3 objects with equal branching fractions (BFs) of BFuu¼ 11% to each leptonþ jet final state. The next largest cross sections are for charge þ1=3 (ud) and −2=3 (dd) QBHs with leptonþ jet BFs of BFud¼ 5.7% and BFdd¼ 6.7% [6]. Processes with initial states having antiquarks and heavier sea quarks are suppressed by at least a factor of 100 and can be neglected. The QBH cross section is a steeply declining function of Mth, and has Σσqq× BFqq≈ 8.6 × 105fb,

8.9 × 102fb and 0.75 fb for M

th of 1, 3, and 5 TeV,

respectively [14].

The ATLAS detector [15] includes an inner tracker, covering a pseudorapidity[16]rangejηj < 2.5, surrounded by a superconducting solenoid providing a 2 T central field. A liquid-argon (LAr) electromagnetic (EM) sampling calorimeter (jηj < 3.2), a scintillator-tile hadronic calorim-eter (jηj < 1.7), a LAr hadronic calorimeter (1.4 < jηj < 3.2), and a LAr forward calorimeter (3.1 < jηj < 4.9) provide the energy measurements. The muon spectrometer consists of tracking chambers covering jηj < 2.7, and trigger chambers covering jηj < 2.4, in a magnetic field produced by a system of air-core toroids. Events considered in this analysis are required to have one high-transverse-momentum (high-pT) lepton (e=μ) that passes requirements

of the three-level trigger system [17]. The thresholds applied at the third trigger level are 60 and 36 GeV for electrons and muons, respectively. The analysis is based on the complete 2012 data set of pp collisions taken at a center-of-mass energy of pffiffiffis¼ 8 TeV by the ATLAS detector at the LHC, corresponding to an integrated luminosity of 20:3  0.6 fb−1 [18] after data-quality requirements.

* Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

The event selection is designed to be efficient for generic leptonþ jet final states and is based on leading-order simulated-signal QBH events obtained from the QBH1.04 generator [14], followed by parton showering and hadronization using PYTHIA8.165 [19]. The signal generator uses the MSTW2008LO[20]set of leading-order parton distribution functions (PDFs) with the AU2 underlying-event tune [21]. This Letter assumes the ADD model with Mth¼ MD, n ¼ 6, and the QCD

fac-torization scale for the PDFs set to the inverse gravitational radius[14]. Samples with Mth from 1 to 6 TeV, in steps of

0.5 TeV, are generated for both channels.

Events with a high-pT lepton and one or more jets can

also arise from electroweak (EW) processes including vector-boson production with additional jets, diboson (WW, WZ, ZZ), top-quark pair (t¯t), and single top-quark (t or ¯t) production, and multijet processes including non-prompt leptons from semileptonic hadron decays and jets misidentified as leptons.

The EW background in the signal region (SR) is estimated using Monte Carlo (MC) samples normalized to data in control regions. All MC simulated samples are produced using the ATLAS detector simulation[22]based on GEANT4[23]. The simulated events are reconstructed in the same manner as the data. The t¯t and single-top-quark events are simulated with MC@NLO4.06 [24] and ACERMC3.8 [25], respectively; the production of

W þ jets and Z þ jets is simulated using ALPGEN2.14 [26]; and diboson production is simulated with SHERPA1.4.1 [27]. The leading-order CTEQ6L1 PDFs [28]are used for ALPGEN and ACERMC samples while the

next-to-leading-order CT10 PDFs [29] are used for the SHERPA and MC@NLO samples. The generators for all samples except dibosons are interfaced to HERWIG6.520 [30,31] for parton showering and hadronization and to JIMMY4.31 [32] for the underlying-event model. The results of higher-order calculations are used to adjust the relative fractions of the simulated events as in Refs.[33,34]. Additional inelastic pp interactions, termed pileup, are included in the event simulation so as to match the distribution in the data (on average 21 interactions per bunch crossing).

Electron candidates are identified as localized deposi-tions of energy in the EM calorimeter with pTe> 130 GeV

and jηj < 2.47, excluding the barrel–end-cap transition region, 1.37 < jηj < 1.52, and matched to a track recon-structed in the tracking detectors. Background from jets is reduced by requiring that the shower profiles are consistent with those of electrons[35]. Isolated electrons are selected by requiring the transverse energy deposited in a cone of radiusΔR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔηÞ2þ ðΔϕÞ2¼ 0.3 centered on the elec-tron cluster, excluding the energy of the elecelec-tron cluster itself, to be less than 0.0055 × pTeþ 3.5 GeV after cor-rections for energy due to pileup and energy leakage from the electron cluster into the cone. This criterion provides

nearly constant selection efficiency for signal events over the entire pTe range explored and for all the pileup

conditions.

Muon candidates are required to be detected in at least three layers of the muon spectrometer and to have pTμ>

130 GeV and jηj < 2.4. Possible background from cosmic rays is reduced by requiring the transverse and longitudinal distances of closest approach to the interaction point to be smaller than 0.2 and 1.0 mm, respectively. Signal muons are required to be isolated such thatPpT< 0.05 × pTμ,

wherePpT is the sum of the pT of the other tracks in a

cone of radiusΔR ¼ 0.3 around the direction of the muon. Jets are constructed from three-dimensional noise-suppressed clusters of calorimeter cells using the anti-kt

algorithm with a radius parameter of 0.4 [36,37]. Jet energies are corrected for losses in material in front of the active calorimeter layers, detector inhomogeneities, the noncompensating nature of the calorimeter, and pileup. Jet energies are calibrated using MC simulation and the combination of several in situ techniques applied to data [38–40]. All jets are required to have pTj> 50 GeV and

jηj < 2.5. In addition, the most energetic jet is required to have pTj> 130 GeV.

The missing transverse momentum (with magnitude EmissT ), used only in the background estimation, is

calcu-lated as the negative of the vectorial sum of calibrated clustered energy deposits in the calorimeters, and is corrected for the momenta of any reconstructed muons[41].

In the electron (muon) channel, events are required to have exactly one electron (muon). Multijet background can be reduced, with minimal loss in signal efficiency, by requiring the average value ofη for the lepton and leading jet to satisfy jhηij < 1.25 and the difference between the lepton and leading jet η to satisfy jΔηj < 1.5. The signal lepton and jet are mostly back-to-back inϕ and are required to satisfyjΔϕj > π=2.

The invariant mass (minv) is calculated from the lepton

and highest-pTjet. The SR is defined by a lower bound on

minv, mmin, that accounts for experimental resolution. In the

electron channel mmin¼ 0.9Mth is used. In the muon

channel, the requirement is loosened at high invariant mass, as muon resolution has a term quadratic in pTμ,

resulting in mmin¼ ½0.95 − 0.05Mth=1 TeVMth. A

low-invariant-mass control region (LIMCR) is defined with minv

between 400 and 900 GeV, which has a negligible contamination from a potential signal (< 2%) for the lowest Mth considered.

The acceptance of the event selection is about 65%, based on generator-level quantities and calculated by imposing selection criteria that apply directly to phase space (lepton/jetη, lepton/jet pT,Δη, Δϕ, hηi, and minv).

All other selection criteria, which in general correspond to event and object quality requirements, are used to calculate the experimental efficiency based on the events included in

(3)

the acceptance. The experimental efficiency falls from 89 (59)% to 81(50)% for masses from 1 to 6 TeV in the electron (muon) channel. The experimental efficiency in the muon channel is lower than that in the electron channel because more stringent requirements are applied to ensure the best possible resolution on minv. The cumulative signal

efficiency is the product of the acceptance and experimental efficiency.

In the electron channel, the multijet background is characterized by small values of EmissT , while EW

back-ground events can have large Emiss

T due to the production of

high-momentum neutrinos. The discriminating power of Emiss

T is used to determine the normalization of the two

backgrounds to the data in the LIMCR. The multijet template is taken from data in which electron candidates pass relaxed identification criteria but fail the normal identification selection, and the EW template is taken from MC simulation where electron candidates pass the normal selection. The templates are fit to the EmissT distribution in

the interval [0,150] GeV in five separate detector-motivated regions ofη, to determine normalization factors for both the multijet and EW backgrounds.

To extrapolate both the multijet and EW background to the SR, functions of the form p1xp2þp3lnðxÞð1 − xÞp4 (with

x ¼ minv=

ffiffiffi s p

and fit parameters p1–p4)[42]are used and

the contributions are scaled by the corresponding normali-zation factor derived in the LIMCR. A simple power-law fit, with p3and p4fixed to zero, adequately describes both

data and simulation. This is used as the baseline, while p3

and p4are allowed to vary as part of the evaluation of the

systematic uncertainty.

In the muon channel, the multijet and EW backgrounds can be discriminated on the basis of the transverse impact parameter (d0) distribution of the muon since the multijet

background is dominated by jets containing charm and bottom hadrons decaying to muons while EW backgrounds are dominated by prompt muons. The template for the EW background is selected using Z-boson decays to two muons while the template for the multijet background is taken from muons that fail the isolation requirement. Both templates are taken from data. The templates are fit to the d0 distribution in the interval ½−0.1; þ0.1 mm to

determine the normalization factors. The fraction of multi-jet background,0.046  0.005, is neglected when extrapo-lating the background in SR. The procedure for extrapolating the EW background to the SR is the same as for the electron channel.

The background estimate in the SR, shown in Fig. 1, was not compared to data until the final fit method and parameters were fixed. The hatched area in Fig.1shows the total uncertainty in the background estimate, which is dominated by the systematic uncertainties. In extracting the limits, the fits described above are used to extrapolate the background into the high invariant-mass region.

The systematic uncertainties on the background are evaluated as a function of minv, and are dominated by

uncertainties on the fits used to extrapolate the background to the highest minv, uncertainties on PDFs, and the choice of

MC generator. Systematic uncertainties due to the choice of fitting functions are evaluated by fitting the minvspectrum

with parameters p3 and p4 free and taking the difference

between these fits and the fits with p3and p4fixed to zero.

Additionally, SHERPA samples are used instead of ALPGEN and the fits are repeated. The uncertainty in the PDFs is estimated using a set of 44 PDF eigenvectors for CTEQ6.6[43]. For each of the 44 sets, the background fits are repeated and the extrapolated backgrounds are estimated. To estimate the uncertainty in the multijet background in the electron channel, an alternative selection

Invariant Mass (e,jet) [TeV]

-1 10 × 2 1 2 3 4 5 6 Events / 0.1 T e V -1 10 1 10 2 10 3 10 4 10 5 10 6 10 ATLAS = 8 TeV s -1 L dt = 20.3 fb

e+jet (a) Data 2012 W+jets Z+jets top quark Diboson Multijet QBH (4 TeV) QBH (5 TeV) ,jet) [TeV] µ Invariant Mass ( -1 10 × 2 1 2 3 4 5 6 7 8 9 Events / 0.1 T e V -2 10 -1 10 1 10 2 10 3 10 4 10 5 10 6 10 ATLAS = 8 TeV s -1 L dt = 20.3 fb

+jet µ (b) Data 2012 W+jets Z+jets top quark Diboson Multijet QBH (4 TeV) QBH (5 TeV)

FIG. 1 (color online). Distribution of the invariant mass of the lepton and highest-pT jet in (a) the electronþ jet channel and

(b) the muonþ jet channel, for data (points with error bars) and for SM backgrounds (solid histograms). Overlaid are two examples of QBH signals. The sum of the uncertainties due to the finite MC sample size and from various sources of systematic uncertainty is shown by the hatched area. To extract the upper limit on the leptonþ jet cross section, a fit to the invariant-mass distribution is performed, replacing the uncertainties due to MC sample size by the statistical uncertainties on the fit parameters.

(4)

of background-enriched data events, based on photons, is used. The systematic uncertainties from the simulation of the detector response are associated with the jet and electron energy scales and resolutions, the muon momen-tum scale and resolution, and the trigger requirement. The combined uncertainty in the background prediction ranges from 16% (1 TeV) to 100% (6 TeV) for the electron channel and from 50% (1 TeV) to 170% (6 TeV) for the muon channel. Background systematic uncertainties for Mth¼

5 TeV are given in Table I.

Uncertainties on the signal efficiency in each of the mass bins are associated with the requirements on Δη, Δϕ, hηi, minv, and isolation. In addition, uncertainties on the detector

simulation, mentioned above for the background, as well as the uncertainty in luminosity are taken into account. The combined uncertainty in the signal efficiency from these sources ranges from 3.5% at 1 TeV to 3.9% at 6 TeV for the electron channel and from 3.6% at 1 TeV to 5.6% at 6 TeV for the muon channel. The cumulative efficiency, shown in TableII, is taken from the signal MC simulation for charge þ4=3 QBHs. The differences in the efficiency between the charge þ4=3 state and the other charged states are much smaller than the uncertainties mentioned above and are neglected. The effect of the 0.65% uncertainty in the LHC beam energy [44] is to change the QBH production cross section. Since the QBH cross section is nearly constant in Mth=

ffiffiffi s p

this is effectively an uncertainty in Mth and has a

negligible effect on the limits.

The observed numbers of events and the expected back-grounds, shown in TableII, are in agreement within the total uncertainty. There is no evidence for any excess. Upper limits onΣσqq× BFqqfor the production of QBHs above Mth are

determined in the interval 1–6 TeVassuming lepton univer-sality and using the CLs method[45,46], which is designed to give conservative limits in cases where the observed back-ground fluctuates below the expected values. The statistical combination of the channels employs a likelihood function constructed as the product of Poisson probability terms describing the total number of events observed in each

channel. Systematic uncertainties are incorporated as nuisance parameters into the likelihood through their effect on the mean of the Poisson functions and through convolution with their assumed Gaussian distributions. Correlations between chan-nels are taken into account.

Figure 2 shows the 95% confidence level (C.L.) com-bined leptonþ jet upper limit on the cross section times TABLE I. Breakdown of relative systematic uncertainties on

the SM background for the threshold mass Mth¼ 5 TeV. The

uncertainties are added in quadrature to obtain the total uncer-tainty.

Electronþ jet Muonþ jet

Source % %

Lepton reconstruction, scale, and resolution

þ2 −1 þ30 −7

Jet reconstruction, scale, and resolution þ31 −15 þ5 −5 Multijet modeling þ27 −27 -PDF þ52 −33 þ100 −69 Fit þ77 −77 þ130 −71 Total þ100 −89 þ170 −100

TABLE II. Numbers of expected background (Expect.) and observed (Obs.) events, along with the cumulative signal efficiencies (Eff.), with uncertainties including both the statistical and systematic components for various values of Mth. Numbers

of events are integrated above the minv requirement for the

given Mth.

Electronþ jet Muonþ jet

Mth Obs. Expect. Eff. Obs. Expect. Eff.

TeV % % 1.0 1200 1210þ230−220 57  4 620 550  280 38  4 1.5 100 110  40 57  4 49 65þ45−40 36  4 2.0 12 19þ13−12 56  4 8 14þ16−14 36  4 2.5 0 5.3þ4.5−3.9 55  4 3 5þ6−5 34  4 3.0 0 1.8þ1.8−1.6 54  4 1 2.1þ2.9−2.1 34  4 3.5 0 0.76þ0.79−0.67 54  4 0 1.0þ1.6−1.0 33  4 4.0 0 0.35þ0.38−0.34 53  4 0 0.57þ0.94−0.57 33  5 5.0 0 0.09þ0.10−0.09 52  4 0 0.24þ0.39−0.24 32  5 6.0 0 0.03þ0.04−0.03 52  4 0 0.13þ0.22−0.13 32  6 [TeV] th M 1 2 3 4 5 6 [fb] qq BF× qq σ

-1 10 1 10 2 10 Expected σ 1 ± Expected σ 2 ± Expected Observed QBH prediction ATLAS -1 L dt = 20.3 fb

= 8 TeV s 95% CL upper limit

FIG. 2 (color online). The combined 95% C.L. upper limits on Σσqq× BFqqfor QBHs decaying to a lepton and jet, as a function

of Mth, assuming MD¼ Mthand n ¼ 6 ADD extra dimensions.

The limits take into account statistical and systematic uncertain-ties. Points along the solid black line indicate the mass of the signal where the limit is computed. Also shown are the1σ and 2σ bands, indicating the underlying distribution of possible limit outcomes under the background-only hypothesis. The predicted cross section for QBHs is shown as the solid curve.

(5)

branching fraction for the production of QBHs as a function of Mth. Above 3.5 TeV, the limit is 0.18 fb. For the n ¼ 6

QBH model assumed in this Letter, the 95% C.L. lower limit on Mth is 5.3 TeV. For n ¼ 2, and all other model

assumptions the same, the 95% C.L. lower limit on Mth is

4.7 TeV. Treating the channels separately, the 95% C.L. upper limit on the electron ðmuonÞ þ jet Σσqq× BFqq above 3.5 TeV is 0.27 (0.49) fb, and the n ¼ 6 lower limit on Mth is 5.2 (5.1) TeV.

In conclusion, a first search for two body leptonþ jet final states with large invariant mass has been performed using20:3 fb−1 of pp collisions recorded atpffiffiffis¼ 8 TeV with the ATLAS detector at the LHC. In the invariant-mass region above 1 TeV the observed events are consistent with data-driven extrapolated backgrounds from the low-invariant-mass control region. Above 3.5 TeV the expected background drops below one event and the 95% C.L. upper limit on the electron ðmuonÞ þ jet Σσqq× BFqq is 0.27 (0.49) fb. Assuming lepton universality, the 95% C.L. upper limit on the sum of the product of QBH leptonþ jet production cross sections and branching fractions is 0.18 fb.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[1] P. Meade and L. Randall,J. High Energy Phys. 05 (2008) 003.

[2] X. Calmet, W. Gong, and S. D. Hsu,Phys. Lett. B 668, 20 (2008).

[3] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali,Phys. Lett. B 429, 263 (1998).

[4] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali,Phys. Lett. B 436, 257 (1998).

[5] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali,Phys. Rev. D 59, 086004 (1999).

[6] D. M. Gingrich,J. Phys. G 37, 105008 (2010).

[7] L. A. Anchordoqui, J. L. Feng, H. Goldberg, and A. D. Shapere,Phys. Rev. D 65, 124027 (2002).

[8] ATLAS Collaboration,Phys. Lett. B 716, 122 (2012). [9] CMS Collaboration,J. High Energy Phys. 07 (2013) 178. [10] L. Evans and P. Bryant,JINST 3, S08001 (2008). [11] ATLAS Collaboration, J. High Energy Phys. 01 (2013)

029.

[12] CMS Collaboration, J. High Energy Phys. 01 (2013) 013.

[13] ATLAS Collaboration,Phys. Lett. B 728, 562 (2014). [14] D. M. Gingrich,Comput. Phys. Commun. 181, 1917 (2010). [15] ATLAS Collaboration,JINST 3, S08003 (2008).

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. The pseudorapidity is defined in terms of the polar angleθ as η ¼ − ln tanðθ=2Þ. Cylindrical coordinates (r, φ) are used in the transverse plane,ϕ being the azimuthal angle around the beam pipe, referred to the x axis.

[17] ATLAS Collaboration,Eur. Phys. J. C 72, 1849 (2012). [18] ATLAS Collaboration,Eur. Phys. J. C 73, 2518 (2013). [19] T. Sjostrand, S. Mrenna, and P. Z. Skands,Comput. Phys.

Commun. 178, 852 (2008).

[20] A. Martin, W. Stirling, R. Thorne, and G. Watt,Eur. Phys. J. C 63, 189 (2009).

[21] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2012-003, 2012,http://cds.cern.ch/record/1474107/.

[22] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [23] GEANT4 Collaboration, Nucl. Instrum. Methods Phys.

Res., Sect. A 506, 250 (2003).

[24] S. Frixione, E. Laenen, P. Motylinski, C. White, and B. R. Webber,J. High Energy Phys. 07 (2008) 029.

[25] B. P. Kersevan and E. Richter-Was, Comput. Phys. Commun. 184, 919 (2013).

[26] M. L. Mangano, F. Piccinini, A. D Polosa, M. Moretti, and R. Pittau, J. High Energy Phys. 07 (2003) 001.

[27] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter,J. High Energy Phys. 02 (2009) 007.

[28] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung,J. High Energy Phys. 07 (2002) 012. [29] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J.

Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010). [30] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys. 01 (2001) 010.

[31] ATLAS Collaboration, Report No. ATLAS-PUB-2011-008 2011,https://cds.cern.ch/record/1345343.

(6)

[32] J. Butterworth, J. R. Forshaw, and M. Seymour,Z. Phys. C 72, 637 (1996).

[33] R. Hamberg, W. L. van Neerven, and T. Matsuura,Nucl. Phys. B359, 343 (1991).

[34] Q. Seth, G. Ryan, L. Ye, and P. Frank, Comput. Phys. Commun. 184, 209 (2013).

[35] ATLAS Collaboration,Eur. Phys. J. C 72, 1909 (2012). [36] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy

Phys. 04 (2008) 063.

[37] M. Cacciari and G. P. Salam,Phys. Lett. B 641, 57 (2006). [38] ATLAS Collaboration,Eur. Phys. J. C 73, 2304 (2013). [39] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy

Phys. 04 (2008) 005.

[40] M. Cacciari, G. P. Salam, and S. Sapeta, J. High Energy Phys. 04 (2010) 065.

[41] ATLAS Collaboration,Eur. Phys. J. C 72, 1844 (2012). [42] R. M. Harris and K. Kousouris,Int. J. Mod. Phys. A 26,

5005 (2011).

[43] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan,Phys. Rev. D 78, 013004 (2008).

[44] J. Wenninger, Report No. CERN-ATS-2013-040, 2013, http://cds.cern.ch/record/1546734.

[45] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[46] A. L. Read,J. Phys. G 28, 2693 (2002).

G. Aad,48T. Abajyan,21B. Abbott,112 J. Abdallah,152 S. Abdel Khalek,116 O. Abdinov,11R. Aben,106 B. Abi,113 M. Abolins,89O. S. AbouZeid,159H. Abramowicz,154H. Abreu,137 Y. Abulaiti,147a,147bB. S. Acharya,165a,165b,b

L. Adamczyk,38a D. L. Adams,25T. N. Addy,56J. Adelman,177 S. Adomeit,99 T. Adye,130 S. Aefsky,23 T. Agatonovic-Jovin,13b J. A. Aguilar-Saavedra,125b,c M. Agustoni,17S. P. Ahlen,22A. Ahmad,149 F. Ahmadov,64,d

G. Aielli,134a,134bT. P. A. Åkesson,80G. Akimoto,156 A. V. Akimov,95M. A. Alam,76J. Albert,170 S. Albrand,55 M. J. Alconada Verzini,70M. Aleksa,30I. N. Aleksandrov,64C. Alexa,26aG. Alexander,154G. Alexandre,49T. Alexopoulos,10

M. Alhroob,165a,165cG. Alimonti,90a L. Alio,84 J. Alison,31B. M. M. Allbrooke,18L. J. Allison,71P. P. Allport,73 S. E. Allwood-Spiers,53J. Almond,83A. Aloisio,103a,103bR. Alon,173 A. Alonso,36F. Alonso,70A. Altheimer,35 B. Alvarez Gonzalez,89M. G. Alviggi,103a,103bK. Amako,65Y. Amaral Coutinho,24aC. Amelung,23V. V. Ammosov,129,a S. P. Amor Dos Santos,125aA. Amorim,125a,eS. Amoroso,48N. Amram,154G. Amundsen,23C. Anastopoulos,30L. S. Ancu,17

N. Andari,30T. Andeen,35C. F. Anders,58bG. Anders,58a K. J. Anderson,31A. Andreazza,90a,90bV. Andrei,58a X. S. Anduaga,70S. Angelidakis,9 P. Anger,44A. Angerami,35F. Anghinolfi,30A. V. Anisenkov,108N. Anjos,125a A. Annovi,47 A. Antonaki,9 M. Antonelli,47A. Antonov,97J. Antos,145b F. Anulli,133aM. Aoki,65L. Aperio Bella,18 R. Apolle,119,f G. Arabidze,89 I. Aracena,144Y. Arai,65 A. T. H. Arce,45J-F. Arguin,94S. Argyropoulos,42E. Arik,19a,a M. Arik,19aA. J. Armbruster,88O. Arnaez,82V. Arnal,81O. Arslan,21A. Artamonov,96G. Artoni,23S. Asai,156N. Asbah,94 S. Ask,28B. Åsman,147a,147bL. Asquith,6K. Assamagan,25R. Astalos,145aA. Astbury,170M. Atkinson,166N. B. Atlay,142 B. Auerbach,6 E. Auge,116K. Augsten,127 M. Aurousseau,146bG. Avolio,30G. Azuelos,94,gY. Azuma,156M. A. Baak,30

C. Bacci,135a,135bA. M. Bach,15H. Bachacou,137 K. Bachas,155 M. Backes,30M. Backhaus,21J. Backus Mayes,144 E. Badescu,26aP. Bagiacchi,133a,133bP. Bagnaia,133a,133bY. Bai,33aD. C. Bailey,159T. Bain,35J. T. Baines,130O. K. Baker,177 S. Baker,77P. Balek,128F. Balli,137 E. Banas,39Sw. Banerjee,174 D. Banfi,30A. Bangert,151V. Bansal,170 H. S. Bansil,18 L. Barak,173S. P. Baranov,95T. Barber,48E. L. Barberio,87D. Barberis,50a,50bM. Barbero,84T. Barillari,100M. Barisonzi,176 T. Barklow,144N. Barlow,28B. M. Barnett,130R. M. Barnett,15A. Baroncelli,135aG. Barone,49A. J. Barr,119F. Barreiro,81 J. Barreiro Guimarães da Costa,57R. Bartoldus,144A. E. Barton,71P. Bartos,145aV. Bartsch,150A. Bassalat,116A. Basye,166 R. L. Bates,53L. Batkova,145aJ. R. Batley,28M. Battistin,30F. Bauer,137H. S. Bawa,144,hT. Beau,79P. H. Beauchemin,162

R. Beccherle,123a,123bP. Bechtle,21H. P. Beck,17K. Becker,176 S. Becker,99 M. Beckingham,139A. J. Beddall,19c A. Beddall,19cS. Bedikian,177V. A. Bednyakov,64C. P. Bee,149L. J. Beemster,106T. A. Beermann,176M. Begel,25K. Behr,119

C. Belanger-Champagne,86P. J. Bell,49W. H. Bell,49G. Bella,154 L. Bellagamba,20a A. Bellerive,29M. Bellomo,85 A. Belloni,57O. L. Beloborodova,108,iK. Belotskiy,97O. Beltramello,30O. Benary,154D. Benchekroun,136a K. Bendtz,147a,147bN. Benekos,166Y. Benhammou,154E. Benhar Noccioli,49J. A. Benitez Garcia,160bD. P. Benjamin,45 J. R. Bensinger,23 K. Benslama,131S. Bentvelsen,106 D. Berge,106 E. Bergeaas Kuutmann,16N. Berger,5 F. Berghaus,170

E. Berglund,106J. Beringer,15C. Bernard,22P. Bernat,77C. Bernius,78F. U. Bernlochner,170 T. Berry,76P. Berta,128 C. Bertella,84F. Bertolucci,123a,123b M. I. Besana,90a G. J. Besjes,105O. Bessidskaia,147a,147bN. Besson,137 S. Bethke,100 W. Bhimji,46R. M. Bianchi,124L. Bianchini,23M. Bianco,30O. Biebel,99S. P. Bieniek,77K. Bierwagen,54J. Biesiada,15

M. Biglietti,135a J. Bilbao De Mendizabal,49H. Bilokon,47M. Bindi,20a,20bS. Binet,116A. Bingul,19cC. Bini,133a,133b B. Bittner,100C. W. Black,151J. E. Black,144K. M. Black,22D. Blackburn,139R. E. Blair,6J.-B. Blanchard,137T. Blazek,145a

(7)

I. Bloch,42C. Blocker,23W. Blum,82,a U. Blumenschein,54G. J. Bobbink,106V. S. Bobrovnikov,108S. S. Bocchetta,80 A. Bocci,45C. R. Boddy,119M. Boehler,48J. Boek,176T. T. Boek,176J. A. Bogaerts,30A. G. Bogdanchikov,108 A. Bogouch,91,a C. Bohm,147aJ. Bohm,126V. Boisvert,76T. Bold,38a V. Boldea,26a A. S. Boldyrev,98N. M. Bolnet,137

M. Bomben,79 M. Bona,75M. Boonekamp,137A. Borisov,129 G. Borissov,71M. Borri,83S. Borroni,42J. Bortfeldt,99 V. Bortolotto,135a,135b K. Bos,106 D. Boscherini,20a M. Bosman,12 H. Boterenbrood,106 J. Bouchami,94J. Boudreau,124 E. V. Bouhova-Thacker,71D. Boumediene,34C. Bourdarios,116N. Bousson,84S. Boutouil,136d A. Boveia,31J. Boyd,30 I. R. Boyko,64I. Bozovic-Jelisavcic,13bJ. Bracinik,18P. Branchini,135aA. Brandt,8G. Brandt,15O. Brandt,58aU. Bratzler,157

B. Brau,85 J. E. Brau,115 H. M. Braun,176,a S. F. Brazzale,165a,165cB. Brelier,159K. Brendlinger,121A. J. Brennan,87 R. Brenner,167S. Bressler,173K. Bristow,146cT. M. Bristow,46D. Britton,53F. M. Brochu,28I. Brock,21R. Brock,89 C. Bromberg,89J. Bronner,100G. Brooijmans,35T. Brooks,76W. K. Brooks,32bJ. Brosamer,15 E. Brost,115 G. Brown,83

J. Brown,55P. A. Bruckman de Renstrom,39D. Bruncko,145b R. Bruneliere,48S. Brunet,60A. Bruni,20a G. Bruni,20a M. Bruschi,20aL. Bryngemark,80T. Buanes,14Q. Buat,55F. Bucci,49P. Buchholz,142R. M. Buckingham,119A. G. Buckley,46 S. I. Buda,26aI. A. Budagov,64B. Budick,109F. Buehrer,48L. Bugge,118M. K. Bugge,118O. Bulekov,97A. C. Bundock,73 M. Bunse,43H. Burckhart,30S. Burdin,73B. Burghgrave,107S. Burke,130I. Burmeister,43E. Busato,34V. Büscher,82 P. Bussey,53C. P. Buszello,167B. Butler,57J. M. Butler,22A. I. Butt,3C. M. Buttar,53J. M. Butterworth,77W. Buttinger,28 A. Buzatu,53M. Byszewski,10S. Cabrera Urbán,168D. Caforio,20a,20bO. Cakir,4aP. Calafiura,15G. Calderini,79P. Calfayan,99

R. Calkins,107 L. P. Caloba,24aR. Caloi,133a,133bD. Calvet,34S. Calvet,34R. Camacho Toro,49P. Camarri,134a,134b D. Cameron,118 L. M. Caminada,15R. Caminal Armadans,12S. Campana,30 M. Campanelli,77A. Campoverde,149

V. Canale,103a,103bF. Canelli,31A. Canepa,160aJ. Cantero,81R. Cantrill,76T. Cao,40M. D. M. Capeans Garrido,30 I. Caprini,26aM. Caprini,26a M. Capua,37a,37bR. Caputo,82R. Cardarelli,134aT. Carli,30G. Carlino,103aL. Carminati,90a,90b

S. Caron,105E. Carquin,32aG. D. Carrillo-Montoya,146c A. A. Carter,75J. R. Carter,28J. Carvalho,125a,jD. Casadei,77 M. P. Casado,12E. Castaneda-Miranda,146b A. Castelli,106V. Castillo Gimenez,168N. F. Castro,125aP. Catastini,57

A. Catinaccio,30J. R. Catmore,71A. Cattai,30G. Cattani,134a,134bS. Caughron,89V. Cavaliere,166D. Cavalli,90a M. Cavalli-Sforza,12V. Cavasinni,123a,123bF. Ceradini,135a,135bB. Cerio,45K. Cerny,128A. S. Cerqueira,24b A. Cerri,150 L. Cerrito,75 F. Cerutti,15M. Cerv,30A. Cervelli,17S. A. Cetin,19b A. Chafaq,136aD. Chakraborty,107 I. Chalupkova,128

K. Chan,3 P. Chang,166B. Chapleau,86J. D. Chapman,28D. Charfeddine,116D. G. Charlton,18V. Chavda,83 C. A. Chavez Barajas,30S. Cheatham,86S. Chekanov,6 S. V. Chekulaev,160aG. A. Chelkov,64M. A. Chelstowska,88

C. Chen,63 H. Chen,25K. Chen,149 L. Chen,33d,k S. Chen,33c X. Chen,146cY. Chen,35H. C. Cheng,88Y. Cheng,31 A. Cheplakov,64R. Cherkaoui El Moursli,136eV. Chernyatin,25,a E. Cheu,7L. Chevalier,137V. Chiarella,47 G. Chiefari,103a,103bJ. T. Childers,30A. Chilingarov,71G. Chiodini,72aA. S. Chisholm,18R. T. Chislett,77A. Chitan,26a M. V. Chizhov,64S. Chouridou,9B. K. B. Chow,99I. A. Christidi,77D. Chromek-Burckhart,30M. L. Chu,152J. Chudoba,126

G. Ciapetti,133a,133bA. K. Ciftci,4aR. Ciftci,4a D. Cinca,62V. Cindro,74A. Ciocio,15P. Cirkovic,13b Z. H. Citron,173 M. Citterio,90a M. Ciubancan,26aA. Clark,49P. J. Clark,46R. N. Clarke,15W. Cleland,124J. C. Clemens,84B. Clement,55

C. Clement,147a,147bY. Coadou,84M. Cobal,165a,165cA. Coccaro,139J. Cochran,63 L. Coffey,23J. G. Cogan,144 J. Coggeshall,166B. Cole,35S. Cole,107A. P. Colijn,106 C. Collins-Tooth,53J. Collot,55T. Colombo,58c G. Colon,85

G. Compostella,100 P. Conde Muiño,125aE. Coniavitis,167M. C. Conidi,12I. A. Connelly,76S. M. Consonni,90a,90b V. Consorti,48S. Constantinescu,26a C. Conta,120a,120bG. Conti,57 F. Conventi,103a,lM. Cooke,15B. D. Cooper,77

A. M. Cooper-Sarkar,119 N. J. Cooper-Smith,76K. Copic,15T. Cornelissen,176M. Corradi,20a F. Corriveau,86,m A. Corso-Radu,164 A. Cortes-Gonzalez,12G. Cortiana,100G. Costa,90a M. J. Costa,168R. Costa Batalha Pedro,125a D. Costanzo,140D. Côté,8 G. Cottin,32aG. Cowan,76B. E. Cox,83K. Cranmer,109G. Cree,29S. Crépé-Renaudin,55 F. Crescioli,79M. Crispin Ortuzar,119 M. Cristinziani,21G. Crosetti,37a,37b C.-M. Cuciuc,26aC. Cuenca Almenar,177 T. Cuhadar Donszelmann,140J. Cummings,177M. Curatolo,47C. Cuthbert,151H. Czirr,142P. Czodrowski,3Z. Czyczula,177 S. D’Auria,53M. D’Onofrio,73A. D’Orazio,133a,133bM. J. Da Cunha Sargedas De Sousa,125aC. Da Via,83W. Dabrowski,38a A. Dafinca,119T. Dai,88F. Dallaire,94C. Dallapiccola,85M. Dam,36A. C. Daniells,18M. Dano Hoffmann,36V. Dao,105 G. Darbo,50a G. L. Darlea,26c S. Darmora,8 J. A. Dassoulas,42W. Davey,21C. David,170 T. Davidek,128 E. Davies,119,f M. Davies,94O. Davignon,79A. R. Davison,77Y. Davygora,58aE. Dawe,143I. Dawson,140R. K. Daya-Ishmukhametova,23

K. De,8R. de Asmundis,103aS. De Castro,20a,20b S. De Cecco,79J. de Graat,99N. De Groot,105P. de Jong,106 C. De La Taille,116H. De la Torre,81F. De Lorenzi,63L. De Nooij,106D. De Pedis,133aA. De Salvo,133aU. De Sanctis,165a,165c

(8)

B. Dechenaux,55D. V. Dedovich,64J. Degenhardt,121I. Deigaard,106J. Del Peso,81T. Del Prete,123a,123bT. Delemontex,55 F. Deliot,137 M. Deliyergiyev,74A. Dell’Acqua,30L. Dell’Asta,22 M. Della Pietra,103a,l D. della Volpe,49M. Delmastro,5 P. A. Delsart,55C. Deluca,106S. Demers,177M. Demichev,64A. Demilly,79B. Demirkoz,12,nS. P. Denisov,129D. Derendarz,39

J. E. Derkaoui,136dF. Derue,79P. Dervan,73 K. Desch,21P. O. Deviveiros,106A. Dewhurst,130 S. Dhaliwal,106 A. Di Ciaccio,134a,134bL. Di Ciaccio,5 C. Di Donato,103a,103bA. Di Girolamo,30 B. Di Girolamo,30A. Di Mattia,153 B. Di Micco,135a,135bR. Di Nardo,47A. Di Simone,48R. Di Sipio,20a,20bD. Di Valentino,29M. A. Diaz,32a E. B. Diehl,88

J. Dietrich,42T. A. Dietzsch,58a S. Diglio,87A. Dimitrievska,13a K. Dindar Yagci,40J. Dingfelder,21C. Dionisi,133a,133b P. Dita,26aS. Dita,26aF. Dittus,30F. Djama,84T. Djobava,51bM. A. B. do Vale,24cA. Do Valle Wemans,125a,oT. K. O. Doan,5 D. Dobos,30E. Dobson,77 C. Doglioni,49T. Doherty,53T. Dohmae,156J. Dolejsi,128 Z. Dolezal,128B. A. Dolgoshein,97,a

M. Donadelli,24d S. Donati,123a,123bP. Dondero,120a,120bJ. Donini,34J. Dopke,30A. Doria,103aA. Dos Anjos,174 A. Dotti,123a,123bM. T. Dova,70 A. T. Doyle,53M. Dris,10J. Dubbert,88S. Dube,15E. Dubreuil,34 E. Duchovni,173 G. Duckeck,99O. A. Ducu,26a D. Duda,176 A. Dudarev,30F. Dudziak,63L. Duflot,116 L. Duguid,76M. Dührssen,30 M. Dunford,58aH. Duran Yildiz,4aM. Düren,52M. Dwuznik,38aJ. Ebke,99W. Edson,2C. A. Edwards,76N. C. Edwards,46

W. Ehrenfeld,21T. Eifert,144G. Eigen,14K. Einsweiler,15T. Ekelof,167 M. El Kacimi,136cM. Ellert,167 S. Elles,5 F. Ellinghaus,82K. Ellis,75 N. Ellis,30J. Elmsheuser,99M. Elsing,30 D. Emeliyanov,130 Y. Enari,156 O. C. Endner,82

M. Endo,117R. Engelmann,149J. Erdmann,177A. Ereditato,17D. Eriksson,147aG. Ernis,176J. Ernst,2 M. Ernst,25 J. Ernwein,137 D. Errede,166S. Errede,166 E. Ertel,82M. Escalier,116 H. Esch,43C. Escobar,124 X. Espinal Curull,12 B. Esposito,47F. Etienne,84 A. I. Etienvre,137E. Etzion,154D. Evangelakou,54H. Evans,60L. Fabbri,20a,20b G. Facini,30 R. M. Fakhrutdinov,129S. Falciano,133aY. Fang,33a M. Fanti,90a,90bA. Farbin,8 A. Farilla,135aT. Farooque,12S. Farrell,164

S. M. Farrington,171P. Farthouat,30F. Fassi,168P. Fassnacht,30D. Fassouliotis,9 B. Fatholahzadeh,159 A. Favareto,50a,50b L. Fayard,116P. Federic,145aO. L. Fedin,122 W. Fedorko,169M. Fehling-Kaschek,48S. Feigl,30L. Feligioni,84C. Feng,33d E. J. Feng,6 H. Feng,88A. B. Fenyuk,129 S. Fernandez Perez,30W. Fernando,6S. Ferrag,53J. Ferrando,53V. Ferrara,42

A. Ferrari,167P. Ferrari,106R. Ferrari,120aD. E. Ferreira de Lima,53A. Ferrer,168D. Ferrere,49C. Ferretti,88 A. Ferretto Parodi,50a,50b M. Fiascaris,31F. Fiedler,82A. Filipčič,74M. Filipuzzi,42F. Filthaut,105M. Fincke-Keeler,170 K. D. Finelli,45M. C. N. Fiolhais,125a,jL. Fiorini,168A. Firan,40J. Fischer,176M. J. Fisher,110E. A. Fitzgerald,23M. Flechl,48

I. Fleck,142 P. Fleischmann,175S. Fleischmann,176G. T. Fletcher,140 G. Fletcher,75T. Flick,176 A. Floderus,80 L. R. Flores Castillo,174A. C. Florez Bustos,160bM. J. Flowerdew,100A. Formica,137A. Forti,83D. Fortin,160aD. Fournier,116 H. Fox,71P. Francavilla,12M. Franchini,20a,20bS. Franchino,30D. Francis,30M. Franklin,57S. Franz,61M. Fraternali,120a,120b

S. Fratina,121S. T. French,28C. Friedrich,42F. Friedrich,44D. Froidevaux,30J. A. Frost,28 C. Fukunaga,157 E. Fullana Torregrosa,128B. G. Fulsom,144 J. Fuster,168C. Gabaldon,55O. Gabizon,173 A. Gabrielli,20a,20b A. Gabrielli,133a,133bS. Gadatsch,106T. Gadfort,25S. Gadomski,49G. Gagliardi,50a,50bP. Gagnon,60C. Galea,105 B. Galhardo,125aE. J. Gallas,119 V. Gallo,17B. J. Gallop,130 P. Gallus,127G. Galster,36K. K. Gan,110R. P. Gandrajula,62 J. Gao,33b,kY. S. Gao,144,hF. M. Garay Walls,46F. Garberson,177C. García,168J. E. García Navarro,168M. Garcia-Sciveres,15 R. W. Gardner,31N. Garelli,144V. Garonne,30C. Gatti,47 G. Gaudio,120aB. Gaur,142L. Gauthier,94P. Gauzzi,133a,133b I. L. Gavrilenko,95C. Gay,169G. Gaycken,21E. N. Gazis,10P. Ge,33d,pZ. Gecse,169C. N. P. Gee,130D. A. A. Geerts,106 Ch. Geich-Gimbel,21K. Gellerstedt,147a,147bC. Gemme,50aA. Gemmell,53M. H. Genest,55S. Gentile,133a,133bM. George,54

S. George,76D. Gerbaudo,164A. Gershon,154H. Ghazlane,136b N. Ghodbane,34B. Giacobbe,20a S. Giagu,133a,133b V. Giangiobbe,12P. Giannetti,123a,123b F. Gianotti,30 B. Gibbard,25 S. M. Gibson,76M. Gilchriese,15T. P. S. Gillam,28 D. Gillberg,30A. R. Gillman,130D. M. Gingrich,3,gN. Giokaris,9M. P. Giordani,165a,165cR. Giordano,103a,103bF. M. Giorgi,16 P. Giovannini,100P. F. Giraud,137D. Giugni,90aC. Giuliani,48M. Giunta,94B. K. Gjelsten,118I. Gkialas,155,qL. K. Gladilin,98

C. Glasman,81J. Glatzer,21A. Glazov,42G. L. Glonti,64M. Goblirsch-Kolb,100 J. R. Goddard,75J. Godfrey,143 J. Godlewski,30C. Goeringer,82S. Goldfarb,88T. Golling,177 D. Golubkov,129A. Gomes,125a,e L. S. Gomez Fajardo,42

R. Gonçalo,76J. Goncalves Pinto Firmino Da Costa,42L. Gonella,21S. González de la Hoz,168G. Gonzalez Parra,12 M. L. Gonzalez Silva,27S. Gonzalez-Sevilla,49L. Goossens,30P. A. Gorbounov,96H. A. Gordon,25I. Gorelov,104 G. Gorfine,176B. Gorini,30E. Gorini,72a,72bA. Gorišek,74E. Gornicki,39A. T. Goshaw,6 C. Gössling,43M. I. Gostkin,64

M. Gouighri,136aD. Goujdami,136cM. P. Goulette,49A. G. Goussiou,139 C. Goy,5 S. Gozpinar,23H. M. X. Grabas,137 L. Graber,54 I. Grabowska-Bold,38a P. Grafström,20a,20b K-J. Grahn,42J. Gramling,49 E. Gramstad,118F. Grancagnolo,72a

S. Grancagnolo,16V. Grassi,149 V. Gratchev,122 H. M. Gray,30J. A. Gray,149 E. Graziani,135aO. G. Grebenyuk,122 Z. D. Greenwood,78,r K. Gregersen,36I. M. Gregor,42P. Grenier,144J. Griffiths,8 N. Grigalashvili,64A. A. Grillo,138

(9)

K. Grimm,71 S. Grinstein,12,sPh. Gris,34Y. V. Grishkevich,98J.-F. Grivaz,116J. P. Grohs,44A. Grohsjean,42E. Gross,173 J. Grosse-Knetter,54G. C. Grossi,134a,134bJ. Groth-Jensen,173Z. J. Grout,150K. Grybel,142 L. Guan,33bF. Guescini,49

D. Guest,177 O. Gueta,154C. Guicheney,34E. Guido,50a,50b T. Guillemin,116S. Guindon,2 U. Gul,53C. Gumpert,44 J. Gunther,127J. Guo,35S. Gupta,119P. Gutierrez,112N. G. Gutierrez Ortiz,53C. Gutschow,77N. Guttman,154C. Guyot,137 C. Gwenlan,119C. B. Gwilliam,73A. Haas,109C. Haber,15H. K. Hadavand,8 P. Haefner,21S. Hageboeck,21Z. Hajduk,39 H. Hakobyan,178M. Haleem,42D. Hall,119 G. Halladjian,89K. Hamacher,176 P. Hamal,114K. Hamano,87M. Hamer,54 A. Hamilton,146a,tS. Hamilton,162L. Han,33bK. Hanagaki,117K. Hanawa,156M. Hance,15 P. Hanke,58a J. R. Hansen,36 J. B. Hansen,36J. D. Hansen,36P. H. Hansen,36P. Hansson,144K. Hara,161A. S. Hard,174T. Harenberg,176S. Harkusha,91

D. Harper,88 R. D. Harrington,46 O. M. Harris,139 P. F. Harrison,171 F. Hartjes,106 A. Harvey,56S. Hasegawa,102 Y. Hasegawa,141S. Hassani,137S. Haug,17M. Hauschild,30R. Hauser,89M. Havranek,21C. M. Hawkes,18R. J. Hawkings,30 A. D. Hawkins,80T. Hayashi,161D. Hayden,89C. P. Hays,119H. S. Hayward,73S. J. Haywood,130S. J. Head,18T. Heck,82

V. Hedberg,80L. Heelan,8 S. Heim,121 T. Heim,176B. Heinemann,15L. Heinrich,109S. Heisterkamp,36J. Hejbal,126 L. Helary,22C. Heller,99M. Heller,30S. Hellman,147a,147bD. Hellmich,21C. Helsens,30J. Henderson,119 R. C. W. Henderson,71C. Hengler,42A. Henrichs,177 A. M. Henriques Correia,30S. Henrot-Versille,116C. Hensel,54

G. H. Herbert,16 Y. Hernández Jiménez,168 R. Herrberg-Schubert,16G. Herten,48R. Hertenberger,99L. Hervas,30 G. G. Hesketh,77N. P. Hessey,106 R. Hickling,75E. Higón-Rodriguez,168 J. C. Hill,28K. H. Hiller,42S. Hillert,21 S. J. Hillier,18I. Hinchliffe,15E. Hines,121M. Hirose,117D. Hirschbuehl,176J. Hobbs,149N. Hod,106M. C. Hodgkinson,140

P. Hodgson,140A. Hoecker,30M. R. Hoeferkamp,104 J. Hoffman,40D. Hoffmann,84J. I. Hofmann,58a M. Hohlfeld,82 T. R. Holmes,15T. M. Hong,121L. Hooft van Huysduynen,109J-Y. Hostachy,55S. Hou,152A. Hoummada,136aJ. Howard,119

J. Howarth,83M. Hrabovsky,114 I. Hristova,16 J. Hrivnac,116T. Hryn’ova,5 P. J. Hsu,82S.-C. Hsu,139D. Hu,35 X. Hu,25 Y. Huang,146cZ. Hubacek,30F. Hubaut,84F. Huegging,21A. Huettmann,42T. B. Huffman,119E. W. Hughes,35G. Hughes,71

M. Huhtinen,30T. A. Hülsing,82M. Hurwitz,15 N. Huseynov,64,d J. Huston,89J. Huth,57G. Iacobucci,49G. Iakovidis,10 I. Ibragimov,142L. Iconomidou-Fayard,116J. Idarraga,116E. Ideal,177P. Iengo,103aO. Igonkina,106T. Iizawa,172Y. Ikegami,65 K. Ikematsu,142 M. Ikeno,65D. Iliadis,155N. Ilic,159Y. Inamaru,66T. Ince,100P. Ioannou,9M. Iodice,135aK. Iordanidou,9 V. Ippolito,133a,133bA. Irles Quiles,168C. Isaksson,167M. Ishino,67M. Ishitsuka,158R. Ishmukhametov,110C. Issever,119

S. Istin,19aJ. M. Iturbe Ponce,83A. V. Ivashin,129W. Iwanski,39 H. Iwasaki,65J. M. Izen,41V. Izzo,103aB. Jackson,121 J. N. Jackson,73M. Jackson,73P. Jackson,1M. R. Jaekel,30V. Jain,2 K. Jakobs,48 S. Jakobsen,36T. Jakoubek,126 J. Jakubek,127D. O. Jamin,152D. K. Jana,78E. Jansen,77H. Jansen,30J. Janssen,21M. Janus,171G. Jarlskog,80L. Jeanty,15 G.-Y. Jeng,151I. Jen-La Plante,31D. Jennens,87P. Jenni,48,uJ. Jentzsch,43C. Jeske,171S. Jézéquel,5 M. K. Jha,20aH. Ji,174 W. Ji,82J. Jia,149Y. Jiang,33bM. Jimenez Belenguer,42S. Jin,33aA. Jinaru,26aO. Jinnouchi,158M. D. Joergensen,36D. Joffe,40 K. E. Johansson,147aP. Johansson,140K. A. Johns,7 K. Jon-And,147a,147b G. Jones,171R. W. L. Jones,71T. J. Jones,73 P. M. Jorge,125aK. D. Joshi,83J. Jovicevic,148X. Ju,174C. A. Jung,43R. M. Jungst,30P. Jussel,61A. Juste Rozas,12,s M. Kaci,168 A. Kaczmarska,39M. Kado,116H. Kagan,110 M. Kagan,144E. Kajomovitz,45S. Kama,40N. Kanaya,156

M. Kaneda,30S. Kaneti,28 T. Kanno,158 V. A. Kantserov,97J. Kanzaki,65B. Kaplan,109 A. Kapliy,31D. Kar,53 K. Karakostas,10N. Karastathis,10M. Karnevskiy,82S. N. Karpov,64K. Karthik,109V. Kartvelishvili,71A. N. Karyukhin,129

L. Kashif,174 G. Kasieczka,58b R. D. Kass,110A. Kastanas,14Y. Kataoka,156A. Katre,49J. Katzy,42V. Kaushik,7 K. Kawagoe,69T. Kawamoto,156G. Kawamura,54S. Kazama,156 V. F. Kazanin,108 M. Y. Kazarinov,64 R. Keeler,170 P. T. Keener,121 R. Kehoe,40M. Keil,54J. S. Keller,139H. Keoshkerian,5 O. Kepka,126 B. P. Kerševan,74S. Kersten,176 K. Kessoku,156 J. Keung,159F. Khalil-zada,11H. Khandanyan,147a,147bA. Khanov,113 D. Kharchenko,64A. Khodinov,97

A. Khomich,58a T. J. Khoo,28G. Khoriauli,21A. Khoroshilov,176V. Khovanskiy,96E. Khramov,64J. Khubua,51b H. Kim,147a,147bS. H. Kim,161N. Kimura,172O. Kind,16B. T. King,73M. King,168R. S. B. King,119S. B. King,169J. Kirk,130

A. E. Kiryunin,100 T. Kishimoto,66 D. Kisielewska,38a T. Kitamura,66T. Kittelmann,124K. Kiuchi,161 E. Kladiva,145b M. Klein,73U. Klein,73K. Kleinknecht,82P. Klimek,147a,147bA. Klimentov,25R. Klingenberg,43J. A. Klinger,83

E. B. Klinkby,36T. Klioutchnikova,30P. F. Klok,105E.-E. Kluge,58a P. Kluit,106S. Kluth,100E. Kneringer,61 E. B. F. G. Knoops,84A. Knue,53T. Kobayashi,156M. Kobel,44M. Kocian,144P. Kodys,128S. Koenig,82P. Koevesarki,21

T. Koffas,29E. Koffeman,106L. A. Kogan,119 S. Kohlmann,176 Z. Kohout,127 T. Kohriki,65T. Koi,144 H. Kolanoski,16 I. Koletsou,5 J. Koll,89 A. A. Komar,95,a Y. Komori,156 T. Kondo,65K. Köneke,48A. C. König,105 T. Kono,65,v R. Konoplich,109,wN. Konstantinidis,77R. Kopeliansky,153S. Koperny,38a L. Köpke,82A. K. Kopp,48K. Korcyl,39 K. Kordas,155A. Korn,46A. A. Korol,108I. Korolkov,12E. V. Korolkova,140V. A. Korotkov,129O. Kortner,100S. Kortner,100

(10)

V. V. Kostyukhin,21S. Kotov,100V. M. Kotov,64A. Kotwal,45C. Kourkoumelis,9 V. Kouskoura,155 A. Koutsman,160a R. Kowalewski,170T. Z. Kowalski,38aW. Kozanecki,137A. S. Kozhin,129V. Kral,127V. A. Kramarenko,98G. Kramberger,74 D. Krasnopevtsev,97M. W. Krasny,79A. Krasznahorkay,30J. K. Kraus,21A. Kravchenko,25S. Kreiss,109J. Kretzschmar,73

K. Kreutzfeldt,52N. Krieger,54P. Krieger,159K. Kroeninger,54 H. Kroha,100 J. Kroll,121J. Kroseberg,21 J. Krstic,13a U. Kruchonak,64H. Krüger,21T. Kruker,17N. Krumnack,63Z. V. Krumshteyn,64A. Kruse,174M. C. Kruse,45M. Kruskal,22 T. Kubota,87S. Kuday,4aS. Kuehn,48A. Kugel,58cT. Kuhl,42V. Kukhtin,64Y. Kulchitsky,91S. Kuleshov,32bM. Kuna,133a,133b J. Kunkle,121A. Kupco,126H. Kurashige,66Y. A. Kurochkin,91R. Kurumida,66V. Kus,126E. S. Kuwertz,148 M. Kuze,158 J. Kvita,143A. La Rosa,49L. La Rotonda,37a,37bL. Labarga,81S. Lablak,136aC. Lacasta,168F. Lacava,133a,133bJ. Lacey,29 H. Lacker,16D. Lacour,79V. R. Lacuesta,168E. Ladygin,64R. Lafaye,5B. Laforge,79T. Lagouri,177S. Lai,48H. Laier,58a E. Laisne,55L. Lambourne,77C. L. Lampen,7W. Lampl,7E. Lançon,137U. Landgraf,48M. P. J. Landon,75V. S. Lang,58a C. Lange,42A. J. Lankford,164F. Lanni,25K. Lantzsch,30A. Lanza,120aS. Laplace,79C. Lapoire,21J. F. Laporte,137T. Lari,90a A. Larner,119 M. Lassnig,30P. Laurelli,47V. Lavorini,37a,37b W. Lavrijsen,15P. Laycock,73B. T. Le,55 O. Le Dortz,79 E. Le Guirriec,84E. Le Menedeu,12T. LeCompte,6F. Ledroit-Guillon,55C. A. Lee,152H. Lee,106J. S. H. Lee,117S. C. Lee,152 L. Lee,177G. Lefebvre,79M. Lefebvre,170F. Legger,99C. Leggett,15A. Lehan,73M. Lehmacher,21G. Lehmann Miotto,30 X. Lei,7A. G. Leister,177 M. A. L. Leite,24d R. Leitner,128D. Lellouch,173 B. Lemmer,54K. J. C. Leney,146cT. Lenz,106

G. Lenzen,176B. Lenzi,30R. Leone,7K. Leonhardt,44S. Leontsinis,10C. Leroy,94C. G. Lester,28C. M. Lester,121 J. Levêque,5 D. Levin,88L. J. Levinson,173A. Lewis,119G. H. Lewis,109A. M. Leyko,21M. Leyton,16B. Li,33b,xB. Li,84 H. Li,149H. L. Li,31S. Li,45X. Li,88Z. Liang,119,yH. Liao,34B. Liberti,134aP. Lichard,30K. Lie,166J. Liebal,21W. Liebig,14 C. Limbach,21A. Limosani,87M. Limper,62S. C. Lin,152,zF. Linde,106B. E. Lindquist,149J. T. Linnemann,89E. Lipeles,121 A. Lipniacka,14M. Lisovyi,42T. M. Liss,166D. Lissauer,25A. Lister,169A. M. Litke,138B. Liu,152D. Liu,152J. B. Liu,33b

K. Liu,33b,aa L. Liu,88M. Liu,45M. Liu,33b Y. Liu,33b M. Livan,120a,120bS. S. A. Livermore,119A. Lleres,55 J. Llorente Merino,81S. L. Lloyd,75F. Lo Sterzo,152E. Lobodzinska,42P. Loch,7 W. S. Lockman,138T. Loddenkoetter,21 F. K. Loebinger,83A. E. Loevschall-Jensen,36A. Loginov,177C. W. Loh,169T. Lohse,16K. Lohwasser,48M. Lokajicek,126

V. P. Lombardo,5 J. D. Long,88R. E. Long,71L. Lopes,125aD. Lopez Mateos,57B. Lopez Paredes,140J. Lorenz,99 N. Lorenzo Martinez,116 M. Losada,163P. Loscutoff,15M. J. Losty,160a,a X. Lou,41A. Lounis,116J. Love,6P. A. Love,71 A. J. Lowe,144,hF. Lu,33aH. J. Lubatti,139C. Luci,133a,133bA. Lucotte,55D. Ludwig,42I. Ludwig,48F. Luehring,60W. Lukas,61 L. Luminari,133aJ. Lundberg,147a,147bO. Lundberg,147a,147bB. Lund-Jensen,148 M. Lungwitz,82D. Lynn,25R. Lysak,126 E. Lytken,80H. Ma,25L. L. Ma,33dG. Maccarrone,47A. Macchiolo,100B. Maček,74J. Machado Miguens,125aD. Macina,30 R. Mackeprang,36R. Madar,48H. J. Maddocks,71W. F. Mader,44A. Madsen,167M. Maeno,8T. Maeno,25L. Magnoni,164

E. Magradze,54K. Mahboubi,48J. Mahlstedt,106S. Mahmoud,73G. Mahout,18C. Maiani,137 C. Maidantchik,24a A. Maio,125a,e S. Majewski,115 Y. Makida,65N. Makovec,116P. Mal,137,bb B. Malaescu,79Pa. Malecki,39 V. P. Maleev,122

F. Malek,55 U. Mallik,62D. Malon,6 C. Malone,144 S. Maltezos,10V. M. Malyshev,108 S. Malyukov,30J. Mamuzic,13b B. Mandelli,30L. Mandelli,90a I. Mandić,74R. Mandrysch,62J. Maneira,125aA. Manfredini,100

L. Manhaes de Andrade Filho,24bJ. A. Manjarres Ramos,137A. Mann,99P. M. Manning,138A. Manousakis-Katsikakis,9 B. Mansoulie,137 R. Mantifel,86L. Mapelli,30L. March,168J. F. Marchand,29F. Marchese,134a,134bG. Marchiori,79 M. Marcisovsky,126C. P. Marino,170C. N. Marques,125aF. Marroquim,24aZ. Marshall,15L. F. Marti,17S. Marti-Garcia,168

B. Martin,30B. Martin,89J. P. Martin,94T. A. Martin,171 V. J. Martin,46B. Martin dit Latour,49H. Martinez,137 M. Martinez,12,s S. Martin-Haugh,130A. C. Martyniuk,77M. Marx,139F. Marzano,133a A. Marzin,112 L. Masetti,82 T. Mashimo,156R. Mashinistov,95J. Masik,83 A. L. Maslennikov,108I. Massa,20a,20b N. Massol,5 P. Mastrandrea,149 A. Mastroberardino,37a,37b T. Masubuchi,156H. Matsunaga,156 T. Matsushita,66P. Mättig,176S. Mättig,42J. Mattmann,82 C. Mattravers,119,fJ. Maurer,84S. J. Maxfield,73D. A. Maximov,108,iR. Mazini,152L. Mazzaferro,134a,134bG. Mc Goldrick,159

S. P. Mc Kee,88A. McCarn,88R. L. McCarthy,149T. G. McCarthy,29N. A. McCubbin,130K. W. McFarlane,56,a J. A. Mcfayden,140G. Mchedlidze,54 T. Mclaughlan,18S. J. McMahon,130R. A. McPherson,170,mA. Meade,85 J. Mechnich,106M. Mechtel,176M. Medinnis,42S. Meehan,31R. Meera-Lebbai,112S. Mehlhase,36A. Mehta,73K. Meier,58a

C. Meineck,99 B. Meirose,80C. Melachrinos,31B. R. Mellado Garcia,146cF. Meloni,90a,90bL. Mendoza Navas,163 A. Mengarelli,20a,20b S. Menke,100 E. Meoni,162 K. M. Mercurio,57S. Mergelmeyer,21N. Meric,137 P. Mermod,49 L. Merola,103a,103bC. Meroni,90a F. S. Merritt,31H. Merritt,110 A. Messina,30,ccJ. Metcalfe,25A. S. Mete,164 C. Meyer,82

C. Meyer,31J-P. Meyer,137 J. Meyer,30J. Meyer,54R. P. Middleton,130 S. Migas,73L. Mijović,137G. Mikenberg,173 M. Mikestikova,126M. Mikuž,74D. W. Miller,31C. Mills,57A. Milov,173D. A. Milstead,147a,147bD. Milstein,173

(11)

A. A. Minaenko,129 M. Miñano Moya,168I. A. Minashvili,64A. I. Mincer,109B. Mindur,38a M. Mineev,64Y. Ming,174 L. M. Mir,12G. Mirabelli,133aT. Mitani,172J. Mitrevski,99V. A. Mitsou,168S. Mitsui,65A. Miucci,49P. S. Miyagawa,140

J. U. Mjörnmark,80T. Moa,147a,147bV. Moeller,28 S. Mohapatra,35W. Mohr,48S. Molander,147a,147bR. Moles-Valls,168 K. Mönig,42C. Monini,55J. Monk,36E. Monnier,84J. Montejo Berlingen,12F. Monticelli,70S. Monzani,20a,20bR. W. Moore,3

C. Mora Herrera,49A. Moraes,53N. Morange,62J. Morel,54D. Moreno,82 M. Moreno Llácer,54P. Morettini,50a M. Morgenstern,44M. Morii,57S. Moritz,82A. K. Morley,148G. Mornacchi,30J. D. Morris,75L. Morvaj,102H. G. Moser,100

M. Mosidze,51bJ. Moss,110 R. Mount,144 E. Mountricha,25 S. V. Mouraviev,95,a E. J. W. Moyse,85S. G. Muanza,84 R. D. Mudd,18F. Mueller,58a J. Mueller,124K. Mueller,21T. Mueller,28T. Mueller,82D. Muenstermann,49Y. Munwes,154 J. A. Murillo Quijada,18W. J. Murray,171,fI. Mussche,106E. Musto,153A. G. Myagkov,129,ddM. Myska,126O. Nackenhorst,54 J. Nadal,54K. Nagai,61R. Nagai,158Y. Nagai,84K. Nagano,65A. Nagarkar,110Y. Nagasaka,59M. Nagel,100A. M. Nairz,30

Y. Nakahama,30K. Nakamura,65 T. Nakamura,156 I. Nakano,111H. Namasivayam,41G. Nanava,21A. Napier,162 R. Narayan,58bM. Nash,77,fT. Nattermann,21T. Naumann,42G. Navarro,163R. Nayyar,7H. A. Neal,88P. Yu. Nechaeva,95 T. J. Neep,83A. Negri,120a,120bG. Negri,30M. Negrini,20aS. Nektarijevic,49A. Nelson,164T. K. Nelson,144S. Nemecek,126 P. Nemethy,109A. A. Nepomuceno,24a M. Nessi,30,eeM. S. Neubauer,166M. Neumann,176A. Neusiedl,82R. M. Neves,109

P. Nevski,25F. M. Newcomer,121P. R. Newman,18 D. H. Nguyen,6 V. Nguyen Thi Hong,137 R. B. Nickerson,119 R. Nicolaidou,137 B. Nicquevert,30J. Nielsen,138 N. Nikiforou,35A. Nikiforov,16V. Nikolaenko,129,ddI. Nikolic-Audit,79

K. Nikolics,49K. Nikolopoulos,18P. Nilsson,8 Y. Ninomiya,156A. Nisati,133aR. Nisius,100T. Nobe,158L. Nodulman,6 M. Nomachi,117 I. Nomidis,155S. Norberg,112 M. Nordberg,30J. Novakova,128M. Nozaki,65L. Nozka,114 K. Ntekas,10

A.-E. Nuncio-Quiroz,21G. Nunes Hanninger,87T. Nunnemann,99 E. Nurse,77F. Nuti,87B. J. O’Brien,46F. O’grady,7 D. C. O’Neil,143V. O’Shea,53F. G. Oakham,29,gH. Oberlack,100J. Ocariz,79A. Ochi,66M. I. Ochoa,77S. Oda,69S. Odaka,65 H. Ogren,60A. Oh,83S. H. Oh,45C. C. Ohm,30T. Ohshima,102W. Okamura,117H. Okawa,25Y. Okumura,31T. Okuyama,156

A. Olariu,26a A. G. Olchevski,64S. A. Olivares Pino,46D. Oliveira Damazio,25E. Oliver Garcia,168 D. Olivito,121 A. Olszewski,39J. Olszowska,39A. Onofre,125a,ff P. U. E. Onyisi,31,gg C. J. Oram,160aM. J. Oreglia,31Y. Oren,154

D. Orestano,135a,135bN. Orlando,72a,72b C. Oropeza Barrera,53 R. S. Orr,159 B. Osculati,50a,50b R. Ospanov,121 G. Otero y Garzon,27H. Otono,69M. Ouchrif,136dE. A. Ouellette,170F. Ould-Saada,118A. Ouraou,137K. P. Oussoren,106 Q. Ouyang,33a A. Ovcharova,15M. Owen,83S. Owen,140V. E. Ozcan,19aN. Ozturk,8 K. Pachal,119A. Pacheco Pages,12 C. Padilla Aranda,12S. Pagan Griso,15E. Paganis,140 C. Pahl,100 F. Paige,25P. Pais,85K. Pajchel,118G. Palacino,160b S. Palestini,30D. Pallin,34A. Palma,125a J. D. Palmer,18Y. B. Pan,174E. Panagiotopoulou,10J. G. Panduro Vazquez,76 P. Pani,106N. Panikashvili,88S. Panitkin,25D. Pantea,26a Th. D. Papadopoulou,10K. Papageorgiou,155,qA. Paramonov,6 D. Paredes Hernandez,34M. A. Parker,28F. Parodi,50a,50bJ. A. Parsons,35U. Parzefall,48E. Pasqualucci,133aS. Passaggio,50a

A. Passeri,135aF. Pastore,135a,135b,a Fr. Pastore,76 G. Pásztor,49,hh S. Pataraia,176N. D. Patel,151 J. R. Pater,83 S. Patricelli,103a,103bT. Pauly,30J. Pearce,170M. Pedersen,118S. Pedraza Lopez,168 S. V. Peleganchuk,108D. Pelikan,167

H. Peng,33b B. Penning,31J. Penwell,60D. V. Perepelitsa,35E. Perez Codina,160aM. T. Pérez García-Estañ,168 V. Perez Reale,35 L. Perini,90a,90b H. Pernegger,30R. Perrino,72aR. Peschke,42 V. D. Peshekhonov,64K. Peters,30 R. F. Y. Peters,54,ii B. A. Petersen,30 J. Petersen,30 T. C. Petersen,36E. Petit,42A. Petridis,147a,147bC. Petridou,155 E. Petrolo,133aF. Petrucci,135a,135bM. Petteni,143R. Pezoa,32bP. W. Phillips,130G. Piacquadio,144E. Pianori,171A. Picazio,49 E. Piccaro,75M. Piccinini,20a,20bS. M. Piec,42R. Piegaia,27D. T. Pignotti,110J. E. Pilcher,31A. D. Pilkington,77J. Pina,125a,e M. Pinamonti,165a,165c,jjA. Pinder,119J. L. Pinfold,3A. Pingel,36B. Pinto,125aC. Pizio,90a,90bM.-A. Pleier,25V. Pleskot,128 E. Plotnikova,64P. Plucinski,147a,147bS. Poddar,58a F. Podlyski,34 R. Poettgen,82L. Poggioli,116D. Pohl,21M. Pohl,49 G. Polesello,120aA. Policicchio,37a,37b R. Polifka,159A. Polini,20a C. S. Pollard,45V. Polychronakos,25D. Pomeroy,23 K. Pommès,30L. Pontecorvo,133aB. G. Pope,89G. A. Popeneciu,26bD. S. Popovic,13aA. Poppleton,30X. Portell Bueso,12 G. E. Pospelov,100S. Pospisil,127K. Potamianos,15I. N. Potrap,64C. J. Potter,150C. T. Potter,115G. Poulard,30J. Poveda,60 V. Pozdnyakov,64R. Prabhu,77P. Pralavorio,84A. Pranko,15S. Prasad,30R. Pravahan,8 S. Prell,63D. Price,83J. Price,73

L. E. Price,6 D. Prieur,124M. Primavera,72a M. Proissl,46K. Prokofiev,109F. Prokoshin,32bE. Protopapadaki,137 S. Protopopescu,25 J. Proudfoot,6 X. Prudent,44 M. Przybycien,38a H. Przysiezniak,5 S. Psoroulas,21E. Ptacek,115 E. Pueschel,85D. Puldon,149 M. Purohit,25,kk P. Puzo,116Y. Pylypchenko,62J. Qian,88A. Quadt,54D. R. Quarrie,15 W. B. Quayle,165a,165b D. Quilty,53V. Radeka,25V. Radescu,42 S. K. Radhakrishnan,149P. Radloff,115 F. Ragusa,90a,90b G. Rahal,179S. Rajagopalan,25M. Rammensee,48M. Rammes,142A. S. Randle-Conde,40C. Rangel-Smith,79K. Rao,164

(12)

G. Redlinger,25R. Reece,138 K. Reeves,41L. Rehnisch,16A. Reinsch,115H. Reisin,27M. Relich,164C. Rembser,30 Z. L. Ren,152 A. Renaud,116 M. Rescigno,133aS. Resconi,90aB. Resende,137 P. Reznicek,99R. Rezvani,94R. Richter,100

M. Ridel,79 P. Rieck,16 M. Rijssenbeek,149 A. Rimoldi,120a,120bL. Rinaldi,20a E. Ritsch,61I. Riu,12F. Rizatdinova,113 E. Rizvi,75 S. H. Robertson,86,mA. Robichaud-Veronneau,119D. Robinson,28J. E. M. Robinson,83A. Robson,53 J. G. Rocha de Lima,107 C. Roda,123a,123bD. Roda Dos Santos,126 L. Rodrigues,30S. Roe,30O. Røhne,118S. Rolli,162 A. Romaniouk,97M. Romano,20a,20bG. Romeo,27E. Romero Adam,168N. Rompotis,139L. Roos,79E. Ros,168S. Rosati,133a K. Rosbach,49A. Rose,150M. Rose,76P. L. Rosendahl,14O. Rosenthal,142V. Rossetti,147a,147bE. Rossi,103a,103bL. P. Rossi,50a

R. Rosten,139M. Rotaru,26aI. Roth,173 J. Rothberg,139 D. Rousseau,116 C. R. Royon,137 A. Rozanov,84Y. Rozen,153 X. Ruan,146cF. Rubbo,12I. Rubinskiy,42V. I. Rud,98 C. Rudolph,44 M. S. Rudolph,159F. Rühr,7 A. Ruiz-Martinez,63 Z. Rurikova,48N. A. Rusakovich,64A. Ruschke,99J. P. Rutherfoord,7 N. Ruthmann,48 P. Ruzicka,126 Y. F. Ryabov,122

M. Rybar,128 G. Rybkin,116N. C. Ryder,119 A. F. Saavedra,151 S. Sacerdoti,27A. Saddique,3 I. Sadeh,154 H. F-W. Sadrozinski,138R. Sadykov,64F. Safai Tehrani,133aH. Sakamoto,156Y. Sakurai,172G. Salamanna,75A. Salamon,134a M. Saleem,112D. Salek,106P. H. Sales De Bruin,139D. Salihagic,100A. Salnikov,144J. Salt,168B. M. Salvachua Ferrando,6 D. Salvatore,37a,37bF. Salvatore,150A. Salvucci,105A. Salzburger,30D. Sampsonidis,155A. Sanchez,103a,103bJ. Sánchez,168 V. Sanchez Martinez,168H. Sandaker,14H. G. Sander,82M. P. Sanders,99M. Sandhoff,176T. Sandoval,28C. Sandoval,165a,165b R. Sandstroem,100D. P. C. Sankey,130A. Sansoni,47C. Santoni,34R. Santonico,134a,134bH. Santos,125aI. Santoyo Castillo,150

K. Sapp,124A. Sapronov,64 J. G. Saraiva,125aE. Sarkisyan-Grinbaum,8 B. Sarrazin,21G. Sartisohn,176 O. Sasaki,65 Y. Sasaki,156I. Satsounkevitch,91G. Sauvage,5,aE. Sauvan,5 J. B. Sauvan,116 P. Savard,159,g D. O. Savu,30C. Sawyer,119 L. Sawyer,78,r D. H. Saxon,53J. Saxon,121C. Sbarra,20aA. Sbrizzi,3 T. Scanlon,30D. A. Scannicchio,164M. Scarcella,151

J. Schaarschmidt,173P. Schacht,100D. Schaefer,121A. Schaelicke,46S. Schaepe,21S. Schaetzel,58bU. Schäfer,82 A. C. Schaffer,116D. Schaile,99R. D. Schamberger,149V. Scharf,58aV. A. Schegelsky,122D. Scheirich,128M. Schernau,164

M. I. Scherzer,35C. Schiavi,50a,50bJ. Schieck,99C. Schillo,48M. Schioppa,37a,37bS. Schlenker,30E. Schmidt,48 K. Schmieden,30C. Schmitt,82 C. Schmitt,99S. Schmitt,58b B. Schneider,17Y. J. Schnellbach,73U. Schnoor,44 L. Schoeffel,137 A. Schoening,58b B. D. Schoenrock,89A. L. S. Schorlemmer,54M. Schott,82D. Schouten,160a J. Schovancova,25M. Schram,86S. Schramm,159M. Schreyer,175C. Schroeder,82N. Schroer,58cN. Schuh,82 M. J. Schultens,21H.-C. Schultz-Coulon,58a H. Schulz,16M. Schumacher,48B. A. Schumm,138 Ph. Schune,137 A. Schwartzman,144 Ph. Schwegler,100Ph. Schwemling,137R. Schwienhorst,89J. Schwindling,137 T. Schwindt,21 M. Schwoerer,5F. G. Sciacca,17E. Scifo,116G. Sciolla,23W. G. Scott,130F. Scuri,123a,123bF. Scutti,21J. Searcy,88G. Sedov,42 E. Sedykh,122S. C. Seidel,104A. Seiden,138F. Seifert,127J. M. Seixas,24aG. Sekhniaidze,103aS. J. Sekula,40K. E. Selbach,46 D. M. Seliverstov,122G. Sellers,73M. Seman,145bN. Semprini-Cesari,20a,20bC. Serfon,30L. Serin,116L. Serkin,54T. Serre,84

R. Seuster,160aH. Severini,112 F. Sforza,100 A. Sfyrla,30E. Shabalina,54 M. Shamim,115L. Y. Shan,33a J. T. Shank,22 Q. T. Shao,87M. Shapiro,15P. B. Shatalov,96K. Shaw,165a,165c P. Sherwood,77S. Shimizu,66C. O. Shimmin,164 M. Shimojima,101T. Shin,56M. Shiyakova,64A. Shmeleva,95M. J. Shochet,31D. Short,119S. Shrestha,63E. Shulga,97

M. A. Shupe,7 S. Shushkevich,42P. Sicho,126 D. Sidorov,113A. Sidoti,133aF. Siegert,48Dj. Sijacki,13a O. Silbert,173 J. Silva,125aY. Silver,154 D. Silverstein,144S. B. Silverstein,147aV. Simak,127O. Simard,5 Lj. Simic,13a S. Simion,116 E. Simioni,82B. Simmons,77R. Simoniello,90a,90bM. Simonyan,36P. Sinervo,159N. B. Sinev,115V. Sipica,142G. Siragusa,175 A. Sircar,78A. N. Sisakyan,64,aS. Yu. Sivoklokov,98J. Sjölin,147a,147bT. B. Sjursen,14L. A. Skinnari,15H. P. Skottowe,57 K. Yu. Skovpen,108 P. Skubic,112 M. Slater,18T. Slavicek,127K. Sliwa,162V. Smakhtin,173B. H. Smart,46L. Smestad,118 S. Yu. Smirnov,97Y. Smirnov,97L. N. Smirnova,98,ll O. Smirnova,80K. M. Smith,53M. Smizanska,71K. Smolek,127

A. A. Snesarev,95G. Snidero,75J. Snow,112 S. Snyder,25R. Sobie,170,mF. Socher,44J. Sodomka,127 A. Soffer,154 D. A. Soh,152,yC. A. Solans,30M. Solar,127J. Solc,127E. Yu. Soldatov,97U. Soldevila,168E. Solfaroli Camillocci,133a,133b

A. A. Solodkov,129 O. V. Solovyanov,129 V. Solovyev,122 N. Soni,1 A. Sood,15V. Sopko,127B. Sopko,127 M. Sosebee,8 R. Soualah,165a,165c P. Soueid,94A. M. Soukharev,108D. South,42S. Spagnolo,72a,72bF. Spanò,76W. R. Spearman,57 R. Spighi,20a G. Spigo,30M. Spousta,128T. Spreitzer,159 B. Spurlock,8 R. D. St. Denis,53J. Stahlman,121 R. Stamen,58a E. Stanecka,39R. W. Stanek,6C. Stanescu,135aM. Stanescu-Bellu,42M. M. Stanitzki,42S. Stapnes,118E. A. Starchenko,129

J. Stark,55 P. Staroba,126 P. Starovoitov,42R. Staszewski,39P. Stavina,145a,a G. Steele,53P. Steinbach,44P. Steinberg,25 I. Stekl,127B. Stelzer,143H. J. Stelzer,89O. Stelzer-Chilton,160aH. Stenzel,52S. Stern,100G. A. Stewart,30J. A. Stillings,21 M. C. Stockton,86M. Stoebe,86K. Stoerig,48G. Stoicea,26aS. Stonjek,100A. R. Stradling,8A. Straessner,44J. Strandberg,148

(13)

R. Stroynowski,40S. A. Stucci,17B. Stugu,14I. Stumer,25,aJ. Stupak,149N. A. Styles,42D. Su,144J. Su,124HS. Subramania,3 R. Subramaniam,78A. Succurro,12Y. Sugaya,117C. Suhr,107M. Suk,127V. V. Sulin,95S. Sultansoy,4cT. Sumida,67X. Sun,55

J. E. Sundermann,48K. Suruliz,140 G. Susinno,37a,37bM. R. Sutton,150 Y. Suzuki,65M. Svatos,126 S. Swedish,169 M. Swiatlowski,144 I. Sykora,145aT. Sykora,128D. Ta,89K. Tackmann,42 J. Taenzer,159 A. Taffard,164 R. Tafirout,160a

N. Taiblum,154Y. Takahashi,102 H. Takai,25 R. Takashima,68H. Takeda,66T. Takeshita,141 Y. Takubo,65M. Talby,84 A. A. Talyshev,108,iJ. Y. C. Tam,175M. C. Tamsett,78,mmK. G. Tan,87J. Tanaka,156R. Tanaka,116S. Tanaka,132S. Tanaka,65

A. J. Tanasijczuk,143K. Tani,66N. Tannoury,84S. Tapprogge,82S. Tarem,153F. Tarrade,29G. F. Tartarelli,90a P. Tas,128 M. Tasevsky,126 T. Tashiro,67E. Tassi,37a,37b A. Tavares Delgado,125aY. Tayalati,136dC. Taylor,77F. E. Taylor,93 G. N. Taylor,87W. Taylor,160bF. A. Teischinger,30M. Teixeira Dias Castanheira,75P. Teixeira-Dias,76K. K. Temming,48

H. Ten Kate,30P. K. Teng,152 S. Terada,65K. Terashi,156 J. Terron,81 S. Terzo,100M. Testa,47R. J. Teuscher,159,m J. Therhaag,21T. Theveneaux-Pelzer,34S. Thoma,48 J. P. Thomas,18J. Thomas-Wilsker,76E. N. Thompson,35 P. D. Thompson,18P. D. Thompson,159 A. S. Thompson,53L. A. Thomsen,36 E. Thomson,121M. Thomson,28 W. M. Thong,87R. P. Thun,88,a F. Tian,35M. J. Tibbetts,15 T. Tic,126 V. O. Tikhomirov,95,nn Yu. A. Tikhonov,108,i S. Timoshenko,97E. Tiouchichine,84P. Tipton,177S. Tisserant,84T. Todorov,5 S. Todorova-Nova,128 B. Toggerson,164

J. Tojo,69S. Tokár,145aK. Tokushuku,65K. Tollefson,89L. Tomlinson,83M. Tomoto,102 L. Tompkins,31K. Toms,104 N. D. Topilin,64E. Torrence,115H. Torres,143E. Torró Pastor,168J. Toth,84,hhF. Touchard,84D. R. Tovey,140H. L. Tran,116

T. Trefzger,175 L. Tremblet,30A. Tricoli,30I. M. Trigger,160aS. Trincaz-Duvoid,79M. F. Tripiana,70N. Triplett,25 W. Trischuk,159B. Trocmé,55C. Troncon,90a M. Trottier-McDonald,143M. Trovatelli,135a,135bP. True,89M. Trzebinski,39

A. Trzupek,39C. Tsarouchas,30J. C-L. Tseng,119 P. V. Tsiareshka,91D. Tsionou,137 G. Tsipolitis,10N. Tsirintanis,9 S. Tsiskaridze,12V. Tsiskaridze,48E. G. Tskhadadze,51a I. I. Tsukerman,96V. Tsulaia,15J.-W. Tsung,21S. Tsuno,65 D. Tsybychev,149 A. Tua,140 A. Tudorache,26a V. Tudorache,26a A. N. Tuna,121 S. A. Tupputi,20a,20b S. Turchikhin,98,ll D. Turecek,127I. Turk Cakir,4dR. Turra,90a,90bP. M. Tuts,35A. Tykhonov,74M. Tylmad,147a,147bM. Tyndel,130K. Uchida,21 I. Ueda,156R. Ueno,29M. Ughetto,84M. Ugland,14M. Uhlenbrock,21F. Ukegawa,161G. Unal,30A. Undrus,25G. Unel,164 F. C. Ungaro,48Y. Unno,65D. Urbaniec,35P. Urquijo,21G. Usai,8A. Usanova,61L. Vacavant,84V. Vacek,127B. Vachon,86 N. Valencic,106 S. Valentinetti,20a,20b A. Valero,168L. Valery,34S. Valkar,128 E. Valladolid Gallego,168 S. Vallecorsa,49 J. A. Valls Ferrer,168R. Van Berg,121P. C. Van Der Deijl,106R. van der Geer,106H. van der Graaf,106R. Van Der Leeuw,106

D. van der Ster,30N. van Eldik,30P. van Gemmeren,6J. Van Nieuwkoop,143I. van Vulpen,106 M. C. van Woerden,30 M. Vanadia,133a,133bW. Vandelli,30A. Vaniachine,6P. Vankov,42F. Vannucci,79G. Vardanyan,178R. Vari,133aE. W. Varnes,7 T. Varol,85D. Varouchas,15A. Vartapetian,8K. E. Varvell,151V. I. Vassilakopoulos,56F. Vazeille,34T. Vazquez Schroeder,54 J. Veatch,7 F. Veloso,125aS. Veneziano,133a A. Ventura,72a,72bD. Ventura,85M. Venturi,48N. Venturi,159 A. Venturini,23 V. Vercesi,120aM. Verducci,139W. Verkerke,106J. C. Vermeulen,106A. Vest,44M. C. Vetterli,143,gO. Viazlo,80I. Vichou,166

T. Vickey,146c,oo O. E. Vickey Boeriu,146cG. H. A. Viehhauser,119 S. Viel,169 R. Vigne,30M. Villa,20a,20b M. Villaplana Perez,168E. Vilucchi,47M. G. Vincter,29 V. B. Vinogradov,64J. Virzi,15 O. Vitells,173I. Vivarelli,150

F. Vives Vaque,3 S. Vlachos,10D. Vladoiu,99M. Vlasak,127A. Vogel,21P. Vokac,127 G. Volpi,47M. Volpi,87 H. von der Schmitt,100 H. von Radziewski,48E. von Toerne,21V. Vorobel,128 M. Vos,168 R. Voss,30J. H. Vossebeld,73

N. Vranjes,137M. Vranjes Milosavljevic,106 V. Vrba,126M. Vreeswijk,106 T. Vu Anh,48R. Vuillermet,30I. Vukotic,31 Z. Vykydal,127W. Wagner,176P. Wagner,21S. Wahrmund,44J. Wakabayashi,102J. Walder,71R. Walker,99W. Walkowiak,142 R. Wall,177P. Waller,73B. Walsh,177C. Wang,152C. Wang,45H. Wang,15H. Wang,40J. Wang,152J. Wang,33aK. Wang,86 R. Wang,104 S. M. Wang,152 T. Wang,21X. Wang,177A. Warburton,86C. P. Ward,28D. R. Wardrope,77M. Warsinsky,48 A. Washbrook,46C. Wasicki,42I. Watanabe,66P. M. Watkins,18A. T. Watson,18I. J. Watson,151M. F. Watson,18G. Watts,139 S. Watts,83A. T. Waugh,151B. M. Waugh,77S. Webb,83M. S. Weber,17S. W. Weber,175J. S. Webster,31A. R. Weidberg,119

P. Weigell,100J. Weingarten,54C. Weiser,48H. Weits,106P. S. Wells,30T. Wenaus,25D. Wendland,16Z. Weng,152,y T. Wengler,30S. Wenig,30N. Wermes,21M. Werner,48P. Werner,30M. Wessels,58a J. Wetter,162K. Whalen,29A. White,8

M. J. White,1 R. White,32bS. White,123a,123bD. Whiteson,164D. Whittington,60D. Wicke,176 F. J. Wickens,130 W. Wiedenmann,174M. Wielers,80,fP. Wienemann,21 C. Wiglesworth,36L. A. M. Wiik-Fuchs,21 P. A. Wijeratne,77

A. Wildauer,100M. A. Wildt,42,ppH. G. Wilkens,30J. Z. Will,99H. H. Williams,121S. Williams,28S. Willocq,85 J. A. Wilson,18A. Wilson,88I. Wingerter-Seez,5 S. Winkelmann,48F. Winklmeier,115M. Wittgen,144T. Wittig,43 J. Wittkowski,99S. J. Wollstadt,82M. W. Wolter,39H. Wolters,125a,jB. K. Wosiek,39 J. Wotschack,30M. J. Woudstra,83 K. W. Wozniak,39K. Wraight,53M. Wright,53S. L. Wu,174X. Wu,49Y. Wu,88E. Wulf,35T. R. Wyatt,83B. M. Wynne,46

(14)

S. Xella,36 M. Xiao,137 D. Xu,33a L. Xu,33b,qq B. Yabsley,151 S. Yacoob,146b,rrM. Yamada,65H. Yamaguchi,156 Y. Yamaguchi,156A. Yamamoto,65K. Yamamoto,63S. Yamamoto,156T. Yamamura,156T. Yamanaka,156K. Yamauchi,102 Y. Yamazaki,66Z. Yan,22H. Yang,33eH. Yang,174U. K. Yang,83Y. Yang,110S. Yanush,92L. Yao,33aY. Yasu,65E. Yatsenko,42 K. H. Yau Wong,21J. Ye,40S. Ye,25A. L. Yen,57E. Yildirim,42M. Yilmaz,4bR. Yoosoofmiya,124K. Yorita,172R. Yoshida,6

K. Yoshihara,156 C. Young,144C. J. S. Young,30S. Youssef,22D. R. Yu,15 J. Yu,8J. M. Yu,88J. Yu,113L. Yuan,66 A. Yurkewicz,107B. Zabinski,39R. Zaidan,62A. M. Zaitsev,129,ddA. Zaman,149S. Zambito,23L. Zanello,133a,133bD. Zanzi,100

A. Zaytsev,25 C. Zeitnitz,176M. Zeman,127A. Zemla,38a K. Zengel,23O. Zenin,129 T.Ženiš,145aD. Zerwas,116 G. Zevi della Porta,57D. Zhang,88 H. Zhang,89J. Zhang,6 L. Zhang,152 X. Zhang,33d Z. Zhang,116Z. Zhao,33b A. Zhemchugov,64J. Zhong,119B. Zhou,88L. Zhou,35N. Zhou,164C. G. Zhu,33dH. Zhu,33aJ. Zhu,88Y. Zhu,33bX. Zhuang,33a A. Zibell,99D. Zieminska,60N. I. Zimin,64C. Zimmermann,82R. Zimmermann,21S. Zimmermann,21S. Zimmermann,48

Z. Zinonos,54 M. Ziolkowski,142R. Zitoun,5 L. Živković,35G. Zobernig,174A. Zoccoli,20a,20bM. zur Nedden,16 G. Zurzolo,103a,103bV. Zutshi107 and L. Zwalinski30

(ATLAS Collaboration)

1

School of Chemistry and Physics, University of Adelaide, Adelaide, Australia

2Physics Department, SUNY Albany, Albany, New York, USA 3

Department of Physics, University of Alberta, Edmonton, Alberta, Canada

4aDepartment of Physics, Ankara University, Ankara, Turkey 4b

Department of Physics, Gazi University, Ankara, Turkey

4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey 4d

Turkish Atomic Energy Authority, Ankara, Turkey

5LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France 6

High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA

7Department of Physics, University of Arizona, Tucson, Arizona, USA 8

Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA

9Physics Department, University of Athens, Athens, Greece 10

Physics Department, National Technical University of Athens, Zografou, Greece

11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 12

Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain

13aInstitute of Physics, University of Belgrade, Belgrade, Serbia 13b

Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

14Department for Physics and Technology, University of Bergen, Bergen, Norway 15

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA

16Department of Physics, Humboldt University, Berlin, Germany 17

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 19a

Department of Physics, Bogazici University, Istanbul, Turkey

19bDepartment of Physics, Dogus University, Istanbul, Turkey 19c

Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey

20aINFN Sezione di Bologna, Bologna, Italy 20b

Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

21Physikalisches Institut, University of Bonn, Bonn, Germany 22

Department of Physics, Boston University, Boston, Massachusetts, USA

23Department of Physics, Brandeis University, Waltham, Massachusetts, USA 24a

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

24bFederal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil 24c

Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil

24dInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 25

Physics Department, Brookhaven National Laboratory, Upton, New York, USA

26aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania 26b

Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania

26c

University Politehnica Bucharest, Bucharest, Romania

26dWest University in Timisoara, Timisoara, Romania 27

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Figure

FIG. 1 (color online). Distribution of the invariant mass of the lepton and highest-p T jet in (a) the electron þ jet channel and (b) the muon þ jet channel, for data (points with error bars) and for SM backgrounds (solid histograms)
FIG. 2 (color online). The combined 95% C.L. upper limits on Σσ qq × BF qq for QBHs decaying to a lepton and jet, as a function of M th , assuming M D ¼ M th and n ¼ 6 ADD extra dimensions.

References

Related documents

elever olika alternativ, eleverna fick frågan om de ville läsa själva eller i par eller lyssna på boken. 3 av 8 använde sig av kontraster för att göra eleverna

Genom att studera föräldrarnas förväntningar om förskolans kvalitet kan även deras barnsyn utläsas, vilket bekräftas av Halldén (2007) som menar att föräldrarnas

Utifrån vårt resultat kan vi dra slutsatsen att interkulturalitet är viktigt inom skolverksamheten. Vi kan se att både den homogena skolan och de båda heterogena skolorna

Ord som har använts för sökning efter litteratur för detta arbete är: öppna dagvattensystem, Västra hamnens öppna dagvattensystem, Toftanäs våtmarkspark, dammar, kanaler,

Vad man kan ta med sig från dessa tre strategier och just den här studien, är att det kan vara bra hålla sig till en viss typ av strategi, även om detta inte är en garant för

(2) Now, the biolm growth is much slower than the diusion of nutrients, so we may, at each time t, use the steady state solution of (1) to model the distribution of the

Jag skulle inte berätta det för någon jag inte känner om denna inte själv röker eller tycker det är okej.(…) Jag anser att cannabis är helt likställt med alkohol -