• No results found

Combination of searches for Higgs boson pairs in pp collisions at root s=13 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Combination of searches for Higgs boson pairs in pp collisions at root s=13 TeV with the ATLAS detector"

Copied!
23
0
0

Loading.... (view fulltext now)

Full text

(1)

Physics Letters B 800 (2020) 135103

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Combination

of

searches

for

Higgs

boson

pairs

in

pp collisions

at

s

=

13 TeV with

the

ATLAS

detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory: Received6June2019

Receivedinrevisedform13November2019 Accepted13November2019

Availableonline19November2019 Editor:M.Doser

ThisletterpresentsacombinationofsearchesforHiggsbosonpairproductionusingupto36.1 fb−1of proton–protoncollisiondataatacentre-of-massenergy√s=13 TeV recordedwiththeATLASdetectorat theLHC.ThecombinationisperformedusingsixanalysessearchingforHiggsbosonpairsdecayinginto thebbb¯ b,¯ bbW¯ +W−,bb¯τ+τ−,W+WW+W−,bb¯γ γ andW+Wγ γ finalstates.Resultsarepresented fornon-resonantand resonantHiggsbosonpairproductionmodes.Nostatisticallysignificantexcessin data above the StandardModel predictions is found.Thecombined observed (expected)limit at95% confidence levelonthe non-resonantHiggsboson pairproductioncross-sectionis6.9 (10)times the predicted StandardModel cross-section.Limitsare alsoset ontheratio (κλ)ofthe Higgsboson self-couplingto itsStandard Modelvalue. Thisratiois constrainedat95% confidencelevel inobservation (expectation) to −5.0<κλ<12.0 (−5.8<κλ<12.0).In addition, limits are set on the production ofnarrowscalarresonancesandspin-2Kaluza–KleinRandall–Sundrumgravitons.Exclusionregionsare alsoprovidedintheparameterspaceofthehabemusMinimalSupersymmetricStandardModelandthe ElectroweakSingletModel.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

ThediscoveryoftheHiggsboson(H ) [1,2] attheLargeHadron Collider(LHC) [3] in2012hasexperimentallyconfirmedtheBrout– Englert–Higgs (BEH)mechanism ofelectroweak symmetry break-ingandmassgeneration [4–6].TheBEHmechanismnotonly pre-dicts theexistence ofa massive scalar particle,butalso requires thisscalarparticletocoupletoitself.Therefore,observingthe pro-ductionofHiggsbosonpairs(H H )andmeasuringtheHiggsboson self-couplingλH H H isa crucialvalidationoftheBEH mechanism. Any deviation from the Standard Model (SM) predictions would open awindow tonewphysics. Moreover, theform oftheHiggs fieldpotential,whichgeneratestheHiggsbosonself-couplingafter electroweaksymmetry breaking,canhaveimportantcosmological implications,involving,forexample,predictionsforvacuum stabil-ityormodelsinwhichthe Higgsboson actsastheinflation field [7–10].

In the SM, the gluon–gluon fusion ppH H process (ggF) accountsfor more than 90% of the Higgs boson pair production cross-section,andonlythisproductionmodeisconsideredhere.It proceedsviatwoamplitudes:thefirst(A1)representedbythe dia-grams(a)and(b),andthesecond(A2)representedbythediagram (c)inFig.1.Theinterferencebetweenthesetwoamplitudesis

de- E-mailaddress:atlas.publications@cern.ch.

structiveandyields an overall cross-sectionof σSM

ggF(ppH H)= 33.5+22..48 fbat√s=13 TeV [11],calculatedfirstatnext-to-leading order(NLO)inQCDwiththeheavytop-quarkapproximation [12], thennumericallywithfulltop-quarkmassdependence [13] (con-firmedlaterinRef. [14] andanalyticallycomputedwithsome ap-proximationinRef. [15])correctedatnext-to-next-to-leadingorder (NNLO) [16] in QCD matched with next-to-next-to-leading loga-rithmic(NNLL)resummationintheheavy top-quarklimit [17,18]. The Higgs boson mass used in these calculations andfor all re-sultsinthispaperismH=125.09 GeV [19]. Beyond-the-Standard-Model(BSM)scenarioscan bringsubstantialenhancement ofthis cross-sectionbymodifyingtherelativesignofA1andA2,andby increasingA2.TheA2 amplitudeisproportionaltotheHiggs self-couplingλH H H.TheHiggsbosonself-couplingmodifierduetoBSM scenariosisdefinedas κλ= λH H H/λSMH H H.Inthisanalysis,allother Higgs boson couplings are assumed to have SM values. Indirect limitson κλhavebeenobtainedusingthemeasurementsofsingle

Higgsbosonproductionanddecay [20] andelectroweakprecision observables [21,22],constraining κλ totherange−8<κλ<14 at

95% confidence level (CL). The Higgs boson self-coupling is dis-cussedinthecontextofBSMmodelsinRefs. [22,23].

SeveralBSMmodels alsopredict theexistence ofheavy parti-clesdecayingintoapairofHiggsbosons.Two-Higgs-Doublet Mod-els[24],modelsinspiredbytheMinimalSupersymmetricStandard Model (MSSM) like habemus MSSM (hMSSM) [25–28], and

Elec-https://doi.org/10.1016/j.physletb.2019.135103

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. Examplesofleading-orderFeynmandiagramsforHiggsbosonpairproduction:thediagrams(a)and(b)areproportionaltothesquareoftheheavy-quarkYukawa couplings,whilethediagram(c)isproportionaltotheproductoftheheavy-quarkYukawacouplingandtheHiggsbosonself-coupling.Hereκλistheratioofthe beyond-the-Standard-ModelHiggsbosonself-couplingtothatoftheSM.Thediagram(d)representstheproductionoftheHiggsbosonpairthroughanintermediateresonance( X ) thatcouplestogluonsthroughaneffectivecouplingandtotheSMHiggsboson.

troweakSingletModels(EWK-singlet) [11,29–31] predict, in addi-tiontotheHiggsboson,asecond,heavier,CP-evenscalarthatcan decayinto two SM Higgs bosons. In the EWK-singlet model,the scalar statesare mixed, witha mixingangle α. The ratio ofthe vacuumexpectationvalue ofthe additionalsingletto that ofthe SM Higgs doublet, tanβ, is a free parameter. In the hMSSM, the CP-evenstatesalso mix, andthemodel’s phenomenology can be describedbythemass(mA)ofathird,CP-odd,resonanceandthe ratioofthevacuumexpectationvaluesofthetwoHiggsdoublets, tanβ. Alternatively, the Higgs boson pair can be produced reso-nantly throughthe decayof aspin-2 Kaluza–Klein (KK) graviton, aspredictedintheRandall–Sundrum (RS)modelofwarpedextra dimensions [32]. Aschematic diagram forproduction of a heavy resonancefollowedbyitsdecayintoaHiggsbosonpairisshown inFig.1(d).

This letter presents a combination of results from searches for both non-resonant and resonant Higgs boson pair produc-tion in proton–proton (pp) collisions at √s=13 TeV. The data were collected with the ATLAS detector [33–35] and correspond to an integrated luminosity of up to 36.1 fb−1. The combination includes all published ATLAS H H search analyses using √s= 13 TeV data, namely those studying the final states bbb¯ b [¯ 36], bbW¯ +W− [37], bb¯τ+τ− [38], W+WW+W− [39], bb¯γ γ [40] andW+Wγ γ [41].

PreviouscombinationsofsearchesforH H pairproductionwere performed at √s=8 TeV by the ATLAS experiment [42] and at

s=13 TeV by the CMS experiment [43] combining the final statesbbb¯ b [¯ 44–47],bbVV[48],bb¯τ+τ−[49] andbb¯γ γ [50]. 2. Analysisdescription

Theanalysisstrategiesforeachofthefinalstatesconsideredin thisletteraresummarisedbelow.

• Thebbb¯ b analysis¯ isperformedusing fouranti-kt jets recon-structed with a radius parameter R=0.4 [51,52] (resolved analysis)ortwo large-R jetswith R=1.0 (boostedanalysis). The datasetof the resolved analysisis split accordingto the years 2015and 2016, andthen statisticallycombined taking intoaccountthedifferenttriggeralgorithmsusedin2015and 2016. In part of the 2016 data period, inefficiencies in the onlinevertex reconstruction affected b-jet triggers that were usedintheresolvedanalysis,reducingthetotalavailable inte-gratedluminosity to27.5 fb−1.Theboostedanalysissearches fortwolarge-R jetscontainingtheb-quarkpairsfromthe

de-cays of thetwo Higgsbosons. The large-R jets are identified asoriginatingfromb-quarks usinga b-taggingalgorithm ap-plied to R=0.2 track-jets [53] associated with the large-R jet [54].The analysisisdividedintothreecategories:thefirst category selectseventsinwhicheachofthetwo large-R jets hasone b-taggedtrack-jet; thesecond category requiresthat onelarge-R jetcontainstwob-taggedtrack-jetsandtheother large-R jetcontains oneb-taggedtrack-jet;thethirdcategory requiresthatbothlarge-R jetscontaintwob-taggedtrack-jets. FortheSM H H search,onlytheresolvedanalysisisused,with two categories, one for the 2015 and another for the 2016 dataset.Theresonantsearchisinsteadperformedwiththe re-solved analysis formasses inthe range 260–1400 GeV, with the boostedanalysis formassesin the range800–3000 GeV, andwiththecombinationofthe twoformassesinthe over-lappingrange800–1400GeV.

•The bbW¯ +W− analysis looks for the W W → νqq decay channel, where isan electronormuon, andq isa u,d,s,c quark oranti-quark.Thebb pair¯ isselectedfromtwo R=0.4 jets (resolved analysis) or one R=1.0 large-R jet (boosted analysis), whilethejetsfromthe W decay are reconstructed withR=0.4 jets.TheresolvedanalysisisusedintheSM H H search, in thesearch fora scalarresonance witha mass be-tween500and1400GeV,andinthesearchforaKKgraviton inthemassrange500to800GeV.Theboostedanalysislooks forscalarresonancesinthemassrange1400to3000GeVand forKKgravitonsbetween800and3000GeV.Theresolvedand boostedanalyseseachuseonecategory.Thetwoanalysesare notstatisticallycombinedduetoasignificantoverlapbetween thetwosignalregions.

•The bb¯τ+τ− analysislooks forfinal stateswithtwo R=0.4 b-tagged jets and two τ-leptons. One of the two τ-leptons of the τ+τ− pair is required to decay hadronically, while the otherdecayseitherhadronically (τhadτhad) orleptonically (τlepτhad).Inthe τlepτhad channel,eventsaretriggeredby sin-gle lepton triggers (SLT), requiring an electron or a muon in the final state, or by the coincidence of a lepton trig-ger witha hadronic τ trigger(LTT). Inthe τhadτhad channel, events are triggered by single hadronic τ triggers (STT) or doublehadronic τ triggers (DTT).Theanalysisisdividedinto threecategories:one selects τhadτhad events,asecond selects

τlepτhadeventstriggeredbytheSLT,andathirdselects τlepτhad eventstriggeredbytheLTT.The τhadτhad andtheSLT τlepτhad categoriesareusedforallmodelinterpretations,whiletheLTT

(3)

The ATLAS Collaboration / Physics Letters B 800 (2020) 135103 3

Table 1

Summaryofthemaincharacteristicsoftheanalysesusedinthenon-resonantandresonantsearches.Theresonantanalysis char-acteristicsareindicatedbetweensquarebrackets.“B(H Hx¯x y¯y)”indicatesthebranchingfractionofthe H H pair whereone H decaysinto xx and¯ theotherdecaysinto y¯y.ThebranchingfractionvaluesaretakenfromRef. [11] foraHiggsbosonmass mH=125.09 GeV.“Lint”indicatestheintegratedluminosityofthedatasetusedintheanalysis.“Categories”indicatesthenumber ofsignalcategories.“Discriminant”indicatesthedistributionusedinthefinallimit-settingfit(“c.e.”standsforcountingeventsand indicatesthatasimpleeventcountingwasusedinthefinalfitratherthanadistributionshape).“Model”indicateswhichmodels eachanalysistested:NRstandsforSMH H signalmodel,S foraspin-0scalarmodel,andG foraKKgravitonmodel.“mS/G”gives theprobedmassrangefortheresonantsearch.“Ref.”reportsthereferencetotheindividualfinalstatepapers.

bbb¯ b¯ bbW¯ +Wbb¯τ+τW+WW+Wbb¯γ γ W+Wγ γ

B(H Hx¯x y¯y) 0.34 0.25 0.073 0.046 2.6·10−3 1.0·10−3

Lint[fb−1] 27.5 [36.1] 36.1 36.1 36.1 36.1 36.1

Categories 2 [2–5] 1 [1] 3 [2–3] 9 [9] 2 [2] 1 [1]

Discriminant mH H[mH H] c.e. [mH H] BDT [BDT] c.e. [c.e.] mγ γ [mH H] mγ γ [mγ γ] Model NR [S/G] NR [S/G] NR [S/G] NR [S] NR [S] NR [S] mS/G[TeV] [0.26–3.00] [0.50–3.00] [0.26–1.00] [0.26–0.50] [0.26–1.00] [0.26–0.50]

Ref. [36] [37] [38] [39] [40] [41]

τlepτhadcategoryisusedintheSM H H search(excludingthe

κλanalysis)andinresonantsearchesuptoamassof800GeV.

•The W+WW+W− analysis looks for channels with lep-tonicand/orhadronicW decays.Threechannelsareidentified:

νν4q,ννν2q,andνννν,withbeinganelectron or muon, q a quark, and ν a neutrino. The q momentum is reconstructed fromR=0.4 jets.Inordertosuppress Z+jets and tt background,¯ dilepton eventsare required tohave two leptons ofthe samecharge. Events are categorisedaccording to the lepton flavour (ee, and μμ). Three-lepton events are selectedifthesumofthe leptonchargesis±1.Theyare dividedintotwocategoriesaccordingtothenumberof same-flavour,opposite-charge(SFOS) leptonpairs; onecategory se-lectszeroSFOSleptonpairsandasecondcategoryselectsone or two SFOS lepton pairs. Four-lepton events are categorised accordingtothenumberofSFOSlepton pairsandthe invari-ant mass(m4) ofthefour-leptonsystem. Fourcategoriesare

defined,requiringthatthenumberofSFOSleptonpairsisless than two or equal totwo, andm4 is smaller orlarger than

180 GeV. A total of nine categoriesare fit simultaneously in thesearchesforbothnon-resonantandresonant H H produc-tion.

•The bb¯γ γ analysissearches for a H H pair decaying into bb¯ and γ γ.Two high-pT isolated photonsare requiredto have ET/mγ γ > 0.35 and 0.25 respectively. The events are then analysed usingtwo selections:a ‘looseselection’ requiring a jetwith pT>40 GeVandasecondjetwithpT>25 GeV,and a ‘tightselection’wherethetwo jetsarerequiredtohave pT larger than 100 and 30GeV. All jets have a radius parame-terR=0.4.Bothselectionsaresubdividedintotwocategories requiringone b-taggedjetortwob-taggedjets. Thetight se-lection is used in the SM H H search and in the search for resonanceswithmasseshigherthan500GeV,whiletheloose selection isusedinthe κλ analysisandinthesearchfor

res-onances with masses smaller than 500 GeV. The analysis is therefore divided into four categories, butonly two of them aresimultaneouslyfittoextracteachresult.

•The W+Wγ γ analysissearchesfora H H pairdecayinginto

γ γ andW W .Theanalysisusesthesamephotonselectionas thebb¯γ γ channel andlooksforone W decayingleptonically and a second W decaying hadronically (W W → νqq). The hadronicW decayisreconstructedfromR=0.4 jets.Onlyone category is used in the searches for both non-resonant and resonant H H production.

Asummaryofthemain analysischaracteristicsisgivenin Ta-ble1.All analysesimpose a seriesofsequential requirementson kinematic variables to select signal events and suppress

back-grounds. The bb¯τ+τ− analysis uses a boosted decision tree (BDT) [55] distributionasthefinaldiscriminantforboththe non-resonant and resonant searches. For the resonant searches, the bbb¯ b,¯ bbW¯ +W− andbb¯γ γ analyses use the H H invariant mass (mH H) as the final discriminant, the W+Wγ γ analysis uses the γ γ invariant mass (mγ γ ), while W+WW+W− uses sim-pleeventcounting.FortheSM H H search,thebbb¯ b analysis¯ uses themH H distribution asadiscriminant, profitingfromthe differ-encebetweentheshapesofthesignalandthedominantmulti-jet background.Thebb¯γ γ and W+Wγ γ analysesfitthemγ γ dis-tribution toextract boththe signal yieldandthe background ex-pectation,whilethebbW¯ +W−and W+WW+W−analyses use eventcounting.

3. Statisticaltreatment

The statisticalinterpretationof thecombinedsearch results is basedonasimultaneousfittothedataforthecross-sectionofthe signalprocessandnuisanceparametersthatencodestatisticaland systematicuncertainties,usingtheCLS approach [56].The asymp-toticapproximation [57] isused inthe analysisofall final states andtheircombination.

Allsignalregions consideredinthesimultaneousfitare either orthogonal by construction or have negligible overlap. The over-lap due to object misidentification between bb¯γ γ and bb¯τ+τ−, andbetweenW+Wγ γ and W+WW+W−,whicharenot or-thogonalby construction,is evaluated by running the signal and datasamplesfromeachchannel throughtheanalysisselection of eachotherchannel.Lessthan0.1%ofsimulatedsignalevents over-lap between analyses, and no overlap is found in data. There is someirreduciblecontaminationfrombbW¯ +W− andbb Z Z events¯ with τ’sinthefinalstatepassingthebb¯τ+τ−selection.This con-tamination is less than 8% of the bb¯τ+τ− selected events, and it is not taken into account in the bb¯τ+τ− analysis, note that including this contribution would increase the analysis sensitiv-ity therefore the results obtained here are slightly conservative. The detectorsystematicuncertainties,such asthose injet recon-struction,b-jettagging,electron,muonandphotonreconstruction andidentification,aswellastheuncertaintyontheintegrated lu-minosity [58], are correlated across all final states. Uncertainties on the signal acceptance derived by varying the renormalisation andfactorisationscales,the partondistributionfunctionsandthe partonshower are correlatedtoo. Theoretical andmodelling sys-tematicuncertainties ofthebackgrounds derived usingsimulated events are not correlated across different analyses because the overlapamongtheircontributionstothedifferentanalysesis neg-ligible.

(4)

Fig. 2. Upperlimitsat95%CLonthecross-sectionoftheggFSMH H production normalisedtoitsSMexpectationσSM

ggF(ppH H)fromthebb¯τ+τ−,bbb¯ b,¯ bb¯γ γ, W+WW+W−,W+Wγ γ andbbW¯ +W− searches,andtheirstatistical combi-nation.Thecolumn“Obs.”liststheobservedlimits,“Exp.”theexpectedlimitswith allstatisticalandsystematicuncertainties,and“Exp.stat.”theexpectedlimits ob-tainedincludingonlystatisticaluncertaintiesinthefit.

4. Combinationofresultsonnon-resonantHiggsbosonpair production

TheSM H H analysesusesignalsamplesgeneratedat next-to-leadingorder(NLO)inQCDwith Madgraph5_aMC@NLO [59] using the CT10NLO parton distributionfunction (PDF) set [60]. Parton showers and hadronisation were simulated with Herwig++ [61] usingparametervaluesfromthe UE-EE-5-CTEQ6L1 tune [62].The so-calledFTApproxmethod [63] isappliedintheeventgeneration toinclude finitetop-quarkmass effectsinthe real-radiationNLO corrections.Thevirtual-loopcorrectionsarerealisedwithHiggs ef-fective field theory (HEFT)assuming infinite top-quarkmass.The generatedeventsarethencorrectedwithageneratorlevel bin-by-binreweightingofthemH H distribution,whichiscalculatedwith finite top-quark mass in full NLO corrections [13]. The branch-ing fractions ofthe Higgs bosonare assumed to be equalto the SM predictions [11].Forthe SM H H search,upperlimitsare ex-tracted for the cross-section σggF(ppH H) of H H production andare normalisedby theSM H H cross-section σSM

ggF(ppH H). The limitsaredetermined assuming that allkinematic properties of the H H pair are those predicted by the SM, particularly the mH H distribution,andonlythetotalggFproductioncross-section,

σggF(ppH H),isallowedtodeviatefromitsSMvalue. The the-oretical uncertainties of σSM

ggF are less than 10% [11] and are not includedinthefitresults.

Theupperlimitsat95%CLonthecross-sectionoftheggFHiggs bosonpairproductionnormalised to σSM

ggF are showninFig.2for theindividual final statesandtheir combination.The upperlimit for each final state is obtainedfrom a fit with minimal changes frompreviouslypublished results.Thechanges includean update of the ggF Higgs boson pair production cross-section from 33.4 fb to 33.5 fb for all final states. Additionally, the bb¯τ+τ− final stateincludedtheoreticaluncertaintiesontheggFinclusive cross-section, σSM

ggF,whichare not considered inthepresenttreatment, and the bb¯γ γ final state is updated to use an asymptotic ap-proximationtocalculatetheobservedlimitinsteadofthe pseudo-experimentmethodusedforitspublication. Thisresultsina10% changeintheobservedlimitofbb¯γ γ.Moreover,theimpactofthe

asymptoticapproximationonallfinalstatescombinedisfoundto be5%.

The combinedobserved(expected)upperlimitontheSM H H production is 6.9 (10) × σSM

ggF(ppH H). The expected limit is similartotheCMSresultof12.σSM

ggF(ppH H).Theobserved limitismorestringentfortheATLASresultthantheCMSresultof 22.σSM

ggF(ppH H)becausethethreeleadingchannels(bbb¯ b,¯ bb¯τ+τ− and bb¯γ γ) have a data deficit in ATLAS andan excess in CMS [43], remaining however within the two 2σ uncertainty interval.DetailedcomparisonscanbefoundinRef. [64].

The impactofthesystematicuncertaintieshasbeenevaluated byrecomputingthelimitwithouttheirinclusion.Thelimitisthen reducedby 13%whenremoving all ofthem.Themainsources of systematicuncertainty arethe modellingofthebackgrounds, the statisticaluncertaintyofsimulatedeventsandthe τ-lepton recon-struction andidentification. When removed the limit reducesby 5%,3%and2%,respectively.

5. ConstraintsontheHiggsbosonself-coupling

The results in Fig. 2 show that the sensitivity ofthe SM H H searchisdrivenbythefinalstatesbbb¯ b,¯ bb¯τ+τ−andbb¯γ γ.These final states are used to set constraints on the Higgs boson self-couplingmodifier κλ= λH H H/λSMH H H.Aftersettingall couplingsto fermionsandbosonstotheirSMvalues,ascanoftheself-coupling modifier κλisperformed.The κλfactoraffectsboththeproduction

cross-section andthe kinematic distributions of the Higgs boson pairs, by modifying the A2 productionamplitude. It can also af-fect the Higgsbosonbranching fractions duetoNLO electroweak corrections [20], butthis dependence isneglected in the follow-ing.

The signal used in the κλ fit was simulated according to the

following procedure. For each value of κλ the mH H spectrum is computedatthegenerator-level,usingtheleading-order(LO) ver-sion of MadGraph5_aMC@NLO [59] withthe NNPDF 2.3LO [65] PDF set, together with Pythia 8.2 [66] for the showering model usingthe A14tune [67].BecauseonlyoneamplitudeofHiggs bo-son pair productiondependson κλ,linear combinationsof three

LOsamplesgeneratedwithdifferentvaluesof κλ aresufficientto

make predictions forany value of κλ. Binned ratios of the mH H distributionstotheSMdistributionarecomputedforall κλvalues

andthenusedtoreweighttheeventsofNLO SM H H signal sam-ples, generatedusing thefull detectorsimulation.This procedure is validated by comparing kinematic distributions obtained with the reweighting procedure applied to theLO SM sample andLO samplesgeneratedwiththeactual κλvaluessetintheevent

gen-erator.Thetwosetsofdistributionsarefoundtobeinagreement. ThisprocedureassumesthathigherorderQCDcorrectionsonthe differentialcross-sectionasafunctionofmH H areindependentof

κλ.ThereweightedNLOsignalsampleisusedtocomputethe

sig-nalacceptanceandthekinematicdistributionsfordifferentvalues of κλ.

This letter presents κλ results for the first time in the

AT-LASbbb¯ b and¯ bb¯τ+τ−finalstatesandincorporatesthepreviously published resultforthebb¯γ γ final state.The κλ analysesclosely

follow the SM H H search, withsome exceptions which are dis-cussedbelowforeachfinalstate.

•In the bbb¯ b final¯ state, the sameanalysis selection andfinal discriminant are used inthe κλ-scan analysisandin theSM

H H search.The distributionof thefinal discriminantmH H is showninFig.3(a),where,withtheexceptionofasmallexcess in the regionbelow 300 GeV [36] and asmall deficitin the 500-600 GeV region, good agreement between data and the

(5)

The ATLAS Collaboration / Physics Letters B 800 (2020) 135103 5

Fig. 3. Finaldiscriminantsusedintheκλ-scananalysisfor thebbb¯ b and¯ thebb¯τ+τ− finalstates.(a)showsthereconstructedmH Hdistributioninthebbb¯ b analysis;¯ backgroundsincludedata-drivenmulti-jetprocesses(Multijet),t¯tW+Wbb with¯ bothW bosonsdecayinghadronically(Hadronict¯t)andtt¯→W+Wbb with¯ atleast oneofthe W bosonsdecayingleptonically(Semileptonictt).¯ (b)and(c)showtheBDTdistributionsinthebb¯τ+τ− analysisfortheτlepτhad andtheτhadτhad channels, respectively.Themainbackgroundsaret¯t andsingle-top-quarkproduction(Top-quark),thebackgroundarisingfromjetsfakinghadronicτ-leptondecays(jet→τhadfakes), Zτ+τ−plustwoheavy-flavourjets[Z→τ τ+ (bb,bc,cc)],SMsingleHiggsbosonproduction(SMHiggs)andotherminorbackgrounds(Other).Theshadedareaincludes thesystematicuncertaintyofthetotalbackgroundexpectationduetothestatisticsofsimulatedeventsandallexperimentalandtheoreticalsystematicuncertainties.In figures (b)and(c)theuncertaintybandisnotshownintheupperpanesbecauseitistoosmalltobeseen.Thesignaldistributionisoverlaidforκλ= −5,1,10 andis normalisedtoitsexpectedyield.

expectedbackgroundis observed.TheshapeofthemH H dis-tributionhasastrongdependenceon κλ,andthesignal

accep-tancevariesbyafactor2.5overtheprobedrangeof κλ-values

(−20≤κλ≤20) showninFig.4(a). Thetwo effects together

determinehowtheexclusionlimitsonthecross-sectionofthe H H productionvaryasafunctionof κλ.

•In the bb¯τ+τ− final state, as in the SM H H search, both

τlepτhadand τhadτhadeventsareused.IncontrastwiththeSM H H search, LTT τlepτhad events(see Section 2) are not used giventheirnegligiblecontribution.TheSMH H searchandthe

κλ-scan analysis usethe samesets of variables tobuild BDT

discriminants. For the κλ-scan the BDTs are retrained using

the NLO SM signal sample reweighted with κλ=20,

ensur-inggoodsensitivityoverthewholerangeofprobed κλ-values.

TheBDTscoredistributionsareusedinthefittocomputethe final results.Theshapeofthebb¯τ+τ−BDT distributionsdoes

notshowa κλdependenceasstrongasinthebbb¯ b final¯ state,

ascanbeseen inFig.3.Thesensitivityofthisanalysisis in-steadaffectedbyavariationinthesignalacceptancebyupto afactorofthreeovertheprobedrangeof κλ-values,asshown

inFig.4(a).

• In the bb¯γ γ final state, the loose selection is used in the

κλ-scan analysis because the average transverse momentum

of the Higgs bosons is lower at large values of κλ, where

|A2|2 dominates the production cross-section. As in the SM H H search,thestatisticalanalysisisperformedusingthemγ γ distribution,whichdoesnotdepend on κλ.Thesignal

accep-tancevariesbyabout30%overtheprobedrangeof κλ-values,

asshowninFig.4(a).Inthepreviouslypublishedanalysis[40], LOsamples were used forthe computation of the signal ac-ceptance,whileinthispapertheNLOreweightedsamplesare used,asdescribedabove.

(6)

Fig. 4. (a)Signalacceptancetimesefficiencyasafunctionofκλ forthebbb¯b,¯ bb¯τ+τ− andbb¯γ γ analyses.Thebbb¯b curve¯ istheaverageofthe2015and2016curves weightedbytheintegratedluminositiesofthetwodatasets.(b)Upperlimitsat95%CLonthecross-sectionoftheggFnon-resonantSMH H productionasafunctionof κλ.Theobserved(expected)limitsareshownassolid(dashed)lines.Inthebb¯γ γ finalstate,theobservedandexpectedlimitscoincide.The±1σ and±2σ bandsare onlyshownforthecombinedexpectedlimit.Thetheoreticalpredictionofthecross-sectionasafunctionofκλisalsoshown.Theeffectofnon-SMHiggsdecaybranching fractionsduetoκλvariationsisnottakenintoaccount,whichimpactstheκλintervalsbynomorethan7%.

The signal acceptance times efficiency as a function of κλ is

showninFig.4(a).Giventhat,foreachfinalstate,thesame selec-tionwasapplied overthefullscanned κλ range,theshape ofthe

acceptancetimesefficiencycurveisdeterminedbythevariationof theevent kinematicsas afunction of κλ. Forhighvalues of|κλ|

theA2 termdominatesthetotalamplitude,causingasoftermHH spectrum, and thus a lower acceptance times efficiency. Around

κλ=2.4 theinterferencebetweenA1 andA2amplitudesis max-imal,producingthehardestmHHspectrum and,consequently,the highestsignalacceptancetimesefficiency.

In each analysis, andin their combination, the 95% CL upper limiton the σggF(ppH H)cross-sectionis computedfor differ-entvaluesof κλ. Theresults areshowninFig. 4(b).The

theoret-ical σggF(ppH H) cross-section as a function of κλ is overlaid

in the figure. It is computed by multiplying the H H SM cross-section σSM

ggF(ppH H)bytheratioR(κλ)oftheppH H

cross-section computed at κλ, σggFκλ(ppH H) to the same quantity

σκλ=1

ggF (ppH H) computed at κλ=1. The R(κλ) factoris

com-puted at NNLO+NNLLwith the infinite top-quarkmass approxi-mation [68].Theresultingobserved(expected)confidenceinterval at95%CLfor κλis:−5.0<κλ<12.0 (−5.8<κλ<12.0).

InFig.4(b)the shapeof theupper-limit curvesapproximately followstheinverseofthesignal acceptanceshowninFig.4(a).In thebbb¯ b analysis,¯ theobservedlimitsaremorestringentthanthe expectedlimitsat low valuesof κλ.Forthese κλ valuesthe

sig-nal mH H distributions have significant populations in the region 500-600 GeV,where thedatadeficitsits, asexplainedabove. For largervaluesof κλ themH H distribution isshiftedto lowermH H values,and thus the excess in data below300 GeV leads to the observedlimitsbeinglessstringentthanexpected.Inthebb¯τ+τ

final state the observed limits are more stringent than the ex-pectedlimitsoverthewholerangeof κλ,dueto adeficitofdata

relative to the backgroundpredictions at highvalues ofthe BDT score.Thebb¯γ γ limitshowsaweakerdependenceon κλthanthe

bbb¯ b and¯ bb¯τ+τ−limitsbecausethebb¯γ γ acceptancevariesless asfunctionof κλ.

The 95% CL allowed κλ intervals are given in Table 2. The

systematic uncertainties weaken the κλ limits by less than 10%

relativetothoseobtainedwithonlystatisticaluncertainties.The fi-nalstateleast(most)affectedbysystematicuncertaintiesisbb¯γ γ

(bbb¯ b).¯ The Higgsbosonbranching fractiondependson κλ dueto

Table 2

Allowedκλ intervalsat95%CLforthebbb¯b,¯ bb¯τ+τ− andbb¯γ γ finalstatesand theircombination.Thecolumn“Obs.”liststheobservedresults,“Exp.”theexpected resultsobtainedincludingallstatisticalandsystematicuncertaintiesinthefit,and “Exp.stat.”theexpectedresultsobtainedincludingonlythestatisticaluncertainties. Theeffectofnon-SMHiggsdecaybranchingfractionsduetoκλ variationsisnot takenintoaccount,whichimpactstheκλintervalsbynomorethan7%.

Final state Allowedκλinterval at 95% CL

Obs. Exp. Exp. stat.

bbb¯b¯ −10.9 — 20.1 −11.6 — 18.8 −9.8 — 16.3 bb¯τ+τ− −7.4 — 15.7 −8.9 — 16.8 −7.8 — 15.5 bb¯γ γ −8.1 — 13.1 −8.1 — 13.1 −7.9 — 12.9 Combination −5.0 — 12.0 −5.8 — 12.0 −5.3 — 11.5

NLOelectroweakcorrections[20].Thisdependenceisneglectedin thepresenttreatment,butitsoverallimpactontheallowed κλ

in-tervalisevaluatedtobenomorethan7%.Theoryuncertaintieson the signal crosssection showninFig.4(b)are not takeninto ac-count when computing the κλ limits in Table 2, they affect the

limitbylessthan8%.

6. CombinationofresultsforresonantHiggsbosonpair production

TheresonancedecayingintoapairofHiggsbosonsisassumed tobeeitheraheavyspin-0scalarparticle, S,withanarrowwidth oraspin-2KKgraviton,GKK.

The search for the heavy scalar particle S is performedwith all six final statesincluded in thiscombination. With the excep-tion of bb¯τ+τ− and bbb¯ b,¯ all signal samples were simulated at NLO with MadGraph5_aMC@NLO using the CT10 PDF set. The matrix-element generator was interfaced to Herwig++ with the UE-EE-5-CTEQ6L1 tune.Thebb¯τ+τfinalstateusesan LOmodel generated with MadGraph5_aMC@NLO using the NNPDF 2.3 LO PDFsetinterfacedto Pythia 8.2withtheA14tune,whilethebbb¯ b¯ finalstateusesthesameLOeventgeneratorbutinterfacedto Her-wig++withthe UE-EE-5-CTEQ6L1 tune.

The scalar resonance search is performed in the mass range 260–3000GeV,andwithinthisrangenostatisticallysignificant ex-cessisobserved.Inthecombination,thelargestobserveddeviation fromthebackgroundexpectationis1σ forthesearchmassrange. Thecombinedupperlimitonthecross-sectionisshownasa

(7)

func-The ATLAS Collaboration / Physics Letters B 800 (2020) 135103 7

Fig. 5. Upperlimitsat95%CLonthecross-sectionoftheresonantHiggsbosonpairproductionfor(a)aspin-0heavyscalar,(b)aspin-2KKgravitonwithk/MPl=1 and (c)aspin-2KKgravitonwithk/MPl=2.Theobserved(expected)limitsareshownassolid(dashed)lines.The±1σand±2σ bandsareonlyshownfortheexpectedlimits ofthecombination.Onlythebbb¯ b,¯ bbW¯ +W−andbb¯τ+τ−searchresultsareusedinthespin-2resonantcombination.Theverticalblacklinesineachpanel indicatemass intervalswheredifferentfinalstatesarecombined.

tion of the resonance mass in Fig. 5(a). Systematic uncertainties haveasizeableeffectontheupperlimitsdependingontheprobed resonancemass.Thetotal impactofsystematicsorthe impactof asingle systematicuncertaintyhas beenevaluated by computing thepercentagereductionoftheupperlimitobtainedbyremoving allsystematicuncertaintiesoraparticularsource.Overallthe sys-tematicuncertainties affectthelimitby12%(11%)foraresonance massof1 (3) TeV.Amongthem,thelargestsystematic uncertain-tiesare due to the modellingof the backgrounds, impacting the upperlimit by 7% (9%) at1 (3) TeV. Thesecond leading system-aticuncertaintycomesfromb-tagging,thataffectstheupperlimit by2%at1 TeV,butitsimpactisnegligibleat3 TeVwhererelative background and statistical uncertainties increase significantly. At 3 TeVthe secondleading systematicuncertaintyis relatedtothe jetenergyscaleandresolution,changingthelimitby2%. Interpre-tationsinspecificspin-0BSMmodelsareprovidedinSection7.

Thesearchforaspin-2KKgravitonisperformedwiththebbb¯ b,¯ bbW¯ +W−andbb¯τ+τ−finalstatesonly.Gravitonsweresimulated usinganLOmodelin MadGraph5_aMC@NLO withtheNNPDF2.3 LOPDF setinterfacedto Pythia 8.2 withthe A14tune. The reso-nancewidthchangeswiththegraviton massanddependsonthe parameterk/MPl,wherek isthecurvatureofthewarpedextra di-mensionin the bulk RS modeland MPl=2.4×1018 GeV isthe effective four-dimensional Planck mass. The search is performed

for models withk/MPl equal to 1 and2. Fork/MPl=1 (2), the widthrangesfrom3%(11%)fora0.3TeVgravitonmassto6%(25%) fora3TeVgravitonmass.

The upper limits in the GKK search are shown as a function oftheresonancemassinFigs. 5(b)and5(c) for k/MPl equalto 1 and 2,respectively. In the combination, thelargest observed de-viation from the background expectationis 1.5σ (0.7σ) for the searchmassrangewithk/MPl=1(2).ExclusionrangesontheK K gravitonmassareobtainedbycomparingtheupperlimitwiththe productioncrosssectioncalculatedatLO.Inthecaseofk/MPl=1, thebulkRSmodelisexcludedat95%CLinthegravitonmassrange from310 GeVto1380 GeV.Inthecaseofk/MPl=2,themodelis excluded at95% CLforgravitonmassesfrom260 GeV, wherethe scanstarts,to1760 GeV.

Theimpactofthesystematicuncertainties ontheupperlimits onGKKhasasmalldependenceontheresonancemass.Itis∼20% overthewholemassrangefork/MPl=1,and29%(25%)atamass of1 TeV(3 TeV)fork/MPl=2.Thelargestsystematicuncertainties arefromthemodellingofthebackgrounds,affecting thelimitby 11%(15%)at1 TeV(3 TeV)fork/MPl=1 and16%(21%)at1 TeV (3 TeV) for k/MPl=2. For k/MPl=1, the subleading systematic uncertainties come from b-tagging at low GKK mass, that affect thelimit by 3%,andfromjetenergyscale andresolutionathigh mass,thataffecttheupperlimitby 2%(3%)at1 TeV(3 TeV).For

(8)

Fig. 6. ExcludedregionsfortheEWK-singletmodelfortwovaluesofthetanβparameter:(a)tanβ=1 and(b)tanβ=2.IndirectconstraintsfromSMHiggscoupling measurements [74] areshownwithhorizontallines.Thedottedlinesindicatetheseparation betweenregionswheretheresonancewidthislargerthan2%and5% of theresonancemass.The hatch-markedareacorrespondstoregionsthatcannotbeexcludedbecausethe widthoftheresonanceexceeds10%oftheresonancemass, correspondingtothemaximumoftheexperimentalmassresolutionamongallanalysedfinalstates.

Fig. 7. Excludedregionsin(a)theEWK-singletmodelformS=260 GeVand(b)thehMSSMmodelusingtheexperimentalupperlimitsobtainedinthespin-0resonance searches.IntheEWK-singletexclusion,theindirectconstraints fromSMHiggscouplingmeasurements [74] areshownwithverticallines.

k/MPl=2,subleadingsystematicuncertaintiesarefromjetenergy scale and resolution, impacting the upper limits by 5% at 1 TeV and4% at3 TeV. The systematicuncertainties affectupperlimits morefork/MPl=2 thanfork/MPl=1,becausethenaturalwidth ofthesignalgravitonisfourtimeslargerwithk/MPl=2.

7. ConstraintsonthehMSSMandEWK-singletmodels

Exclusion limits are also presented for two specific models, namelytheEWK-singletmodel[11,29–31] andthehMSSM model [11,26–28,69]. The sensitivity of the bbW¯ +W−, W+WW+W− and W+Wγ γ final statesto thesemodels is negligible,so the presentedresultscombineonlythebbb¯ b,¯ bb¯τ+τ−andbb¯γ γ final states.

FortheEWK-singletmodel,theexperimentallimitsonthe spin-0 resonance (as reported in Section 6) are interpreted as con-straintsin themS–sinα plane (where mS is theresonancemass) for tanβ=1 and tanβ=2, shown in Fig. 6(a) and Fig. 6(b) re-spectively.Theexpectedcross-sectionforeachpointinthe param-eter space is obtained by scaling the heavy Higgs cross-section calculated at NNLO+NNLL [11] with singlet coupling modifiers. Thebranching fractionsarecomputedwith sHDECAY [70]. Inthis model,thewidthoftheheavyscalarcanbelargeinsomeregions

of the parameter space. Due to the use of narrow-width signal models inthe eventgeneration, results presented here are valid onlyinregionsofthemodelparameter-spacewheretheresonance width( S)issmallerthantheexperimentalresolutionatthe res-onancemass.Thisholdswhen S/mS<2% forbb¯γ γ, S/mS<5% for bbb¯ b and¯ S/mS<10% for bb¯τ+τ−. Therefore, the excluded region intheplotisobtainedby combiningthethreefinal states for S/mS<2%, by combiningthebbb¯ b and¯ bb¯τ+τ− final states for2%< S/mS<5%,andusingonly bb¯τ+τ− for5%< S/mS < 10%.Thehatchedregionshowspointswhere S/mS≥10%,where noexclusioncanbeprovided.Fig.7(a)showslimitsforthe(sin α, tanβ)parameterspaceformS=260 GeVwhere,duetothe lim-ited decayphasespace, the resonancewidthisnarrowina wide regionoftheparameterspace.

The experimental limits on a spin-0 resonance are also in-terpreted as constraints in the mA–tanβ plane of the hMSSM modelinFig.7(b).Theexpectedcross-sectionforeachpointinthe parameter space is obtained using the gluon-gluon fusion cross-sectionfrom SUSHI 1.5.0[71,72] andthebranchingfractions com-putedwith HDECAY 6.4.2[73].

The excludedregionismorethan doubledalongtanβ relative tothepreviouscombinedresultsinRef. [42] at8 TeV,andexcludes valuesofmA from190GeVto 560GeVdepending ontanβ.The

(9)

The ATLAS Collaboration / Physics Letters B 800 (2020) 135103 9

kinkatlow tanβ andhighmA valuesiscaused byremoving the bb¯γ γ final state from the combinationin the region where the predictedwidthofthe heavy CP-evenHiggsboson islarger than theexperimentalresolutiononmS inthebb¯γ γ analysis.

8. Conclusion

A statistical combination of six final states bbb¯ b,¯ bbW¯ +W−, bb¯τ+τ−,W+WW+W−,bb¯γ γ andW+Wγ γ,ispresentedfor thesearch fornon-resonantandresonantproductionofHiggs bo-son pairs. These searches use up to 36.1 fb−1 of proton–proton collisiondata at13 TeV recorded withtheATLAS detectoratthe LHC.1

Inbothresonantandnon-resonantsearches,nostatistically sig-nificantexcessofeventsabove theStandardModel predictionsis found.FortheStandardModelH H productionmode,theobserved (expected)95%confidencelevelupperlimitonthegluon–gluon fu-sionppH H cross-sectionis6.9 (10)timestheStandardModel prediction. The expected limit is comparable to the CMS result, whilethe observedlimit is significantly strongerthan CMS’sdue toa datadeficitcompared toexpectedbackgroundin ATLASand an excess in CMS. For the resonant case, upper limits are set on the production cross-section of heavy spin-0 andspin-2 res-onances decaying into pairs of Higgs bosons in the mass range 260–3000 GeV.

Upper limits on the ppH H cross-section are also com-puted as a function of the Higgs boson self-coupling modifier

κλ= λH H H/λSMH H H,bycombiningthebbb¯ b,¯ bb¯τ+τ− andbb¯γ γ fi-nalstates.The combinationexcludes κλ values outsidetherange

−5.0<κλ<12.0 (−5.8<κλ<12.0) at 95% confidence level in

observation(expectation).Thethreefinalstatesarealsocombined toconstraintheElectroweakSingletModelinthe(mS,sin α) and the(sin α,tanβ)parameterspacesandthehabemusMinimal Su-persymmetricStandardModelinthe(mA,tanβ)parameterspace. Acknowledgements

We thankCERN for thevery successful operation ofthe LHC, aswell asthe support stafffromour institutions without whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan;SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,Canada; CERN; CONICYT,Chile; CAS, MOSTandNSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, andMPG, Germany; GSRT, Greece;RGC,HongKong SAR,China;ISFandBenoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands;RCN, Norway;MNiSW andNCN, Poland;FCT, Portu-gal; MNE/IFA, Romania; MES of Russiaand NRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;DST/NRF,SouthAfrica;MINECO,Spain;SRCand Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF, UnitedStatesofAmerica. Inaddition, in-dividualgroupsandmembershavereceivedsupportfromBCKDF, Canarie,CRCandComputeCanada,Canada;COST,ERC,ERDF, Hori-zon2020, andMarie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and

1 Allresultsareavailableindigitalformaton HEPDATAat the followinglink:

https://www.hepdata.net/record/90521.

AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammesco-financedbyEU-ESFandtheGreekNSRF,Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain;TheRoyalSocietyandLeverhulmeTrust,UnitedKingdom.

The crucial computingsupport from all WLCG partnersis ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresourcesare listedin Ref. [75].

References

[1]ATLASCollaboration,Observationofanewparticleinthesearchforthe Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,arXiv:1207.7214 [hep-ex].

[2]CMSCollaboration,Observationofanewbosonatamassof125GeVwith theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,arXiv:1207.7235 [hep-ex].

[3]L.Evans,P.Bryant,LHCmachine,J.Instrum.3(2008)S08001.

[4]F.Englert,R.Brout,Brokensymmetryandthemassofgaugevectormesons, Phys.Rev.Lett.13(1964)321.

[5]P.W.Higgs,Brokensymmetriesandthemassesofgaugebosons,Phys.Rev.Lett. 13(1964)508.

[6]G.S.Guralnik,C.R.Hagen,T.W.B.Kibble,Globalconservationlawsandmassless particles,Phys.Rev.Lett.13(1964)585.

[7]F.L.Bezrukov,M.Shaposhnikov,TheStandardModelHiggsbosonasthe infla-ton,Phys.Lett.B659(2008)703,arXiv:0710.3755 [hep-th].

[8]I.Masina,A.Notari,HiggsmassrangefromStandardModelfalsevacuum in-flationinscalar-tensorgravity,Phys.Rev.D85(2012)123506,arXiv:1112.2659 [hep-ph].

[9]V.Branchina,H.Faivre,V.Pangon,Effectivepotentialandvacuumstability,J. Phys.G36(2009)015006,arXiv:0802.4423 [hep-ph].

[10]D.Buttazzo,etal.,Investigatingthenear-criticalityoftheHiggsboson,J.High EnergyPhys.12(2013)089,arXiv:1307.3536 [hep-ph].

[11]D.deFlorian,etal.,HandbookofLHCHiggsCrossSections:4.Decipheringthe NatureoftheHiggsSector,CERN-2017-002-M,2017,arXiv:1610.07922 [hep -ph].

[12]S. Dawson, S. Dittmaier, M. Spira,Neutral Higgsboson pair production at hadroncolliders:QCDcorrections,Phys.Rev.D58(1998)115012,arXiv:hep -ph/9805244 [hep-ph].

[13]S. Borowka, et al., Higgs boson pair production in gluon fusion at next-to-leading orderwith fulltop-quarkmassdependence, Phys. Rev.Lett.117 (2016)012001;Erratum:Phys.Rev.Lett.117(2016)079901,arXiv:1604.06447 [hep-ph].

[14]J.Baglio,etal.,GluonfusionintoHiggspairsatNLOQCDandthetopmass scheme,Eur.Phys.J.C79(2019)459,arXiv:1811.05692 [hep-ph].

[15]R.Bonciani,G.Degrassi,P.P.Giardino,R.Gröber,Analyticalmethodfor next-to-leading-orderQCDcorrectionstodouble-Higgsproduction,Phys.Rev.Lett.121 (2018)162003,arXiv:1806.11564 [hep-ph].

[16]D. deFlorian,J. Mazzitelli,Higgsboson pair production at next-to-next-to-leading order inQCD,Phys. Rev.Lett. 111(2013) 201801, arXiv:1309.6594 [hep-ph].

[17]D.Y.Shao,C.S.Li,H.T.Li,J.Wang,ThresholdresummationeffectsinHiggsboson pair productionatthe LHC,J.HighEnergyPhys.07(2013)169,arXiv:1301. 1245 [hep-ph].

[18]D. deFlorian,J.Mazzitelli,Higgspair production atnext-to-next-to-leading logarithmicaccuracyat theLHC,J.HighEnergy Phys.09(2015)053,arXiv: 1505.07122 [hep-ph].

[19]ATLAS andCMSCollaborations, Combinedmeasurementofthe Higgsboson massinpp collisionsat√s=7 and8TeV withtheATLASandCMS experi-ments,Phys.Rev.Lett.114(2015)191803,arXiv:1503.07589 [hep-ex].

[20]G.Degrassi,P.P.Giardino,F.Maltoni,D.Pagani,ProbingtheHiggsselfcoupling viasingleHiggsproductionat theLHC,J.HighEnergyPhys.12(2016)080, arXiv:1607.04251 [hep-ph].

[21]G.Degrassi,M.Fedele,P.P.Giardino,ConstraintsonthetrilinearHiggsself cou-pling fromprecisionobservables,J.HighEnergyPhys.04(2017)155,arXiv: 1702.01737 [hep-ph].

[22]G.D.Kribs,A.Maier,H.Rzehak,M.Spannowsky,P.Waite,Electroweakoblique parametersasaprobeofthetrilinearHiggsbosonself-interaction,Phys.Rev. D95(2017)093004,arXiv:1702.07678 [hep-ph].

[23]L. DiLuzio,R.Gröber, M.Spannowsky,Maxi-sizingthe trilinearHiggs self-coupling: howlargecould itbe?,Eur.Phys.J.C77(2017)788,arXiv:1704. 02311 [hep-ph].

(10)

[24]G.C.Branco,etal.,Theoryandphenomenologyoftwo-Higgs-doubletmodels, Phys.Rep.516(2012)1,arXiv:1106.0034 [hep-ph].

[25]A.Djouadi,Theanatomyofelectroweaksymmetrybreaking,TomeII:theHiggs bosonsintheminimalsupersymmetricmodel,Phys.Rep.459(2008)1,arXiv: hep-ph/0503173 [hep-ph].

[26]A.Djouadi,J.Quevillon,TheMSSMHiggssectoratahighMSU SY:reopening

thelowtanβregimeandheavyHiggssearches,J.HighEnergyPhys.10(2013) 028,arXiv:1304.1787 [hep-ph].

[27]A.Djouadi,etal.,Thepost-HiggsMSSMscenario:habemusMSSM?,Eur.Phys. J.C73(2013)2650,arXiv:1307.5205 [hep-ph].

[28]A.Djouadi,L.Maiani,A.Polosa,J.Quevillon,V.Riquer,FullycoveringtheMSSM HiggssectorattheLHC,J.HighEnergyPhys.06(2015)168,arXiv:1502.05653 [hep-ph].

[29]A.Hill,J.J.vanderBij,Stronglyinteractingsinglet-doubletHiggsmodel,Phys. Rev.D36(1987)3463.

[30]M.J.G. Veltman,F.J.Yndurain,Radiativecorrections toWW scattering,Nucl. Phys.B325(1989)1.

[31]T.Robens,T.Stefaniak,StatusoftheHiggssingletextensionofthestandard modelafterLHCRun1,Eur.Phys.J.C75(2015)104,arXiv:1501.02234 [hep -ph].

[32]L.Randall,R.Sundrum,Largemasshierarchyfromasmallextradimension, Phys.Rev.Lett.83(1999)3370,arXiv:hep-ph/9905221 [hep-ph].

[33]ATLASCollaboration,TheATLASexperimentattheCERNlargehadroncollider, J.Instrum.3(2008)S08003.

[34] ATLASCollaboration,ATLASInsertableB-LayerTechnicalDesignReport, ATLAS-TDR-19, 2010, https://cds.cern.ch/record/1291633, ATLAS Insertable B-Layer TechnicalDesign ReportAddendum,ATLAS-TDR-19-ADD-1,2012, https://cds. cern.ch/record/1451888.

[35]B.Abbott,etal.,ProductionandintegrationoftheATLASinsertableB-layer,J. Instrum.13(2018)T05008,arXiv:1803.00844 [physics.ins-det].

[36]ATLASCollaboration,SearchforpairproductionofHiggsbosonsinthebbb¯ b¯ finalstateusingproton-protoncollisionsat√s=13 TeVwiththeATLAS de-tector,J.HighEnergyPhys.01(2019)030,arXiv:1804.06174 [hep-ex].

[37]ATLASCollaboration,SearchforHiggsbosonpairproductioninthebbW W¯ ∗ decaymodeat√s=13 TeVwiththeATLASdetector,J.HighEnergyPhys.04 (2019)092,arXiv:1811.04671 [hep-ex].

[38]ATLAS Collaboration,Searchfor resonantand nonresonantHiggsbosonpair productioninthebb¯τ+τ−decaychannelinpp collisionsat√s=13 TeVwith theATLASdetector,Phys.Rev.Lett.121(2018)191801,arXiv:1808.00336 [hep -ex].

[39]ATLAS Collaboration, Search for Higgs boson pair production in the W W(∗)W W(∗) decaychannelusingATLAS datarecordedats=13 TeV,J.

HighEnergyPhys.05(2019)124,arXiv:1811.11028 [hep-ex].

[40]ATLASCollaboration,SearchforHiggsbosonpairproductionintheγ γbb final¯ statewith13TeVpp collisiondatacollectedbytheATLASexperiment,J.High EnergyPhys.11(2018)040,arXiv:1807.04873 [hep-ex].

[41]ATLASCollaboration,SearchforHiggsbosonpairproductionintheγ γW W∗ channelusingpp collisiondatarecordedat√s=13 TeVwiththeATLAS de-tector,Eur.Phys.J.C78(2018)1007,arXiv:1807.08567 [hep-ex].

[42]ATLAS Collaboration,SearchesforHiggsbosonpair productioninthehh

bbτ τ,γ γW W,γ γbb,bbbb channelswiththeATLAS detector,Phys.Rev.D 92(2015)092004,arXiv:1509.04670 [hep-ex].

[43]CMSCollaboration,CombinationofsearchesforHiggsbosonpairproduction inproton-protoncollisionsat√s=13 TeV,Phys.Rev.Lett.122(2019)121803, arXiv:1811.09689 [hep-ex].

[44]CMSCollaboration,SearchforresonantpairproductionofHiggsbosons decay-ingtobottomquark-antiquarkpairsinproton-protoncollisionsat13TeV,J. HighEnergyPhys.08(2018)152,arXiv:1806.03548 [hep-ex].

[45]CMSCollaboration,SearchforamassiveresonancedecayingtoapairofHiggs bosonsinthefourbquarkfinalstateinproton-protoncollisionsat√s=13 TeV,Phys.Lett.B781(2018)244,arXiv:1710.04960 [hep-ex].

[46]CMSCollaboration,SearchforproductionofHiggsbosonpairsinthefourb quarkfinalstateusinglarge-areajetsinproton-protoncollisionsat √s=13 TeV,J.HighEnergyPhys.01(2019)040,arXiv:1808.01473 [hep-ex].

[47]CMSCollaboration,SearchfornonresonantHiggsbosonpairproductioninthe bbb¯ b final¯ stateat √s=13 TeV,J.HighEnergyPhys.04(2019)112,arXiv: 1810.11854 [hep-ex].

[48]CMSCollaboration,SearchforresonantandnonresonantHiggsbosonpair pro-ductioninthebb¯ννfinalstateinproton-protoncollisionsat√s=13 TeV,J. HighEnergyPhys.01(2018)054,arXiv:1708.04188 [hep-ex].

[49]CMSCollaboration,SearchforHiggsbosonpairproductionineventswithtwo bottomquarksandtwotauleptonsinproton–proton collisionsat√s=13 TeV, Phys.Lett.B778(2018)101,arXiv:1707.02909 [hep-ex].

[50]CMSCollaboration,SearchforHiggsbosonpairproductionintheγ γbb final¯ stateinppcollisionsat√s=13 TeV,Phys.Lett.B788(2019)7,arXiv:1806. 00408 [hep-ex].

[51]M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,arXiv:0802.1189 [hep-ph].

[52]M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,arXiv:1111.6097 [hep-ph].

[53] ATLASCollaboration,Flavortaggingwithtrackjetsinboostedtopologieswith theATLASdetector,https://cds.cern.ch/record/1750681,2014.

[54]M.Cacciari,G.P.Salam,Pileupsubtractionusingjetareas,Phys. Lett.B659 (2008)119,arXiv:0707.1378 [hep-ph].

[55]A.Höcker,etal.,TMVA- toolkitformultivariatedataanalysis,arXiv:physics/ 0703039 [physics.data-an],2007.

[56]A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002)

2693.

[57]G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554;Erratum:Eur.Phys. J.C73(2013)2501,arXiv:1007.1727 [physics.data-an].

[58]ATLASCollaboration,Luminositydeterminationinppcollisionsat√s=8 TeV usingtheATLASdetectorattheLHC,Eur.Phys.J.C76(2016)653,arXiv:1608. 03953 [hep-ex].

[59]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301 [hep-ph].

[60]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241 [hep-ph].

[61]M.Bahr,etal.,Herwig++physicsandmanual,Eur.Phys.J.C58(2008)639, arXiv:0803.0883 [hep-ph].

[62]M.H. Seymour,A.Siodmok,ConstrainingMPI models usingσeff and recent

TevatronandLHCunderlyingeventdata,J.HighEnergyPhys.10(2013)113, arXiv:1307.5015 [hep-ph].

[63]R.Frederix,etal., Higgspairproduction at theLHCwithNLOand parton-showereffects,Phys.Lett.B732(2014)142,arXiv:1401.7340 [hep-ph].

[64]B.DiMicco,etal.,Higgsbosonpairproduction atcolliders:statusand per-spectives,arXiv:1910.00012 [hep-ph],2019.

[65]R.D.Ball,etal.,PartondistributionswithLHCdata,Nucl.Phys.B867(2013) 244,arXiv:1207.1303 [hep-ph].

[66]T.Sjöstrand,etal.,AnintroductiontoPYTHIA8.2,Comput.Phys.Commun.191 (2015)159,arXiv:1410.3012 [hep-ph].

[67] ATLASCollaboration, ATLASPYTHIA 8Tunesto7TeVData, ATL-PHYS-PUB-2014-021,2014,https://cds.cern.ch/record/1966419.

[68]D.deFlorian,etal.,HandbookofLHCHiggsCrossSections:4.Decipheringthe NatureoftheHiggsSector- Table63, CERN-2017-002-M,2017,arXiv:1610. 07922 [hep-ph].

[69]L.Maiani,A.D.Polosa,V.Riquer,BoundstotheHiggssectormassesinminimal supersymmetryfromLHCdata,Phys.Lett.B724(2013)274,arXiv:1305.2172 [hep-ph].

[70]R.Costa,M.Mühlleitner,M.O.P.Sampaio,R.Santos,Singletextensionsofthe StandardModelatLHCRun2:benchmarksandcomparisonwiththeNMSSM, J.HighEnergyPhys.06(2016)034,arXiv:1512.05355 [hep-ph].

[71]R.V.Harlander,S. Liebler,H. Mantler,SusHi: a programfor the calculation ofHiggsproduction ingluon fusion and bottom-quark annihilation in the StandardModel andthe MSSM, Comput.Phys. Commun.184(2013) 1605, arXiv:1212.3249 [hep-ph].

[72]R.V.Harlander, S. Liebler, H. Mantler,SusHi Bento: beyond NNLOand the heavy-toplimit, Comput.Phys. Commun.212(2017) 239,arXiv:1605.03190 [hep-ph].

[73]A.Djouadi,J.Kalinowski,M.Spira,HDECAY:aprogramforHiggsboson de-caysinthestandardmodelanditssupersymmetricextension,Comput.Phys. Commun.108(1998)56,arXiv:hep-ph/9704448 [hep-ph].

[74]ATLASCollaboration,ConstraintsonnewphenomenaviaHiggsbosoncouplings andinvisibledecayswiththeATLASdetector,J.HighEnergyPhys.11(2015) 206,arXiv:1509.00672 [hep-ex].

[75] ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-GEN-PUB-2016-002,https://cds.cern.ch/record/2202407.

TheATLASCollaboration

G. Aad101, B. Abbott128,D.C. Abbott102, A. Abed Abud70a,70b,K. Abeling53,D.K. Abhayasinghe93,

S.H. Abidi167, O.S. AbouZeid40,N.L. Abraham156, H. Abramowicz161,H. Abreu160,Y. Abulaiti6,

(11)

The ATLAS Collaboration / Physics Letters B 800 (2020) 135103 11

L. Adamek167, J. Adelman120,M. Adersberger113,A. Adiguzel12c,aj,S. Adorni54, T. Adye144,

A.A. Affolder146,Y. Afik160, C. Agapopoulou132, M.N. Agaras38,A. Aggarwal118, C. Agheorghiesei27c,

J.A. Aguilar-Saavedra140f,140a,ai, F. Ahmadov79,W.S. Ahmed103, X. Ai18,G. Aielli73a,73b,S. Akatsuka85,

T.P.A. Åkesson96, E. Akilli54, A.V. Akimov110,K. Al Khoury132, G.L. Alberghi23b,23a, J. Albert176,

M.J. Alconada Verzini161, S. Alderweireldt36,M. Aleksa36, I.N. Aleksandrov79,C. Alexa27b,

D. Alexandre19,T. Alexopoulos10, A. Alfonsi119,M. Alhroob128, B. Ali142, G. Alimonti68a,J. Alison37,

S.P. Alkire148,C. Allaire132, B.M.M. Allbrooke156,B.W. Allen131,P.P. Allport21,A. Aloisio69a,69b,

A. Alonso40, F. Alonso88,C. Alpigiani148, A.A. Alshehri57,M. Alvarez Estevez98, D. Álvarez Piqueras174,

M.G. Alviggi69a,69b, Y. Amaral Coutinho80b, A. Ambler103,L. Ambroz135,C. Amelung26,D. Amidei105,

S.P. Amor Dos Santos140a,S. Amoroso46, C.S. Amrouche54,F. An78, C. Anastopoulos149,N. Andari145,

T. Andeen11, C.F. Anders61b,J.K. Anders20, A. Andreazza68a,68b,V. Andrei61a,C.R. Anelli176,

S. Angelidakis38,A. Angerami39, A.V. Anisenkov121b,121a, A. Annovi71a,C. Antel61a,M.T. Anthony149,

M. Antonelli51, D.J.A. Antrim171, F. Anulli72a,M. Aoki81, J.A. Aparisi Pozo174,L. Aperio Bella36,

G. Arabidze106, J.P. Araque140a,V. Araujo Ferraz80b,R. Araujo Pereira80b,C. Arcangeletti51,

A.T.H. Arce49, F.A. Arduh88,J-F. Arguin109,S. Argyropoulos77, J.-H. Arling46, A.J. Armbruster36,

A. Armstrong171, O. Arnaez167, H. Arnold119, A. Artamonov122,∗,G. Artoni135, S. Artz99,S. Asai163,

N. Asbah59,E.M. Asimakopoulou172,L. Asquith156, K. Assamagan29, R. Astalos28a, R.J. Atkin33a,

M. Atkinson173, N.B. Atlay19,H. Atmani132,K. Augsten142,G. Avolio36,R. Avramidou60a,M.K. Ayoub15a,

A.M. Azoulay168b, G. Azuelos109,ay,H. Bachacou145, K. Bachas67a,67b,M. Backes135, F. Backman45a,45b,

P. Bagnaia72a,72b,M. Bahmani84,H. Bahrasemani152,A.J. Bailey174,V.R. Bailey173, J.T. Baines144,

M. Bajic40,C. Bakalis10, O.K. Baker183, P.J. Bakker119, D. Bakshi Gupta8,S. Balaji157,

E.M. Baldin121b,121a,P. Balek180,F. Balli145, W.K. Balunas135, J. Balz99, E. Banas84, A. Bandyopadhyay24,

Sw. Banerjee181,j, A.A.E. Bannoura182,L. Barak161, W.M. Barbe38,E.L. Barberio104, D. Barberis55b,55a,

M. Barbero101,T. Barillari114,M-S. Barisits36,J. Barkeloo131, T. Barklow153, R. Barnea160, S.L. Barnes60c,

B.M. Barnett144,R.M. Barnett18, Z. Barnovska-Blenessy60a,A. Baroncelli60a, G. Barone29,A.J. Barr135,

L. Barranco Navarro45a,45b,F. Barreiro98,J. Barreiro Guimarães da Costa15a,S. Barsov138,R. Bartoldus153,

G. Bartolini101,A.E. Barton89,P. Bartos28a, A. Basalaev46, A. Bassalat132,ar, R.L. Bates57,S. Batlamous35e,

J.R. Batley32, B. Batool151,M. Battaglia146,M. Bauce72a,72b,F. Bauer145,K.T. Bauer171,H.S. Bawa31,m,

J.B. Beacham49,T. Beau136,P.H. Beauchemin170, F. Becherer52, P. Bechtle24, H.C. Beck53,H.P. Beck20,s,

K. Becker52,M. Becker99,C. Becot46,A. Beddall12d,A.J. Beddall12a,V.A. Bednyakov79, M. Bedognetti119,

C.P. Bee155,T.A. Beermann76, M. Begalli80b, M. Begel29, A. Behera155,J.K. Behr46, F. Beisiegel24,

A.S. Bell94,G. Bella161, L. Bellagamba23b,A. Bellerive34,P. Bellos9,K. Beloborodov121b,121a,

K. Belotskiy111, N.L. Belyaev111,D. Benchekroun35a, N. Benekos10,Y. Benhammou161, D.P. Benjamin6,

M. Benoit54,J.R. Bensinger26,S. Bentvelsen119, L. Beresford135, M. Beretta51,D. Berge46,

E. Bergeaas Kuutmann172,N. Berger5, B. Bergmann142, L.J. Bergsten26, J. Beringer18,S. Berlendis7,

N.R. Bernard102,G. Bernardi136, C. Bernius153, T. Berry93,P. Berta99, C. Bertella15a,I.A. Bertram89,

O. Bessidskaia Bylund182, N. Besson145, A. Bethani100, S. Bethke114, A. Betti24,A.J. Bevan92,J. Beyer114,

R. Bi139,R.M. Bianchi139,O. Biebel113, D. Biedermann19,R. Bielski36,K. Bierwagen99,

N.V. Biesuz71a,71b, M. Biglietti74a, T.R.V. Billoud109,M. Bindi53, A. Bingul12d,C. Bini72a,72b,

S. Biondi23b,23a,M. Birman180, T. Bisanz53,J.P. Biswal161,D. Biswas181,A. Bitadze100,C. Bittrich48,

K. Bjørke134,K.M. Black25,T. Blazek28a,I. Bloch46,C. Blocker26,A. Blue57, U. Blumenschein92,

G.J. Bobbink119,V.S. Bobrovnikov121b,121a,S.S. Bocchetta96,A. Bocci49,D. Boerner46,D. Bogavac14,

A.G. Bogdanchikov121b,121a,C. Bohm45a, V. Boisvert93,P. Bokan53,172, T. Bold83a,A.S. Boldyrev112,

A.E. Bolz61b, M. Bomben136, M. Bona92,J.S. Bonilla131,M. Boonekamp145,H.M. Borecka-Bielska90,

A. Borisov123,G. Borissov89,J. Bortfeldt36,D. Bortoletto135,V. Bortolotto73a,73b, D. Boscherini23b,

M. Bosman14,J.D. Bossio Sola103,K. Bouaouda35a,J. Boudreau139, E.V. Bouhova-Thacker89,

D. Boumediene38,S.K. Boutle57,A. Boveia126,J. Boyd36,D. Boye33b,as, I.R. Boyko79,A.J. Bozson93,

J. Bracinik21, N. Brahimi101, G. Brandt182,O. Brandt32,F. Braren46,B. Brau102,J.E. Brau131,

W.D. Breaden Madden57,K. Brendlinger46,L. Brenner46,R. Brenner172, S. Bressler180,B. Brickwedde99,

D.L. Briglin21, D. Britton57, D. Britzger114,I. Brock24, R. Brock106,G. Brooijmans39,W.K. Brooks147c,

E. Brost120, J.H Broughton21, P.A. Bruckman de Renstrom84,D. Bruncko28b,A. Bruni23b,G. Bruni23b,

(12)

T. Buanes17, Q. Buat36, P. Buchholz151,A.G. Buckley57,I.A. Budagov79,M.K. Bugge134,F. Bührer52,

O. Bulekov111, T.J. Burch120,S. Burdin90,C.D. Burgard119,A.M. Burger129, B. Burghgrave8,J.T.P. Burr46,

J.C. Burzynski102,V. Büscher99,E. Buschmann53,P.J. Bussey57, J.M. Butler25,C.M. Buttar57,

J.M. Butterworth94, P. Butti36, W. Buttinger36,A. Buzatu158,A.R. Buzykaev121b,121a, G. Cabras23b,23a,

S. Cabrera Urbán174,D. Caforio56,H. Cai173, V.M.M. Cairo153, O. Cakir4a, N. Calace36, P. Calafiura18,

A. Calandri101,G. Calderini136, P. Calfayan65,G. Callea57, L.P. Caloba80b,S. Calvente Lopez98,

D. Calvet38, S. Calvet38,T.P. Calvet155,M. Calvetti71a,71b, R. Camacho Toro136, S. Camarda36,

D. Camarero Munoz98, P. Camarri73a,73b, D. Cameron134,R. Caminal Armadans102,C. Camincher36,

S. Campana36, M. Campanelli94,A. Camplani40, A. Campoverde151,V. Canale69a,69b,A. Canesse103,

M. Cano Bret60c,J. Cantero129,T. Cao161,Y. Cao173,M.D.M. Capeans Garrido36, M. Capua41b,41a,

R. Cardarelli73a, F. Cardillo149,G. Carducci41b,41a,I. Carli143,T. Carli36,G. Carlino69a,B.T. Carlson139,

L. Carminati68a,68b,R.M.D. Carney45a,45b,S. Caron118, E. Carquin147c, S. Carrá46, J.W.S. Carter167,

M.P. Casado14,e,A.F. Casha167, D.W. Casper171,R. Castelijn119,F.L. Castillo174,V. Castillo Gimenez174,

N.F. Castro140a,140e, A. Catinaccio36,J.R. Catmore134, A. Cattai36, J. Caudron24, V. Cavaliere29,

E. Cavallaro14,M. Cavalli-Sforza14,V. Cavasinni71a,71b,E. Celebi12b, F. Ceradini74a,74b,

L. Cerda Alberich174,K. Cerny130, A.S. Cerqueira80a, A. Cerri156, L. Cerrito73a,73b,F. Cerutti18,

A. Cervelli23b,23a,S.A. Cetin12b,Z. Chadi35a, D. Chakraborty120,S.K. Chan59,W.S. Chan119,W.Y. Chan90,

J.D. Chapman32, B. Chargeishvili159b,D.G. Charlton21,T.P. Charman92, C.C. Chau34, S. Che126,

A. Chegwidden106,S. Chekanov6, S.V. Chekulaev168a, G.A. Chelkov79,ax, M.A. Chelstowska36, B. Chen78,

C. Chen60a,C.H. Chen78, H. Chen29,J. Chen60a,J. Chen39, S. Chen137, S.J. Chen15c,X. Chen15b,aw,

Y. Chen82,Y-H. Chen46, H.C. Cheng63a,H.J. Cheng15a,15d, A. Cheplakov79, E. Cheremushkina123,

R. Cherkaoui El Moursli35e,E. Cheu7, K. Cheung64, T.J.A. Chevalérias145, L. Chevalier145,V. Chiarella51,

G. Chiarelli71a, G. Chiodini67a,A.S. Chisholm36,21, A. Chitan27b, I. Chiu163,Y.H. Chiu176,M.V. Chizhov79,

K. Choi65, A.R. Chomont72a,72b,S. Chouridou162, Y.S. Chow119, M.C. Chu63a,X. Chu15a,J. Chudoba141,

A.J. Chuinard103, J.J. Chwastowski84, L. Chytka130,D. Cieri114,K.M. Ciesla84,D. Cinca47, V. Cindro91,

I.A. Cioar˘a27b,A. Ciocio18, F. Cirotto69a,69b,Z.H. Citron180,k, M. Citterio68a, D.A. Ciubotaru27b,

B.M. Ciungu167,A. Clark54, M.R. Clark39,P.J. Clark50, C. Clement45a,45b,Y. Coadou101,M. Cobal66a,66c,

A. Coccaro55b,J. Cochran78,H. Cohen161, A.E.C. Coimbra36, L. Colasurdo118, B. Cole39, A.P. Colijn119,

J. Collot58,P. Conde Muiño140a,f,E. Coniavitis52, S.H. Connell33b, I.A. Connelly57, S. Constantinescu27b,

F. Conventi69a,az, A.M. Cooper-Sarkar135,F. Cormier175,K.J.R. Cormier167,L.D. Corpe94,

M. Corradi72a,72b, E.E. Corrigan96,F. Corriveau103,ae, A. Cortes-Gonzalez36, M.J. Costa174,F. Costanza5,

D. Costanzo149, G. Cowan93, J.W. Cowley32, J. Crane100, K. Cranmer124, S.J. Crawley57, R.A. Creager137,

S. Crépé-Renaudin58,F. Crescioli136, M. Cristinziani24,V. Croft119, G. Crosetti41b,41a,A. Cueto5,

T. Cuhadar Donszelmann149,A.R. Cukierman153, S. Czekierda84,P. Czodrowski36,

M.J. Da Cunha Sargedas De Sousa60b,J.V. Da Fonseca Pinto80b, C. Da Via100,W. Dabrowski83a,

T. Dado28a,S. Dahbi35e, T. Dai105,C. Dallapiccola102,M. Dam40, G. D’amen23b,23a, V. D’Amico74a,74b,

J. Damp99,J.R. Dandoy137,M.F. Daneri30, N.P. Dang181,j, N.S. Dann100, M. Danninger175,V. Dao36,

G. Darbo55b, O. Dartsi5,A. Dattagupta131, T. Daubney46, S. D’Auria68a,68b,W. Davey24, C. David46,

T. Davidek143,D.R. Davis49,I. Dawson149, K. De8,R. De Asmundis69a,M. De Beurs119,

S. De Castro23b,23a, S. De Cecco72a,72b, N. De Groot118,P. de Jong119, H. De la Torre106,A. De Maria15c,

D. De Pedis72a,A. De Salvo72a,U. De Sanctis73a,73b,M. De Santis73a,73b,A. De Santo156,

K. De Vasconcelos Corga101,J.B. De Vivie De Regie132, C. Debenedetti146,D.V. Dedovich79,

A.M. Deiana42,M. Del Gaudio41b,41a,J. Del Peso98,Y. Delabat Diaz46,D. Delgove132,F. Deliot145,r,

C.M. Delitzsch7, M. Della Pietra69a,69b, D. Della Volpe54,A. Dell’Acqua36, L. Dell’Asta73a,73b,

M. Delmastro5, C. Delporte132,P.A. Delsart58, D.A. DeMarco167, S. Demers183, M. Demichev79,

G. Demontigny109,S.P. Denisov123, D. Denysiuk119,L. D’Eramo136, D. Derendarz84, J.E. Derkaoui35d,

F. Derue136, P. Dervan90, K. Desch24,C. Deterre46,K. Dette167, C. Deutsch24, M.R. Devesa30,

P.O. Deviveiros36,A. Dewhurst144,F.A. Di Bello54, A. Di Ciaccio73a,73b, L. Di Ciaccio5,

W.K. Di Clemente137,C. Di Donato69a,69b,A. Di Girolamo36,G. Di Gregorio71a,71b, B. Di Micco74a,74b,

R. Di Nardo102,K.F. Di Petrillo59,R. Di Sipio167, D. Di Valentino34,C. Diaconu101,F.A. Dias40,

T. Dias Do Vale140a,M.A. Diaz147a, J. Dickinson18, E.B. Diehl105,J. Dietrich19,S. Díez Cornell46,

Figure

Fig. 1. Examples of leading-order Feynman diagrams for Higgs boson pair production: the diagrams (a) and (b) are proportional to the square of the heavy-quark Yukawa couplings, while the diagram (c) is proportional to the product of the heavy-quark Yukawa
Fig. 2. Upper limits at 95% CL on the cross-section of the ggF SM H H production normalised to its SM expectation σ ggFSM ( pp → H H ) from the b b¯ τ + τ − , b bb¯ b,¯ b b¯ γ γ , W + W − W + W − , W + W − γ γ and b bW¯ + W − searches, and their statistica
Fig. 3. Final discriminants used in the κ λ -scan analysis for the b bb ¯ b and ¯ the b b ¯ τ + τ − final states
Fig. 4. (a) Signal acceptance times efficiency as a function of κ λ for the b bb ¯ b, ¯ b b ¯ τ + τ − and b b ¯ γ γ analyses
+3

References

Related documents

Specialläraren på Skolan är ansvarig för Språkstudion och uppger att de elever som får stöd i svenska för tillfället främst är pojkar med diagnostiserade läs- och

Det som utmärker de intervjuade elevernas personliga matematiska identiteter är en uppfattning av att inte vara duktig i eller ha talang för matematik, då deras personliga

 Syftet  var  att  tillsammans  skapa   kunskap  om  hur  anhörigkonsulenter  utformar  och  ser  på  sitt  arbete  och  vilken  kun-­ skap  de

Denna kontroll finns i relationen mellan individen och läkemedlet – läkemedlet skapar kontroll över symptom, över kroppsliga besvär – men också i sociala relationer

Vad man däremot inte anger som orsak till att man avstår från aktiviteter är hög ålder, det vill säga att man blivit (för) gammal, även om omgivningen möjligen skulle tycka

Utifrån vår studie fungerar meritpoängen både som en förstärkare av den snedrekrytering till högskolan som är kopplad till gymnasievalet, men även som ett redskap till

Skolverket (2020) menar att resultatet speglas av vad  eleverna har för inställning och självförtroende till ämnet samt hur högt man värderar matematik.  Eftersom att detta

Trots de negativa upplevelserna så upplevde personalen en passion till deras arbete och en vilja att arbeta med HIV-positiva patienter, dels för den utvecklande kunskapen samt