• No results found

Measurement of the jet mass in high transverse momentum Z(-> b(b)over-bar)gamma production at root s=13 TeV using the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the jet mass in high transverse momentum Z(-> b(b)over-bar)gamma production at root s=13 TeV using the ATLAS detector"

Copied!
23
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

jet

mass

in

high

transverse

momentum

Z

(

bb

)

γ

production

at

s

=

13 TeV using

the

ATLAS

detector

.The ATLASCollaboration

a rt i c l e i n f o a b s t r a c t

Articlehistory:

Received17July2019

Receivedinrevisedform27November2020 Accepted30November2020

Availableonline3December2020 Editor: M.Doser

The integrated fiducial cross-section and unfolded differential jet mass spectrum of high transverse momentum Zbb decays are measuredin events inproton–proton collisions at√s=13 TeV.

The data analysed were collected between 2015 and 2016 with the ATLAS detector at the Large

Hadron Collider and correspond to an integrated luminosity of 36.1 fb−1. Photons are required to have a transverse momentum pT>175 GeV. The Zbb decay is reconstructed using a jet with

pT>200 GeV, foundwith the anti-kt R=1.0 jet algorithm,and groomed to removesoftand

wide-angleradiationand tomitigatecontributionsfromthe underlyingevent andadditional proton–proton collisions.Twodifferentbutrelatedmeasurementsareperformedusingtwojetgroomingdefinitionsfor reconstructingthe Zbb decay:trimmingandsoftdrop.Thesealgorithmsdifferintheirexperimental and phenomenological implications regarding jet mass reconstruction and theoretical precision. To identifyZ bosons,b-taggedR=0.2 track-jetsmatchedtothegroomedlarge-R calorimeterjetareusedas aproxyfortheb-quarks.Thesignalyieldisdeterminedfromfitsofthedata-drivenbackgroundtemplates tothedifferentjetmassdistributionsforthetwogroomingmethods.Integratedfiducialcross-sections andunfolded jetmassspectraforeachgroomingmethodare comparedwithleading-ordertheoretical predictions.TheresultsarefoundtobeingoodagreementwithStandardModelexpectationswithinthe currentstatisticalandsystematicuncertainties.

©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Contents

1. Introduction . . . 2

2. ATLASdetector . . . 2

3. DataandMonteCarlosimulation . . . 2

4. Eventreconstructionandselection . . . 3

5. Signalandbackgroundestimation . . . 4

6. Definitionoftheobservableandcorrectionfordetectoreffects . . . 5

7. Systematicuncertainties . . . 5

8. Results . . . 7

8.1. Fitresultsandsignificanceestimate . . . 7

8.2. Integratedfiducialcross-sectionmeasurement . . . 7

8.3. Differentialfiducialcross-sectionmeasurement . . . 7

9. Conclusion . . . 7

Declarationofcompetinginterest . . . 9

Acknowledgements . . . 9

References . . . 9

TheATLASCollaboration . . . 11

 E-mailaddress:atlas.publications@cern.ch. https://doi.org/10.1016/j.physletb.2020.135991

0370-2693/©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

1. Introduction

ThisLetter presentsa measurement ofthefiducial and differ-ential jet mass cross-sectionsofhightransverse momentum (pT) Z bosonsthatdecayintobb pairs¯ andareproducedinassociation witha photon, denotedby Z(bb¯.The analysisuses proton– proton(pp)collisiondatacollectedin2015and2016bytheATLAS detector [1] attheLargeHadronCollider(LHC)atacenter-of-mass energyof√s=13 TeV.Thismeasurementoftheunfoldedjetmass spectrum of hadronically decaying Z bosonsat theLHC explores the experimental features and phenomenological implications of techniquesusedtoreconstructboostedbosons –coloursinglets – decayingintobb.¯ Similarmeasurementsofgluons –colouroctets – decayingintobb pairs¯ havealsobeenmadebytheATLAS Collab-oration [2].The Z(bb¯ processprovidesawell-defined exper-imental signature formeasuring massiveboosted Z bosonsusing high-pT jetscontaining pairsofb-quarks.A detailed study ofthe Zbb signal¯ isimportant forassessingsystematicuncertainties andidentification techniquesfor themeasurement of Hbb in¯ the high-pT range, as well asfor potential TeV-scale resonances decaying intodibosons,one ofthem beinga Z boson ora Higgs bosondecayingintobb [¯ 3,4].

The Z(bb¯ channeloffersadvantagesinaccessingthe Zbb signal¯ compared to the inclusive channels studied in Run 1 by ATLAS [5] and in Run 2 by CMS [6] since it provides both a useful trigger signature via the photon and an opportunity to directly estimate background processes usingthe data. Initial re-sultsofthemodellingofjetkinematicsinthe Z(bb¯ channel using 13 TeV data collected by ATLAS are presented in Ref. [7]. The measurement described in this Letter selects bb decays¯ of a Z boson contained within a single jet, referred to as a Z -jet, with transversemomentum pZ -jetT >200 GeV anda photon with transverse momentum T >175 GeV. The high-pT requirement enhancesthe signal overthe dominant γ +jets background pro-duction, which has a softer pT spectrum. The candidate Z -jet is reconstructed using a ‘groomed’ anti-kt [8] jet with radius

pa-rameter R=1.0 (large-R jet). A multivariate algorithm is used to determinewhether R=0.2 track-jetsthat are associatedwith the large-R jet are b-tagged, i.e. ifthey contain b-hadron decay products.TheapproachtotaggingpresentedinthisLetterisbuilt uponafoundationofstudiesfromLHCrunsat√s=7 and8 TeV, includingextensivestudiesofjetreconstructionandgrooming al-gorithms [9–11] and detailed investigations of track-jet-based b-tagginginboostedtopologies [7,12].

Twodifferentjetgroomingalgorithmsareusedtoperformthe measurement: ‘trimming’ [10], and‘soft drop’ [11,13].The exper-imental and phenomenological implications for jet mass recon-structionandtheoreticalprecisionaredifferentforthetwo groom-ingalgorithms. Thetrimmingalgorithmisthedefaultusedin AT-LAS to study boosted bosons, chosen as a result ofoptimisation studiesperformedfromLHCrunsat√s=8 and13 TeV [14].The soft-dropcalculationsachieveadifferenttheoreticalprecisionand offer advantages such as the formal absence of non-global loga-rithms. The distribution ofthe soft-drop massfor QCD processes hasnowbeencalculatedbothatnext-to-leadingorder(NLO)with next-to-leading-logarithm (NLL) accuracy [15,16] and at leading order (LO) with next-to-next-to-leading-logarithm (NNLL) accu-racy [17,18].Thislevel ofprecision forajet substructure observ-able at a hadron collider is surpassed only by the calculation of thrust ine+e− interactions [19].Similar calculationsarenot cur-rentlyavailablefortrimmedjets.

Thedoubledifferentialcross-sectionofsoft-dropjetsasa func-tionofthemassandtransversemomentumwerepreviously mea-suredbyATLAS [20] andCMS [21] inbalanceddijeteventsat√s= 13 TeV.The trimmedjetmassdistributionindijetandW/Z +jets eventswas measuredbyCMSat√s=7 TeV [22].Whileprevious

analyses measured thecross-section of quark andgluon-initiated jetsfordifferentgroomingalgorithms,thisanalyses measuresthe massoflarge-R jetscontaining thehadronicdecayproductsof Z bosonsinZ(bb¯ eventsat√s=13 TeV.

2. ATLASdetector

The ATLAS detectorat theLHC is a multipurposeparticle de-tector with a forward–backward symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists of an inner detector (ID) for tracking surrounded by a thin superconducting solenoidprovidinga2 Taxialmagneticfield,electromagneticand hadroniccalorimeters,andamuonspectrometer.TheIDcoversthe pseudorapidity range|η| <2.5. It consistsofsilicon pixel,silicon microstrip,andtransitionradiationtrackingdetectors.A newinner pixel layer, the insertable B-layer [23,24], was added at a mean radius of 3.3 cm during the period between Run 1 and Run 2 oftheLHC.Lead/liquid-argon(LAr)samplingcalorimetersprovide electromagnetic(EM)energymeasurements withhighgranularity (|η| <3.2). The hadronic calorimeter uses a steel/scintillator-tile samplingdetectorin the centralpseudorapidity range (|η| <1.7) anda copper/LArdetector inthe region 1.5 <|η| <3.2. The for-ward regions (3.2 <|η| <4.9) are instrumented withcopper/LAr andtungsten/LAr calorimetermodules optimised for electromag-netic and hadronic measurements, respectively. A muon spec-trometer with an air-core toroid magnet system surrounds the calorimeters.Threelayersofhigh-precisiontrackingchambers pro-videcoverageintherange|η| <2.7,whilededicatedfastchambers allow triggering in the region |η| <2.4. The ATLAS trigger sys-temconsistsofahardware-based first-leveltriggerfollowedby a software-basedhigh-leveltrigger [25].

3. DataandMonteCarlosimulation

Thedatawere collectedin pp collisionsattheLHCwith√s= 13 TeV and a 25 nsproton bunch crossing interval during 2015 and2016. The full data sample corresponds to an integrated lu-minosityof 36.1 fb−1 afterrequiringthat alldetectorsubsystems were operational during data recording. The uncertainty in the combined2015–2016integratedluminosity is2.1% [26], obtained usingtheLUCID-2 detector[27] for theprimary luminosity mea-surements.Collisioneventswererecordedwithatriggerselecting eventswithatleastone photoncandidatewithtransverseenergy ET>140 GeV.

MonteCarlo(MC) eventsamplesthat includeanATLAS detec-torsimulation [28] based on Geant 4 [29] areusedtomodelthe signal and the small tt¯+γ and background contribu-tions.Inaddition, γ+jets MCeventsamplesareusedtostudythe triggermodelling. Inadditionto thehard scatter,each eventwas overlaid with additional pp collisions (pile-up) according to the distribution ofthe average number of pp interactions per bunch crossing,μ,observedindata.Theseadditionalpp collisionswere generatedwith Pythia 8.1 [30] using theATLAS A2set of tuned parameters [31] andtheNNPDF23LO [32] partondistribution func-tion(PDF)set.Simulatedeventswerethenreconstructedwiththe samealgorithmsasthoserunoncollisiondata.

1 ATLASusesaright-handedcoordinatesystemwithitsoriginat thenominal interactionpointinthecentreofthedetector.Thepositivex-axisisdefinedbythe directionfromtheinteractionpointtothecentreoftheLHCring,withthepositive

y-axispointingupwards,whilethebeamdirectiondefinesthez-axis.Cylindrical coordinates(r,φ)areusedinthetransverse plane,φ beingtheazimuthal angle aroundthez-axis.Thepseudorapidityηisdefinedintermsofthepolarangleθ

byη= −ln tan(θ/2).Rapidityisdefinedasy=0.5ln[(E+pz)/(Epz)]whereE

denotestheenergyand pzisthecomponentofthemomentumalongthebeam

(3)

The signal was modelled using the LO Sherpa 2.1.1 [33] generator, withthe CT10NLO [34] PDFset;thesample isflavour inclusive ( Z(qq)γ). An alternative sample was produced with MadGraph 5.2 [35],whichgeneratedLOmatrixelementsthat werethenpartonshoweredwith Pythia 8.1usingtheNNPDF23LO PDF set andtheATLAS A14 setof tuned parameters [36] forthe underlying event.This alternativesignal sample is usedto deter-mine the systematicuncertaintyassociated withthe signal mod-elling.

The γ+jets sampleswerealsogeneratedwith Sherpa 2.1.1and theCT10NLOPDFset.Thematrixelementwasconfiguredtoallow aphotonwithuptothreepartonsinthefinalstate.Thett¯+γ pro-cesses were modelled by MadGraph 5.2 interfacedto Pythia 8.1. NLO corrections were applied to the tt¯+γ cross-section [37]. The MCsampleswithhadronicallydecaying W bosonswere generated using Sherpa 2.1.1,witha configurationsimilar tothat usedforthe sample.Predictionsfor productionwere nor-malisedaccordingtothecross-sectionsprovidedbythegenerator.

4. Eventreconstructionandselection

Eventsarerequiredtohaveareconstructedprimaryvertex, de-fined as the vertex with at least two reconstructed tracks with pT>0.4 GeV andwiththehighestsumofsquaredtransverse mo-mentaofassociatedtracks [38].

Hadronicallydecayinghigh-pT Zbb candidates¯ areidentified usinglarge-R jetstocapturebothb-quarks,sincetheywillbevery closeduetothehighLorentzboost.Thetwo differentjet groom-ingalgorithmsconsideredintheanalysis,trimming andsoftdrop, differintheirpile-upmitigationandmassresolutionperformance. Trimmed calorimeter jets Trimmed calorimeter jets are recon-structed from noise-suppressedtopological clusters(topoclusters) of calorimeter energy deposits calibrated to the local hadronic scale (LC) [39], using the anti-kt algorithm with radius

parame-ter R=1.0 implemented in FastJet [40,41].Trimmedcalorimeter jetsarethosejetstowhichthetrimmingalgorithm [10] isapplied. The aim of this algorithm is to improve the jet mass resolu-tion and its stability with respect to pile-up by discarding the softer components of jets that originate from initial-state radia-tion,pile-upinteractions,ortheunderlyingevent.Thisisdoneby reclusteringtheconstituentsoftheinitiallarge-R jet,usingthekt

algorithm [42,43], into subjets with radius parameter Rsub=0.2 andremoving anysubjetthat hasa pT lessthan5% ( fcut) ofthe parentjet pT.Thejetmassmjet,themainobservableinthis anal-ysis, is definedas themagnitude ofthe four-momentum sumof constituentsinsideajet.Itisreferred toasthecalorimeter-based mass ifit is calculated using the topoclustersasconstituents, or as the track-assisted jet mass [44] if it is estimated by using tracking information.Thejet massfortrimmed jetsisdefinedas theweighted combinationofthecalorimeter-based massandthe track-assistedjetmass [44],whereeachinputmassisweightedby afactorproportionaltotheirinverse-squaredmassresolution. Soft-drop calorimeter jets Soft-drop calorimeter jets are formed by the applicationof the soft-drop algorithm [11] to the anti-kt

R=1.0 jets described above, with additional topological cluster preprocessing that isdescribed below.The soft-drop algorithm is designed to remove soft andwide-angle radiation and also con-tamination from pile-up. In the first step of the grooming algo-rithm,theanti-kt R=1.0 jetsarereclusteredwiththeCambridge–

Aachen (C/A) [45,46] algorithm sothat theconstituents are com-bined purely accordingto their angularseparation. Thesoft-drop algorithm then reverses the C/A algorithm clustering historyand removes thesofter subjetata specific step of theC/A clustering historyunlessthesoft-dropconditionisfulfilled:

min(pT1,pT2) pT1+pT2 >zcut  R12 R0 β ,

where zcut andβ are algorithm parameters, pT1 and pT2 arethe transversemomentaofthedeclusteredsubjetsateachhistorystep, R12 isthedistancebetweenthesubjetsinthe(η, φ) spaceand R0 isathresholdcorresponding tothejetradius.The parameters

β=0 and zcut=0.1 areusedin theanalysis,based onthe stud-iesinRef. [47]. Thefinal measurementis performedforjetmass mjet>30 GeV,whichimpliesthatanycollineardivergenceis reg-ulated andthe measurement remains protected against collinear singularities.Thesoft-dropjetmassexhibitsapile-updependence withthechosenparametersandthereforeaspecialversionof pile-up suppressed topological clustersare used to construct the jets that are then groomed withthe soft-drop algorithm. Specifically, theSoftKiller(SK)algorithm [48] isusedinconjunctionwith Con-stituent Subtraction (CS) [49,50] based on the studies presented inRef. [47]. CS is applied before the SK algorithm.The CS is an extension of the pile-up subtraction based on jet area [51]. The algorithmproceedsasfollows.First,virtualparticleswith infinites-imally small pT (ghosts) are addedto theevent(eachcovering a fixed area in the ηφ plane) with energy density matching the medianenergydensityoftheevent.Second,theaddedghostsare matchedto the topologicalclustersin ηφ spaceand onlythose within R=0.25 ofthetopoclusterarefurtherconsideredforthe pile-upremovalprocedure.Thealgorithmproceedstheniteratively througheach topocluster–ghost pairinorder ofascending R.If thepT ofthetopoclusterislargerthanthatofthematchedghost, thepT oftheindividualtopoclusteriscorrectedbysubtractingthe pT of theghost andtheghost are removed. Otherwisethe pT of the topocluster is subtracted from the pT of the ghost and the pT ofthetopoclusterissettozero.TheSKalgorithmexploitsthe characteristicthat particlesoriginatingfrompile-upcollisions are softerthan those from thehard-scattering collision andremoves particlesthatfallbelowacertain pT threshold,determinedonan event-by-event basis. The pile-up suppressed topological clusters afterCSandSKareusedasinputtothesoft-drop jet reconstruc-tion.Thecalorimeter-basedjetmassisusedforsoft-dropjets. Allgroomedjets A dedicatedMC-based calibration,similar tothe procedure used inRef. [44], is applied to correctthe jet pT and massofboth thetrimmedjetsandthesoft-drop jetsto the par-ticle level. To account for semileptonic decays of the b-hadrons, thefour-momentumofthe closestreconstructed muoncandidate within R=0.2 oftheb-taggedtrack-jetistakenintoaccountin thecalorimeter-based componentofthejet massobservable (see belowforthedescriptionofthetrack-jetdefinitionandb-tagging). MuoncandidatesareidentifiedbymatchingIDtrackstofulltracks ortracksegmentsreconstructedinthemuonspectrometer.Muons are required to have pT>10 GeV and |η| <2.4, and to satisfy theloose identification criteriaofRef. [52], whichimpose quality requirements on the tracks,but no isolation criteria are applied. A calibration is applied to correct the muon transverse momen-tum,andreconstruction andidentificationefficiencyscalefactors, derivedfrom J/ψμ+μ− and Zμ+μ− events [52], are ap-pliedtosimulation.Large-R jetsarerequiredtohavepT>200 GeV and|η| <2.0.A comparisonofthecalibrated Z -jet mass distribu-tion andthe particle-leveljet mass distribution fortrimmedjets andsoft-dropjetsisshowninFig.1.Particle-leveljets,usedinthe unfoldingprocedure described in Section 6,are builtfrom stable final-stateparticles (definedasthose withproper lifetime τ cor-respondingto >10 mm) excluding muonsand neutrinos and using the same jet reconstruction algorithms used for calorime-terjets. Similarly to themuon-in-jet correction at reconstruction leveldescribedinSection4,particle-levelmuonsareaddedtothe particle-leveljet if they are within R=0.2 ofa b-hadron. The

(4)

Fig. 1. Comparisonof(a)thecalibratedreconstructedZ -jet massdistributionand(b)theparticle-leveljetmassdistributionofsoft-drop(dashedline)andtrimmedjets(solid line)inthesignalregioninthe sample.

mass ofparticle-leveljetsisdefinedastheinvariant massof the four-vector sum of its constituents. The jet mass distribution of soft-drop jets is significantly broader than that of trimmed jets for both the reconstructed jet mass, Fig. 1(a), and the particle-leveljetmass,Fig.1(b),whereasthedistributionfortrimmedjets is more asymmetric than forsoft-drop jets atparticle-level. This asymmetryisafeatureofthetrimmingalgorithmandis indepen-dentofthequarkflavourfromthe Z bosondecay.Thejetmassis very stable with respect to pile-up for both jet definitions [53]. The soft-drop jets exhibit basically no pile-up dependence due to the constituent-level pile-upsuppression techniqueswhile the trimmedjetmassvariesby0.14 GeV perreconstructedvertex [53]. WhileRef. [53] focussesonthehadronicdecayofW bosons,itwas found that the sameconclusions holdaswell for jetscontaining heavyflavourdecaysof Z bosons.

Track-jets Small-radius jets formed from charged-particle tracks are usedasprobes ofb-hadronsassociatedwithlarge-R jetsthat may containthe candidate Zbb jets.¯ Track-jets are builtwith the anti-kt algorithm with a radius parameter of R=0.2 [12]

fromatleasttwoID trackswithpT>0.5 GeV and |η| <2.5 [54]. Only track-jets with pT>10 GeV and |η| <2.5 are used and they are associated with the large-R calorimeter jets via ghost-association [51,55],inwhichthetrack-jetsare includedinthejet clusteringprocedure withinfinitesimally small pT such that they havenoeffectonthejetclusteringresult.Track-jetscontaining b-hadron decay products are tagged with a multivariate algorithm known as MV2c10, which exploits the presence of large-impact-parameter tracks, the topological decay chain reconstruction and thecorrespondingdisplacedverticesfromb-hadrondecays [56,57]. The MV2c10 algorithm is configured to achieve an efficiency of 70% fortaggingb-jets in a MCsample of tt events,¯ while reject-ing80%ofc-jetsandmorethan99%oflight(quarkorgluon)jets in the same sample. Thisconfiguration is referred to as the70% workingpoint (WP).For MC samples,thetagging efficiencies are correctedtomatchthosemeasuredindata [54,58,59].These small-radius track-jets are referred to as b-jets. By using this small-R definition, b-jets can be reliably identified inthe dense environ-ment ofboosted bosons.Consequently, the numberof associated b-jets (Nb-jet) provides anessential criterion fortheidentification

ofmerged Zbb decays.¯

Photons Photoncandidatesarereconstructedfromclustersof en-ergy deposits in the EM calorimeter [60]. The photon energy is calibratedbyapplyingtheenergyscalesmeasuredwithZe+e− decays [61]. Identificationrequirementsareapplied toreduce the

contamination from π0 or other neutral hadrons decaying into photons.RequirementsontheshowershapeintheEMcalorimeter andontheenergyfractionmeasured inthe hadroniccalorimeter areusedto identifyphotons.Photons mustsatisfythe tight iden-tificationandisolationcriteriadefinedinRef. [60],andmusthave |η| <1.37 or 1.52 <|η| <2.37.For MC samples, the photon re-construction,identificationandisolation efficienciesare corrected tomatch thosemeasured in data [60,61]. The selectedphoton is requiredtohave T >175 GeV,which isdeterminedby an opti-misation ofthe expected signal significance,2 andto ensure that the trigger is fully efficient. The efficiency of the photon selec-tionrangesbetween95%and98%forphotonswithT >175 GeV depending on the pseudorapidity of the photon. These selection criteriaareinvertedtoformasample ofnon-tight photonsforthe backgroundestimatedescribedinSection5.

Qualityrequirementsareappliedtophotoncandidatesto iden-tify those arising from instrumental problems or non-collision background [62], and events containing such candidates are re-jected. In addition, quality requirements are applied to remove eventscontainingspurious jetsfromdetectornoiseorout-of-time energydepositsinthecalorimeterfromcosmicraysorother non-collisionsources [63].

Selected events are required to have at least one groomed large-R jetand at leastone photon, with R(jet, γ) >1.0 from thegroomedlarge-R jetaxis.Thegroomed large-R jetisrequired tohavepTZ -jet>200 GeV tocapturebothofthedecayproductsof the Zbb decay,¯ i.e.bothjetsfromtheb-quarksshouldbefully containedinthegroomedlarge-R jet.Inthesignalregion,thejets identified ascandidate Zbb decays¯ mustcontain atleast two ghost-associatedtrack-jets,andthetwo withthehighestpT must betaggedasb-jets(Nb-jet=2).

5. Signalandbackgroundestimation

Toextractthe Z(bb¯ signalfromthedata,signaland back-groundtemplatesobtainedfromMCsimulationandfromdataare fittedtotheobserved Zbb candidate¯ jet massdistribution us-ing a binned maximum-likelihood fit.This procedure is repeated separatelyforeachofthegroomedjetdefinitionsusedtoperform themeasurement.Thedominantbackgroundis γ+jets withgluon tobb splitting.¯ Lesssignificantbackgroundcontributionsaredueto tt¯+γ and processes.Otherbackgroundssuchasmultijetand

2 Theexpectedsignalsignificanceisdefinedass/s+b,wheres isthenumber ofexpectedsignaleventsandb isthenumberofexpectedbackgroundevents.

(5)

Table 1

Definitionsofthecontrolregions(CR)andthesignalregion(SR)usedforthe data-drivenbackgroundestimateoftheγ+jets process.

Nb-jet=0 Nb-jet=1 Nb-jet=2

Non-tightγ CR-A CR-C CR-E

Tightγ CR-B CR-D SR

W/Z +jetprocesses,whereajet ismisidentified asa photon,and theassociatedproductionofaHiggsbosonwitha γ arefoundto benegligible(<1%).

TemplatesofthejetmassdistributionfortheZ(bb¯ signal, andforthet¯t+γ and backgrounds,aredeterminedfromMC simulation. In contrast,the template used to estimate the domi-nant background contribution from γ +jets processes isderived directly fromthe measured data withoutinput from MC simula-tion. It is especially important to minimise the reliance on MC simulationsforthisprocess,asMCgeneratorshavenotbeentested thoroughlyinthehighpTregionofthebb production¯ phasespace for γ+jets.

The data-drivenbackgroundestimate ofthe jetmass distribu-tion for the γ+jets process relies on two features of the final state:the b-jetmultiplicity (i.e. Nb-jet)andthe photon

identifica-tioncriteria(i.e.tightvsnon-tight).Theb-jetmultiplicity require-ment isused toisolate the γ+jets process, which dominatesin samples with Nb-jet=0 or 1. Furthermore,the ratio of γ+jets

yields(Nγ+jets)ineventswithtightcomparedwithnon-tight pho-tonsisobservedtobeapproximatelyindependentof Nb-jet.These

two characteristicsareusedto modeltheexpected γ +jets yield inthesignalregionviaatransfer-factor(TF)method.Thismethod extrapolatesthesignalregion(SR)yieldfromcontrolregions(CRs)

with Nb-jet=1 and the shapeof thejet mass distributionin the

signalregionforthe γ+jets backgroundfromCRswithNb-jet=2

but non-tight photons. The definitions of the different CRs are summarised in Table 1. In these CRs, the tt¯+γ and con-tributions aresubtractedfromthedata,asthemassshapediffers fromthatof γ+jets.

The γ +jets background estimates areconstructed in 10 GeV binsof Zbb candidate¯ jetmass.A binsizeof10 GeVischosen basedonthelarge-R jetmassresolution.Foreachjet massbin,i, in each CR, the estimated yield of γ +jets events in that bin is calculatedas:

NCRγ+,ijets=NCR,iNCRtt¯+,γiNWCRγ,i

whereNtCR¯t+,iγ andNCRW,γi arethenumberoft¯t+γ and events, respectively, taken directly fromthe MC simulation. The system-atic uncertaintiesfort¯t+γ and contributions aredescribed inSection7.Thecontributionfromsignaleventsineachofthese control regionsisnegligiblecomparedto otherprocessesandhas noimpactonthebackgroundestimation.

Toobtaintheestimateofthenumberof γ+jets eventspresent ineachbinofthejetmassdistributionintheSR(NγSR+,ijets),thejet massdistributionfromCR-E(NCRγ+jetsE,i)ismultipliedbyaTF deter-minedfromthe Nb-jet=1 regions:CR-CandCR-D.Thisprocedure

maybesummarisedas NSRγ+,ijets= ⎛ ⎝N γ+jets CR−D,i CR+jetsC,i ⎞ ⎠CR+jetsE,i,

where the ratio NCRγ+jetsD,i/NCRγ+jetsC,i isthe TF in each bin of thejet massdistribution.The valueoftheTFvarieswithjetmass, rang-ing from 1.2forjet massesof 30 GeV to 0.8at 160 GeV, andis within5% ofunityfrom50to110 GeV. WiththisTFmethod,the

shape of the jet mass distribution in the signal region is deter-minedfromCR-E (with Nb-jet=2) andthenormalisation ofeach

binisdeterminedfromtheNb-jet=1 controlregions.

The validity of this approach relies on the assumption that the TF does not depend on Nb-jet. This is tested in data, using

the Nb-jet=0 sampleasa cross-check,andinMC simulation

us-ing Nb-jet=0, 1, and 2. The differences in the TFs between the

Nb-jet=0 and Nb-jet=1 controlregions indataare takenas

sys-tematicuncertainties intheTFs,asdescribed inSection 7.The TF approachwas further validatedby comparing the TF,determined

fromthe Nb-jet=1 regions, indataandMC.Withintheir

statisti-calprecision,theTFwerefoundtobecompatible.Additionally,the reconstructedjetmassdistributionofthedata-drivenbackground estimateintheSRisingoodagreementwiththejetmass distri-butionin γ+jets eventssimulatedwith Sherpa 2.1.1.

6. Definitionoftheobservableandcorrectionfordetectoreffects

Thereconstructedjetmassdistributionsfromthesignalregions arecorrected toparticlelevelin ordertomeasure thefull differ-entialcross-sectionoftheZbb jet¯ mass.Unfoldingaccountsfor the effects of detectorresolution and inefficiency and allows di-rectcomparisonswithparticle-levelpredictions.Theparticle-level eventselection issimilar to the selection described inSection 4. Eventsarerequiredtohaveatleastoneparticle-leveljetwithpT> 200 GeV,|η| <2.0 andtwo ghost-associatedb-hadrons. Theyare alsorequiredto havea particle-levelphoton with pT>175 GeV, |η| <1.37 or1.52 <|η| <2.37 and R(jet, γ) >1.0.

Theestimatedbackgroundjetmassspectrumissubtractedfrom the data in the signal region, as discussed in Section 8. The background-subtracteddistributionofthereconstructedjetmassis thenunfoldedusinganiterativeBayesiantechnique [64] withone iteration.Thistechnique isimplemented intheRooUnfold frame-work [65]. Oneiteration ischosen tominimisethe statistical un-certaintiesaswellastheuncertaintiesassociatedwiththe unfold-ingmethodestimatedwithadata-drivenclosuretestasdescribed inSection 7.The unfoldingprocedure corrects forbinmigrations betweentheparticle-levelandthereconstructedjetmass distribu-tionusingaresponsematrixthat describestheprobability foran eventwithaparticle-leveljetmassinbini tobereconstructedin bin j.Theresponsematrixisconstructedfromeventsthatsatisfy theeventselectionandfiducialregioncriteriaatboththeparticle levelandthereconstructionlevel.Theparticle-leveljetsand recon-structed jetsare required tobe matched within R=0.75. Fur-thermore,theunfoldingprocedurecorrectsforeventsthat satisfy eithertheparticle-levelorreconstructedselectioncriteria,butnot both.Theresponsematrixisobtainedfromthe Sherpa Z(bb¯ signalMCsimulation.The Zbb candidate¯ jetmassdistribution was rebinned in the highjet mass region to improve the corre-lationbetweenthe reconstructedandparticle-level jet mass.The unfoldingresultsarefoundtobe compatiblewhenincreasingthe numberofiterationsused,attheexpenseofanincreaseinthe sta-tisticaluncertainties.Theunfoldingprocedureisalsovalidatedby unfoldingthe jetmass spectrausinga singular value decomposi-tion(SVD)technique [66] andwithinthestatisticalprecisionofthe measurements,theresultsarefoundtobecompatible.

7. Systematicuncertainties

Varioussources ofsystematicuncertaintiesimpactthe Zbb¯ candidate jet mass distribution. These are classified into experi-mentalandtheoretical uncertainties, and uncertainties relatedto thebackgroundestimateandtheunfoldingprocedure.The system-aticuncertaintiescanhaveanimpactontheshapeofthejetmass distribution andon thesignal andbackground yields. Systematic

(6)

Table 2

Theuncertaintiesintheintegratedfiducialcross-sectionmeasurementfromdatain thesignalregionfortrimmedandsoft-dropjets.Multipleindependentcomponents arecombinedintogroupsofsystematicuncertainties.

Source Uncertainty [%]

Trimmed jets Soft-drop jets

Luminosity 2.1 2.1

Jet energy resolution 0.4 <0.1 Jet mass resolution 5.1 6.0 Jet energy and mass scale 7.2 7.4

b-tagging 5.3 5.8

Photon related 1.3 1.2 Muon related 0.1 <0.1 Photon trigger 0.4 0.4 Transfer factor: 0-tag vs 1-tag 7.5 4.0 Transfer factor: statistical 2.9 1.5

t¯t+γrelated 1.7 2.8

related <0.1 <0.1

modelling 12 15

Unfolding non-closure 9.4 5.8 Signal MC response: statistical 3.9 6.0 Background template: statistical 5.9 13 Fit statistical uncertainty 30 39

Total uncertainty 37 46

uncertainties areevaluatedbyvarying eachsourcebyplusor mi-nus one standard deviationofits uncertainty. The fit isrepeated foreachvariationandthejet massdistributionunfoldedto parti-clelevel. Thejet energyandmass scaleuncertainties are treated ascorrelatedwhileallothersourcesofsystematicuncertaintiesare treatedasuncorrelated.

The impact of the systematic uncertainties on the integrated fiducial cross-section measurements, grouped by source, is sum-marisedinTable2.

Forgroomed large-R jets, the uncertainties inthe energyand massscalesareestimatedbyusingthedouble-ratiotechnique de-scribed in Ref. [44] by comparing the calorimeter jet properties withthemeasurementsofthesamejetreconstructedfromtracks intheID.Theuncertaintiesinthejetmassandenergyresolutions areassessedbyapplyingadditionalsmearingofthejetobservables accordingtotheuncertaintyintheirresolutionmeasurements.An absolute uncertainty of 2% is used for the jet energy resolution whilea relativeuncertainty of20%isused forthe jetmass reso-lution,consistent withprevious studies ofboththe trimmedand soft-dropjetdefinitions [20,67].

The b-tagginguncertaintyisevaluated byvarying the data-to-MC correctionsin various kinematic regions, based on the mea-suredtaggingefficiencyandmistagrates.Thesevariationsare ap-pliedseparatelytob-hadronjets,c-hadronjets,andlightjets, lead-ing to three uncorrelated systematic uncertainties. An additional uncertaintyisincludedtoaccountfortheextrapolationtojetswith pT beyondthekinematicreachofthedatacalibration [54,58,59].

The impact of the systematicuncertainties on thephoton re-construction, identificationandisolation efficienciesis studiedby varying the scale factors, used to correct the respective efficien-cies in simulation to matchthose observed in data, within their uncertainties.Theuncertaintiesaredeterminedfromdatasamples of Z→ + γ (with =e, μ), Ze+e−, andinclusivephoton events,usingthe methodsdescribed inRef. [60].Uncertaintiesin the photon energy scale and resolution are also taken into ac-count [61].

The uncertainties associated withthe muon momentum cali-bration and resolution, and the reconstruction and identification efficiencyscalefactors,arederivedfromZμ+μ−events [52].

Theuncertaintyassociatedwiththemodellingofpile-upinthe simulationisassessedbyvaryingthereweightingofthepile-upin thesimulationwithinitsuncertainties.Thisuncertaintycoversthe

differencebetweentheratiosofpredictedandmeasuredinelastic cross-sectionvalues [68].

The efficiencyof thephoton triggeris 100% forphotons with T >175 GeV, with an uncertainty of 0.5% that is propagated throughtheunfolding.

The systematic uncertainties associated with the data-driven backgroundtemplateareestimatedbyderivingthebin-by-bin nor-malisationfromCR-AandCR-BwithNb-jet=0 insteadoffromthe

Nb-jet=1 CRs as described in Section 5 (referred to as ‘Transfer

factor:0-tagvs1-tag’).Anadditionaluncertaintyinthebin-by-bin normalisationofthebackgroundtemplateisderivedbyvaryingthe jet mass distributions inCR-C andCR-D (with Nb-jet=1) within

theirstatisticaluncertainty(referredtoas‘Transferfactor: statisti-cal’).

Thesignalandbackgroundyieldsare estimatedby performing asimultaneousfittothedata.Theuncertaintyinthenormalisation ofthebackgroundtemplate,arisingfromthestatisticaluncertainty inthe data, isreferred to asthe fitstatistical uncertainty inthe following.

Themodellinguncertainties affectingthe processare de-rivedbycomparingthenominal Sherpa 2.1.1samplewithone pro-ducedusingthe MadGraph [35] generator interfacedto Pythia 8. For the t¯t+γ background, three different sources of modelling uncertainties are considered: the uncertainty due to the parton showerandhadronisation isestimatedby comparingthenominal samples produced using MadGraph interfaced to Pythia 8, with MadGraphinterfacedto Herwig 7 [69,70];theuncertaintydueto differentinitial- andfinal-stateradiationconditionsisestimatedby using Pythia 8tuned parameterswithhighorlow QCDradiation activity;andtheuncertaintiesduetothechoiceofrenormalisation andfactorisationscalesareestimatedbyusingalternativesamples withthescalesvariedindependentlybyfactorsof2and0.5.

For the process, the modelling uncertainty is derived by replacingthenominalsamplewiththealternative MadGraph sam-ple,interfacedto Pythia 8.Thefitisrepeatedwiththealternative MC signal sample and then unfolded using the response matrix, signalefficiencyandfakefractionfromthisalternativesignal sam-ple.Uncertaintiesinthesignal efficiencyandresponsematrixare alreadycoveredbyexperimentalsystematicerrorsoutlinedearlier. The systematicuncertaintydue tothe dependence ofthe un-folding on the prior signal distribution, as obtained from MC simulations,is evaluated througha data-driven ‘closure test’.The simulatedsignal sample isreweighted atparticle levelsuch that the distribution of the fully simulated reconstructed jet mass more closely matches the observed data. Pseudo-data from the reweightedsignalMCsamplearethenunfoldedusingtheresponse matrix fromthe original unweighted signal MC sample, and the unfoldedresultiscomparedwiththereweightedparticle-level dis-tribution. Differences observed in this comparison are taken as systematicuncertainties in the unfolding, and are referred to as unfolding non-closure uncertainties in the following. The uncer-taintyduetothedependenceonthenumberofunfoldingiteration steps is negligible. The statisticaluncertainties in the signal MC sample, usedto build theresponse matrix,andbackground tem-platesarealsoconsidered.

Abootstrappingprocedure [71] isusedtoensurethatthe sys-tematicuncertainties arestatisticallysignificant.Foreach system-atic uncertainty considered, pseudo-experiments are constructed fromthedataorMC simulationbyassigningeacheventaweight takenfroma Poisson distribution withunit mean. The statistical uncertaintyinthesystematicvariationistakenastheRMSacross thepseudo-experiments.Thejet massdistributionforeachofthe systematicvariationsisthenrebinneduntilatargetsignificanceof 1.5 standarddeviationsisachieved.

Thedominantsystematicuncertainties on theintegrated fidu-cialcross-sectionmeasurementsarisefromtheuncertaintiesinthe

(7)

Table 3

Thenumberofdataeventsobservedinthe signal re-gion,alongwiththe compositionoftheseeventsafter thefitinthe30<mZ -jet<160 GeV massrange.

Num-bers arepresented for trimmedand soft-dropjets at reconstructionlevel.Statisticalandsystematic uncertain-tiesare addedin quadrature.Systematic uncertainties aredescribedinSection7.

Process Trimmed jets Soft-drop jets

215±61 167±73 γ+jets 4180±90 4630±100 39±8 37±8 tt¯+γ 39±12 40±12 Total 4480±110 4870±120 Data 4475 4874

fit,thesignal modelling,thedata-drivenbackgroundestimate,the jet mass andenergyscales, andthe jet massresolution.The un-certaintyinthepile-upmodellinginMCsimulationisfoundtobe negligible.

As shown in Table 2 the impact of the statistical uncertain-ties on thefiducial cross-section of the response matrixand the background template is significantly different for trimmed and soft-drops jets. This behaviour can be explained by the differ-encesofthesignalandbackgroundjetmassdistributionsbetween trimmedandsoft-drop jetsandtheir interplay withthe smooth-ing of those uncertainty components.For trimmedjets, only the variations inthecoreofthejetmassdistributionsarestatistically significantwhileforsoft-dropjets,thesignaldistributionis signif-icantly widerandthus thetails alsocontribute to thesystematic uncertainty. Furthermore,the backgroundjetmass distributionof soft-drop jets is not as steeply falling as for trimmed jets. This results in less susceptibilityto statistical fluctuationsaround the signal jet mass peak which would otherwise be reduced by the rebinningprocedureintroducedabove.

8. Results

Results of the measurement of the jet mass distribution in Z(bb¯ eventsarereportedinthefollowingthreesubsections; fitresultsandthecalculationofthesignificanceofthesignalabove the background,the unfolded fiducial cross-section measurement usingthefull measuredjet massspectrum,andthe unfolded dif-ferentialspectrumofthejetmassitself.

8.1. Fitresultsandsignificanceestimate

Thesignalyieldisextractedbysimultaneouslyfittingthesignal and the backgroundtemplates described in Section 5 to the ob-served Zbb candidate¯ jet mass(mZ -jet) distribution. A binned

maximum-likelihood fitis performedinthe mass rangebetween 30 and 160 GeV using a bin widthof 10 GeV. The upper mass bound is chosen to exclude the mass region near the top quark masswhilethelowermassboundischosentoexcludetheregion of jet mass for which the uncertainty in the calibration is large andto protect againstcollinear singularities,asdiscussedin Sec-tion4.Theresultofthefittothereconstructed Zbb candidate¯ jet massdistribution isshowninFigs. 2(a)and 2(b) fortrimmed and soft-drop jets along with their corresponding background-subtracteddatadistributionsinFigs.2(c)and 2(d).Thefittedsignal yieldis215±61 eventsfortrimmedjetsand167±73 eventswhen usingsoft-dropjetsasshowninTable3.

The13bins ofthe Zbb candidate¯ jetmassdistributionare combinedinaprofilelikelihoodfit [72] toextracttheexpectedand observedsignificances.Systematicuncertaintiesareincludedinthe

Table 4

Expectedand observedsignificancevalues(innumbersof stan-darddeviations)fortrimmedandsoft-dropjetsforamassrange between30and160 GeV.

Trimmed jets Soft-drop jets Expected significance 3.8 2.7 Observed significance 3.9 2.7

fit asnuisance parameters andare assumedto be Gaussian dis-tributed.The expectedandobservedsignificancesoftheStandard Model prediction fitted to the observed data for the Z(bb¯ production are summarised in Table 4. For each jet definition, the observedsignificance is consistent withthe expectation. Dif-ferences in the significance between the two jet definitions are relatedtothedifferencesinboththe jetmassresolutionandthe fiducialcross-sectionsbetweentrimmedandsoft-dropjets,which affectthe signal andbackgroundyields inthe 30–160 GeVmass window.

8.2.Integratedfiducialcross-sectionmeasurement

Themeasured integratedfiducial cross-sectionsinthe boosted (high pT) Zbb region¯ are listed in Table 5. The integrated fiducial cross-section is extractedfrom the ratio of the unfolded yield of signal events and the total integrated luminosity. The measurements are compared with the Sherpa 2.1.1 and Mad-Graph+Pythia 8 LO predictions described in Section 3. Mad-Graph+Pythia 8predictsaround 30% fewereventsthanthe sam-ples generated with Sherpa. Withinthe current uncertainties on the measurement,both predictions are consistent with the mea-sured cross-sections for soft-drop jets. For trimmed jets, larger differencescanbeobservedbetweenthe MadGraph+Pythia 8 pre-diction and the measured cross-section. The uncertainties in the measuredintegratedfiducialcross-sectionresultsaresummarised inTable 2.The dominant sourceof systematicuncertainty isthe fituncertaintyforbothjetdefinitions.Theuncertaintyinthe nor-malisationofthe backgroundtemplatehasa largeimpact onthe cross-sectionmeasurementbecauseoftheorderofmagnitude dif-ferencebetweentheestimatednumbersofsignalandbackground events.

8.3.Differentialfiducialcross-sectionmeasurement

Thedifferential fiducialcross-section of Z(bb¯ production asafunctionofthe Zbb jet¯ mass,obtainedfromtheunfolded datainthesignal region,isshowninFig.3fortrimmedand soft-dropjets.Asacomparison,thepredictionfrom Sherpa 2.1.1atLO isalso shown. Statistical uncertainties are significant for the dif-ferentialfiducialcross-sectionmeasurement inthetailsofthejet massdistribution.

9. Conclusion

The fully unfolded differential jet mass spectrum for the high-pT Zbb signal¯ usingthe final state andthe fiducial productioncross-sectionaremeasuredin36.1 fb−1ofpp collisions at√s=13 TeV recordedin2015and2016bytheATLASdetector. Thehigh-pT Zbb signal¯ isreconstructedusinglarge-R jetsand jetsubstructuretechniques,includingdoublesubjetb-tagging.Two differentgroomingalgorithmsare usedinthisanalysis:trimming andsoftdrop.Thesegroomingalgorithmsexhibitdifferencesinthe measuredshapesofthe jet massspectraandtheresulting preci-sionof those measurements. The soft dropjet mass spectrum is observedtobebroaderandmoresymmetricthanthatoftrimmed jets.Theprecisionofthefiducialcross-sectionmeasuredisslightly

(8)

Fig. 2. Thereconstructedjetmassdistributioninthesignalregion(a,b)afterfittingthe Sherpa 2.1.1signalmodelandbackgroundtemplatestothedataand(c,d)the correspondingbackground-subtracteddistributionsfor(a,c)trimmedand(b,d)soft-dropjets.Theratioofdatatothefittedsignalplusbackgroundisshownatthebottom inFigures(a)and(b).Thebackground-subtractedjetmassdistributionsindataarecomparedwiththereconstructedsignaljetmassdistributionsinthenominalMonte Carlosimulation.Theerrorbarsonthebackground-subtracteddatadistributionarestatisticalonly.The Sherpa signalmodelandbackgroundtemplatearescaledtofitthe dataasdescribedinSection5.

Table 5

Measuredandpredictedcross-sectionforZ(bb¯inthepZ -jetT >200 GeV,30<mZ -jet<160 GeV andT>175 GeV region.

Jet definition σ(Z(bb¯)γ, pTZ -jet>200 GeV, p γ

T>175 GeV, 30<mZ -jet<160 GeV) [fb] Trimmed jets Data 17.0±5.0 (stat.)±3.6 (syst.)

Sherpa prediction 13.4±0.2 (stat.) MadGraph+Pythia 8 Zγ prediction 9.1±0.1 (stat.)

Soft-drop jets Data 12.5±4.9 (stat.)±3.1 (syst.) Sherpa prediction 15.4±0.1 (stat.)

(9)

Fig. 3. Unfoldeddistributionofthe Zbb candidate¯ jetmassfrom background-subtracteddatainthesignalregionalongwiththepredictionsfrom Sherpa 2.1.1. Resultsfor(a)trimmedand(b)soft-dropjetsareshown.Theerrorbarscorrespond tothestatisticaluncertaintywhilethehatchedbandcorrespondstothetotal sys-tematicuncertaintyinthemeasurement.Thestatisticaluncertaintyinthe Sherpa signalisnegligibleandnotshowninthefigure.

better for trimmed jets. Within the fiducial regions defined for eachjetdefinitionaspTZ -jet>200 GeV,30 <mZ -jet<160 GeV and

T >175 GeV,theproductioncross-sectionsaremeasuredtobe:

σtrimming

Z(bb¯ =17.0±5.0 (stat.)±3.6 (syst.) fb,

σsoft drop

Z(bb¯ =12.5±4.9 (stat.)±3.1 (syst.) fb.

Theintegratedfiducialcross-sectionmeasurementsandthe differ-ential cross-section ofthejet massof theboosted Zbb decay¯ arefoundtobeinagreementwiththeLOpredictionsfrom Sherpa and MadGraph+Pythia 8(integrated), andfrom Sherpa (differen-tial),respectively,withinthecurrentstatisticalandsystematic un-certainties.Futuremeasurements ofresonant bb decays¯ willneed toaccount fortheobserved experimentalfeaturesofthese differ-entgrooming algorithmsinconcert withtheavailabilityof preci-siontheoreticalcalculationsofthejetmassspectra,orlackthereof.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

We thankCERN for thevery successful operation of theLHC, aswell asthe support stafffrom ourinstitutions without whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia;ARC,Australia;BMWFW andFWF,Austria;ANAS, Azerbai-jan;SSTC,Belarus;CNPqandFAPESP,Brazil;NSERC,NRC andCFI, Canada;CERN;ANID,Chile;CAS,MOSTandNSFC,China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Repub-lic; DNRF and DNSRC, Denmark; IN2P3-CNRSand CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece;RGCandHongKongSAR,China;ISFandBenoziyoCenter, Israel;INFN, Italy;MEXTandJSPS,Japan;CNRST, Morocco;NWO, Netherlands;RCN, Norway;MNiSW andNCN, Poland;FCT, Portu-gal; MNE/IFA,Romania; JINR;MES ofRussia andNRCKI, Russian Federation;MESTD,Serbia;MSSR,Slovakia;ARRSandMIZŠ, Slove-nia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation,Sweden;SERI,SNSF andCantonsofBernandGeneva, Switzerland;MOST,Taiwan; TAEK,Turkey;STFC,UnitedKingdom; DOE and NSF, United States of America. In addition, individual groupsandmembershavereceived supportfromBCKDF,Canarie, ComputeCanada, CRCandIVADO, Canada; BeijingMunicipal Sci-ence& Technology Commission,China;COST, ERC, ERDF,Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; In-vestissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Bank-ing Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; GöranGustafssonsStiftelse,Sweden;TheRoyalSocietyand Lever-hulmeTrust,UnitedKingdom.

The crucialcomputing support fromall WLCG partners is ac-knowledged gratefully,inparticular fromCERN, theATLAS Tier-1 facilitiesat TRIUMF(Canada),NDGF(Denmark, Norway, Sweden), CC-IN2P3 (France),KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1(Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresources arelistedin Ref. [73].

References

[1]ATLASCollaboration,TheATLASexperimentattheCERNLargeHadronCollider, J.Instrum.3(2008)S08003.

[2]ATLASCollaboration,Propertiesofgbb at¯ smallopeninganglesinpp

colli-sionswiththeATLASdetectorat√s=13 TeV,Phys.Rev.D99(2019)052004, arXiv:1812.09283 [hep-ex].

[3]ATLASCollaboration,SearchforheavyresonancesdecayingintoaW orZ

bo-sonandaHiggsbosoninfinalstateswithleptonsandb-jetsin36 fb−1 of

s=13 TeV pp collisionswiththeATLASdetector,J.HighEnergyPhys.03 (2018)174,arXiv:1712.06518 [hep-ex].

[4]ATLASCollaboration,Searchforheavyresonancesdecayingtoaphotonanda hadronicallydecayingZ/W/H bosoninpp collisionsat√s=13 TeV withthe ATLASdetector,Phys.Rev.D98(2018)032015,arXiv:1805.01908 [hep-ex]. [5]ATLASCollaboration,Measurementofthecrosssectionofhightransverse

mo-mentum Zbb production¯ inproton–protoncollisionsat√s=8 TeV with theATLASdetector,Phys.Lett.B738(2014)25,arXiv:1404.7042 [hep-ex]. [6]CMSCollaboration,InclusivesearchforahighlyboostedHiggsbosondecaying

toabottomquark-antiquarkpair,Phys.Rev.Lett.120(2018)071802,arXiv: 1709.05543 [hep-ex].

(10)

[7]ATLASCollaboration,IdentificationofboostedHiggsbosonsdecayinginto

b-quarkpairswith the ATLASdetector at 13TeV, arXiv:1906.11005 [hep-ex], 2019.

[8]M.Cacciari,G.P.Salam,G.Soyez,Theanti-kt jetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,arXiv:0802.1189 [hep-ph].

[9]ATLASCollaboration, Performanceofjet substructure techniquesforlarge-R jetsinproton–protoncollisionsat√s=7 TeV usingtheATLASdetector,J.High EnergyPhys.09(2013)076,arXiv:1306.4945 [hep-ex].

[10]D.Krohn,J.Thaler,L.-T.Wang,Jettrimming,J.HighEnergyPhys.02(2010) 084,arXiv:0912.1342 [hep-ph].

[11]A.J.Larkoski,S.Marzani,G.Soyez,J.Thaler,Softdrop,J.HighEnergyPhys.05 (2014)146,arXiv:1402.2657 [hep-ph].

[12] ATLAS Collaboration, Flavor tagging with track-jets in boosted topologies withtheATLASdetector,ATL-PHYS-PUB-2014-013,https://cds.cern.ch/record/ 1750681,2014.

[13]M.Dasgupta,A.Fregoso,S.Marzani,G.P.Salam,Towardsanunderstandingof jetsubstructure,J.HighEnergyPhys.09(2013)029,arXiv:1307.0007 [hep-ph]. [14]ATLASCollaboration,Identificationofboosted,hadronicallydecayingW bosons

andcomparisonswith ATLAS datataken at √s=8 TeV,Eur.Phys. J. C76 (2016)154,arXiv:1510.05821 [hep-ex].

[15]S.Marzani,L.Schunk,G.Soyez,Astudyofjetmassdistributionswith groom-ing,J.HighEnergyPhys.07(2017)132,arXiv:1704.02210 [hep-ph]. [16]Z.-B.Kang,K.Lee,X.Liu,F.Ringer,Thegroomedandungroomedjetmass

dis-tributionforinclusivejetproductionattheLHC,J.HighEnergyPhys.10(2018) 137,arXiv:1803.03645 [hep-ph].

[17]C.Frye,A.J.Larkoski,M.D.Schwartz,K.Yan,Precisionphysicswithpile-up in-sensitiveobservables,arXiv:1603.06375 [hep-ph],2016.

[18]C.Frye,A.J.Larkoski,M.D.Schwartz,K.Yan,Factorizationforgroomedjet sub-structurebeyondthenext-to-leadinglogarithm,J.HighEnergyPhys.07(2016) 064,arXiv:1603.09338 [hep-ph].

[19]T.Becher,M.D.Schwartz,Aprecisedeterminationof αsfromLEPthrustdata

usingeffective fieldtheory,J.HighEnergyPhys. 07(2008)034,arXiv:0803. 0342 [hep-ph].

[20]ATLASCollaboration,Measurementofthesoft-dropjetmassinpp collisions

at√s=13 TeV withtheATLASdetector,Phys.Rev.Lett.121(2018)092001, arXiv:1711.08341 [hep-ex].

[21]CMSCollaboration,Measurementsofthedifferentialjetcrosssectionasa func-tionofthejet mass indijeteventsfrom proton-protoncollisionsat √s=

13 TeV,J.HighEnergyPhys.11(2018)113,arXiv:1807.05974 [hep-ex]. [22]CMSCollaboration,Studiesofjetmassindijetand W/Z +jetevents,J.High

EnergyPhys.05(2013)090,arXiv:1303.4811 [hep-ex].

[23] ATLASCollaboration,ATLASinsertableb-layertechnicaldesignreport, ATLAS-TDR-19,https://cds.cern.ch/record/1291633,2010;

ATLAS insertableB-layer technicaldesignreport addendum, ATLAS-TDR-19-ADD-1,https://cds.cern.ch/record/1451888,2012.

[24]B.Abbott,etal.,ProductionandintegrationoftheATLASinsertableb-layer,J. Instrum.13(2018)T05008,arXiv:1803.00844 [physics.ins-det].

[25]ATLASCollaboration,Performanceofthe ATLAStrigger systemin2015,Eur. Phys.J.C77(2017)317,arXiv:1611.09661 [hep-ex].

[26] ATLASCollaboration,Luminositydeterminationinppcollisionsat√s=13 TeV usingtheATLAS detector at theLHC,ATLAS-CONF-2019-021, http://cdsweb. cern.ch/record/2677054,2019.

[27]G.Avoni,et al.,ThenewLUCID-2detectorforluminositymeasurementand monitoringinATLAS,J.Instrum.13(2018)P07017.

[28]ATLASCollaboration, TheATLASsimulationinfrastructure,Eur.Phys. J.C70 (2010)823,arXiv:1005.4568 [physics.ins-det].

[29]S.Agostinelli,etal.,GEANT4:asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250.

[30]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820 [hep-ph].

[31] ATLASCollaboration,SummaryofATLASPythia8tunes, ATL-PHYS-PUB-2012-003,https://cds.cern.ch/record/1474107,2012.

[32]R.D.Ball,etal.,PartondistributionswithLHCdata,Nucl.Phys.B867(2013) 244–289,arXiv:1207.1303 [hep-ph].

[33]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02 (2009)007,arXiv:0811.4622 [hep-ph].

[34]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241 [hep-ph].

[35]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301 [hep-ph]. [36] ATLASCollaboration,ATLASPythia8tunesto7 TeV data,

ATL-PHYS-PUB-2014-021,https://cds.cern.ch/record/1966419,2014.

[37]ATLASCollaboration,Measurementsofinclusiveanddifferentialfiducial cross-sectionsoft¯ productioninleptonicfinalstatesat√s=13 TeV inATLAS, Eur.Phys.J.C79(2019)382,arXiv:1812.01697 [hep-ex].

[38] ATLASCollaboration,VertexreconstructionperformanceoftheATLASdetector at√s=13 TeV,ATL-PHYS-PUB-2015-026,https://cds.cern.ch/record/2037717, 2015.

[39]ATLASCollaboration,TopologicalcellclusteringintheATLAScalorimetersand itsperformanceinLHCRun1,Eur.Phys.J.C77(2017)490,arXiv:1603.02934 [hep-ex].

[40]M.Cacciari,G.P.Salam,DispellingtheN3mythforthek

tjet-finder,Phys.Lett.

B641(2006)57,arXiv:hep-ph/0512210 [hep-ph].

[41]M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,arXiv:1111.6097 [hep-ph].

[42]S.Catani,Y.L.Dokshitzer,M.H.Seymour,B.R.Webber,Longitudinallyinvariant

k⊥clusteringalgorithmsforhadronhadroncollisions,Nucl.Phys.B406(1993) 187.

[43]S.D.Ellis,D.E.Soper,Successivecombinationjetalgorithmforhadroncollisions, Phys.Rev.D48(1993)3160,arXiv:hep-ph/9305266 [hep-ph].

[44]ATLASCollaboration,Insitucalibrationoflarge-R jetenergyandmassin13 TeVproton-protoncollisionswiththeATLASdetector,Eur.Phys.J.C79(2019) 135,arXiv:1807.09477 [hep-ex].

[45]Y.L.Dokshitzer,G.D.Leder,S.Moretti,B.R.Webber,Betterjetclustering algo-rithms,J.HighEnergyPhys.08(1997)001,arXiv:hep-ph/9707323 [hep-ph]. [46]M.Wobisch,T.Wengler,Hadronizationcorrectionstojetcross-sectionsindeep

inelasticscattering, in:MonteCarlo Generators for HERAPhysics, Proceed-ings,Workshop,Hamburg,Germany,1998–1999,1998,p. 270,arXiv:hep-ph/ 9907280 [hep-ph].

[47] ATLASCollaboration, Impactofalternativeinputsandgroomingmethodson large-R jetreconstructioninATLAS,ATL-PHYS-PUB-2017-020,https://cds.cern. ch/record/2297485,2017.

[48]M. Cacciari,G.P. Salam,G. Soyez, SoftKiller,a particle-levelpileup removal method,Eur.Phys.J.C75(2015)59,arXiv:1407.0408 [hep-ph].

[49]P.Berta,M.Spousta,D.W.Miller, R.Leitner,Particle-levelpileupsubtraction forjetsandjet shapes,J.HighEnergyPhys.06(2014)092,arXiv:1403.3108 [hep-ex].

[50] ATLASCollaboration,Constituent-levelpile-upmitigationtechniquesinATLAS, ATLAS-CONF-2017-065,https://cds.cern.ch/record/2281055,2017.

[51]M.Cacciari,G.P.Salam,Pileupsubtractionusingjetareas, Phys.Lett.B659 (2008)119,arXiv:0707.1378 [hep-ph].

[52]ATLASCollaboration,MuonreconstructionperformanceoftheATLASdetector inproton–protoncollisiondataat√s=13 TeV,Eur.Phys.J.C76(2016)292, arXiv:1603.05598 [hep-ex].

[53]ATLASCollaboration,Optimisationoflarge-radiusjetreconstructionforthe AT-LASdetector in13TeVproton–protoncollisions, arXiv:2009.04986 [hep-ex], 2020.

[54]ATLASCollaboration,Measurementsofb-jettaggingefficiencywiththeATLAS detectorusingtt events¯ at√s=13 TeV,J.HighEnergyPhys.08(2018)089, arXiv:1805.01845 [hep-ex].

[55]M.Cacciari,G.P.Salam,G.Soyez,Thecatchmentareaofjets,J.HighEnergy Phys.04(2008)005,arXiv:0802.1188 [hep-ph].

[56]ATLASCollaboration,Performanceofb-jetidentificationintheATLAS experi-ment,J.Instrum.11(2016)P04008,arXiv:1512.01094 [hep-ex].

[57] ATLASCollaboration,OptimisationoftheATLASb-taggingperformanceforthe 2016 LHC run, ATL-PHYS-PUB-2016-012, https://cds.cern.ch/record/2160731, 2016.

[58] ATLASCollaboration, Calibrationoflight-flavourb-jetmistaggingrates using ATLAS proton–protoncollisiondata at√s=13 TeV,ATLAS-CONF-2018-006, https://cds.cern.ch/record/2314418,2018.

[59] ATLASCollaboration,Measurementofb-taggingefficiencyofc-jetsintt events¯

usingalikelihoodapproachwiththeATLASdetector,ATLAS-CONF-2018-001, https://cds.cern.ch/record/2306649,2018.

[60]ATLAS Collaboration, Measurement of the photon identification efficiencies withtheATLAS detectorusingLHCRun2datacollectedin2015and2016, Eur.Phys.J.C79(2019)205,arXiv:1810.05087 [hep-ex].

[61]ATLASCollaboration,ElectronandphotonenergycalibrationwiththeATLAS detector using 2015–2016LHCproton–proton collision data,J. Instrum. 14 (2019)P03017,arXiv:1812.03848 [hep-ex].

[62]ATLASCollaboration,MonitoringanddataqualityassessmentoftheATLAS liq-uidargoncalorimeter,J.Instrum.9(2014)P07024,arXiv:1405.3768 [hep-ex]. [63] ATLASCollaboration,Selectionofjetsproducedin13 TeV proton–proton

col-lisions with the ATLAS detector, ATLAS-CONF-2015-029, https://cds.cern.ch/ record/2037702,2015.

[64]G.D’Agostini,ImprovediterativeBayesianunfolding,arXiv:1010.0632 [physics. data-an],2010.

[65]T. Adye, Unfolding algorithms and tests using RooUnfold, arXiv:1105.1160 [physics.data-an],2011.

[66]A.Hocker,V.Kartvelishvili, SVDapproachtodata unfolding,Nucl.Instrum. MethodsA372(1996)469,arXiv:hep-ph/9509307 [hep-ph].

[67]ATLASCollaboration,Jetmassandsubstructureofinclusivejetsin√s=7 TeV

pp collisionswiththeATLASexperiment,J.HighEnergyPhys.05(2012)128, arXiv:1203.4606 [hep-ex].

[68]ATLASCollaboration,Measurementoftheinelasticproton–protoncrosssection at√s=13 TeV withtheATLASdetectorattheLHC,Phys.Rev.Lett.117(2016) 182002,arXiv:1606.02625 [hep-ex].

(11)

[69]M.Bahr,etal.,Herwig++physicsandmanual,Eur.Phys.J.C58(2008)639, arXiv:0803.0883 [hep-ph].

[70]J.Bellm,etal.,Herwig7.0/Herwig++3.0releasenote,Eur.Phys.J.C76(2016) 196,arXiv:1512.01178 [hep-ph].

[71]G.Bohm,G.Zech,IntroductiontoStatisticsandDataAnalysisforPhysicists, VerlagDeutschesElektronen-Synchrotron,ISBN 978-3-935702-41-6,2010.

[72] K.Cranmer,G.Lewis,L.Moneta,A.Shibata,W.Verkerke,HistFactory:atoolfor creatingstatisticalmodelsforusewithRooFitandRooStats,tech.rep. CERN-OPEN-2012-016,NewYorkU.,2012,https://cds.cern.ch/record/1456844. [73] ATLAS Collaboration, ATLAS computing acknowledgements,

ATL-SOFT-PUB-2020-001,https://cds.cern.ch/record/2717821.

TheATLASCollaboration

G. Aad102,B. Abbott129,D.C. Abbott103, O. Abdinov13,∗, A. Abed Abud71a,71b, K. Abeling53,

D.K. Abhayasinghe94, S.H. Abidi168, O.S. AbouZeid40,N.L. Abraham157,H. Abramowicz162,H. Abreu161, Y. Abulaiti6, B.S. Acharya67a,67b,q,B. Achkar53, S. Adachi164,L. Adam100,C. Adam Bourdarios65,

L. Adamczyk84a,L. Adamek168,J. Adelman121,M. Adersberger114,A. Adiguzel12c,an, S. Adorni54, T. Adye144, A.A. Affolder146, Y. Afik161,C. Agapopoulou65, M.N. Agaras38,A. Aggarwal119, C. Agheorghiesei27c, J.A. Aguilar-Saavedra140f,140a,am,F. Ahmadov80,W.S. Ahmed104,X. Ai15a, G. Aielli74a,74b,S. Akatsuka86,T.P.A. Åkesson97,E. Akilli54,A.V. Akimov111, K. Al Khoury65, G.L. Alberghi23b,23a,J. Albert177,M.J. Alconada Verzini162,S. Alderweireldt36,M. Aleksa36, I.N. Aleksandrov80,C. Alexa27b, D. Alexandre19,T. Alexopoulos10,A. Alfonsi120,M. Alhroob129, B. Ali142,G. Alimonti69a,J. Alison37,S.P. Alkire149, C. Allaire65,B.M.M. Allbrooke157, B.W. Allen132, P.P. Allport21,A. Aloisio70a,70b, A. Alonso40,F. Alonso89,C. Alpigiani149, A.A. Alshehri57,

M. Alvarez Estevez99, D. Álvarez Piqueras175,M.G. Alviggi70a,70b,Y. Amaral Coutinho81b, A. Ambler104, L. Ambroz135,C. Amelung26,D. Amidei106,S.P. Amor Dos Santos140a,S. Amoroso46,C.S. Amrouche54, F. An79, C. Anastopoulos150, N. Andari145, T. Andeen11, C.F. Anders61b,J.K. Anders20,

A. Andreazza69a,69b,V. Andrei61a, C.R. Anelli177, S. Angelidakis38,A. Angerami39,

A.V. Anisenkov122b,122a,A. Annovi72a,C. Antel61a, M.T. Anthony150, M. Antonelli51, D.J.A. Antrim172, F. Anulli73a, M. Aoki82,J.A. Aparisi Pozo175, L. Aperio Bella36, G. Arabidze107,J.P. Araque140a,

V. Araujo Ferraz81b,R. Araujo Pereira81b,C. Arcangeletti51, A.T.H. Arce49, F.A. Arduh89,J-F. Arguin110, S. Argyropoulos78,J.-H. Arling46,A.J. Armbruster36, L.J. Armitage93, A. Armstrong172,O. Arnaez168, H. Arnold120,A. Artamonov124,∗, G. Artoni135,S. Artz100, S. Asai164,N. Asbah59,

E.M. Asimakopoulou173,L. Asquith157, K. Assamagan29, R. Astalos28a,R.J. Atkin33a, M. Atkinson174, N.B. Atlay152,H. Atmani65, K. Augsten142,G. Avolio36, R. Avramidou60a,M.K. Ayoub15a,

A.M. Azoulay169b,G. Azuelos110,ba,M.J. Baca21, H. Bachacou145,K. Bachas68a,68b, M. Backes135, F. Backman45a,45b, P. Bagnaia73a,73b, M. Bahmani85, H. Bahrasemani153,A.J. Bailey175,V.R. Bailey174, J.T. Baines144, M. Bajic40, C. Bakalis10,O.K. Baker184,P.J. Bakker120, D. Bakshi Gupta8, S. Balaji158, E.M. Baldin122b,122a, P. Balek181,F. Balli145,W.K. Balunas135, J. Balz100,E. Banas85, A. Bandyopadhyay24, Sw. Banerjee182,k,A.A.E. Bannoura183, L. Barak162,W.M. Barbe38, E.L. Barberio105,D. Barberis55b,55a, M. Barbero102, T. Barillari115,M-S. Barisits36,J. Barkeloo132,T. Barklow154,R. Barnea161,S.L. Barnes60c, B.M. Barnett144, R.M. Barnett18,Z. Barnovska-Blenessy60a,A. Baroncelli60a,G. Barone29,A.J. Barr135, L. Barranco Navarro45a,45b,F. Barreiro99,J. Barreiro Guimarães da Costa15a, S. Barsov138,

R. Bartoldus154,G. Bartolini102, A.E. Barton90,P. Bartos28a, A. Basalaev46, A. Bassalat65,au, R.L. Bates57, S.J. Batista168,S. Batlamous35e,J.R. Batley32, B. Batool152, M. Battaglia146,M. Bauce73a,73b,F. Bauer145, K.T. Bauer172,H.S. Bawa31,o,J.B. Beacham49, T. Beau136,P.H. Beauchemin171,F. Becherer52,P. Bechtle24, H.C. Beck53, H.P. Beck20,u, K. Becker52,M. Becker100,C. Becot46, A. Beddall12d, A.J. Beddall12a,

V.A. Bednyakov80, M. Bedognetti120, C.P. Bee156,T.A. Beermann77, M. Begalli81b, M. Begel29, A. Behera156, J.K. Behr46,F. Beisiegel24,A.S. Bell95, G. Bella162,L. Bellagamba23b, A. Bellerive34, P. Bellos9, K. Beloborodov122b,122a, K. Belotskiy112,N.L. Belyaev112, D. Benchekroun35a, N. Benekos10, Y. Benhammou162, D.P. Benjamin6,M. Benoit54, J.R. Bensinger26, S. Bentvelsen120, L. Beresford135, M. Beretta51, D. Berge46, E. Bergeaas Kuutmann173,N. Berger5,B. Bergmann142,L.J. Bergsten26, J. Beringer18, S. Berlendis7, N.R. Bernard103,G. Bernardi136, C. Bernius154,F.U. Bernlochner24, T. Berry94,P. Berta100, C. Bertella15a,I.A. Bertram90, G.J. Besjes40,O. Bessidskaia Bylund183,

N. Besson145,A. Bethani101,S. Bethke115,A. Betti24, A.J. Bevan93, J. Beyer115,R. Bi139, R.M. Bianchi139, O. Biebel114,D. Biedermann19,R. Bielski36, K. Bierwagen100,N.V. Biesuz72a,72b,M. Biglietti75a,

T.R.V. Billoud110,M. Bindi53, A. Bingul12d, C. Bini73a,73b,S. Biondi23b,23a, M. Birman181,T. Bisanz53, J.P. Biswal162,A. Bitadze101, C. Bittrich48,K. Bjørke134, K.M. Black25, T. Blazek28a, I. Bloch46,

C. Blocker26,A. Blue57, U. Blumenschein93,G.J. Bobbink120, V.S. Bobrovnikov122b,122a,S.S. Bocchetta97, A. Bocci49,D. Bogavac14, A.G. Bogdanchikov122b,122a, C. Bohm45a, V. Boisvert94,P. Bokan53, T. Bold84a,

(12)

A.S. Boldyrev113,A.E. Bolz61b,M. Bomben136,M. Bona93, J.S. Bonilla132, M. Boonekamp145,

H.M. Borecka-Bielska91,A. Borisov123, G. Borissov90, J. Bortfeldt36, D. Bortoletto135, V. Bortolotto74a,74b, D. Boscherini23b, M. Bosman14,J.D. Bossio Sola104,K. Bouaouda35a, J. Boudreau139,

E.V. Bouhova-Thacker90, D. Boumediene38,S.K. Boutle57,A. Boveia127, J. Boyd36,D. Boye33c,av, I.R. Boyko80, A.J. Bozson94, J. Bracinik21, N. Brahimi102, G. Brandt183, O. Brandt61a, F. Braren46, B. Brau103, J.E. Brau132,W.D. Breaden Madden57, K. Brendlinger46,L. Brenner46, R. Brenner173, S. Bressler181, B. Brickwedde100,D.L. Briglin21,D. Britton57,D. Britzger115, I. Brock24,R. Brock107, G. Brooijmans39,W.K. Brooks147d,E. Brost121, J.H. Broughton21,P.A. Bruckman de Renstrom85, D. Bruncko28b,A. Bruni23b,G. Bruni23b,L.S. Bruni120, S. Bruno74a,74b,B.H. Brunt32, M. Bruschi23b, N. Bruscino139,P. Bryant37,L. Bryngemark97, T. Buanes17, Q. Buat36, P. Buchholz152,A.G. Buckley57, I.A. Budagov80, M.K. Bugge134,F. Bührer52, O. Bulekov112, T.J. Burch121,S. Burdin91,C.D. Burgard120, A.M. Burger130, B. Burghgrave8, J.T.P. Burr46,J.C. Burzynski103,V. Büscher100, E. Buschmann53,

P.J. Bussey57,J.M. Butler25, C.M. Buttar57, J.M. Butterworth95, P. Butti36,W. Buttinger36,A. Buzatu159, A.R. Buzykaev122b,122a,G. Cabras23b,23a, S. Cabrera Urbán175, D. Caforio56,H. Cai174, V.M.M. Cairo154, O. Cakir4a,N. Calace36,P. Calafiura18, A. Calandri102, G. Calderini136,P. Calfayan66,G. Callea57, L.P. Caloba81b, S. Calvente Lopez99, D. Calvet38,S. Calvet38, T.P. Calvet156,M. Calvetti72a,72b, R. Camacho Toro136,S. Camarda36,D. Camarero Munoz99,P. Camarri74a,74b, D. Cameron134, R. Caminal Armadans103,C. Camincher36, S. Campana36, M. Campanelli95,A. Camplani40,

A. Campoverde152, V. Canale70a,70b,A. Canesse104,M. Cano Bret60c, J. Cantero130, T. Cao162, Y. Cao174, M.D.M. Capeans Garrido36, M. Capua41b,41a, R. Cardarelli74a, F. Cardillo150,G. Carducci41b,41a,

I. Carli143,T. Carli36,G. Carlino70a,B.T. Carlson139,L. Carminati69a,69b,R.M.D. Carney45a,45b,

S. Caron119, E. Carquin147d,S. Carrá46,J.W.S. Carter168, M.P. Casado14,f,A.F. Casha168,D.W. Casper172, R. Castelijn120, F.L. Castillo175, V. Castillo Gimenez175,N.F. Castro140a,140e, A. Catinaccio36,

J.R. Catmore134,A. Cattai36, J. Caudron24, V. Cavaliere29,E. Cavallaro14,M. Cavalli-Sforza14,

V. Cavasinni72a,72b,E. Celebi12b, F. Ceradini75a,75b, L. Cerda Alberich175, K. Cerny131, A.S. Cerqueira81a, A. Cerri157,L. Cerrito74a,74b, F. Cerutti18, A. Cervelli23b,23a, S.A. Cetin12b,D. Chakraborty121,

S.K. Chan59,W.S. Chan120,W.Y. Chan91,J.D. Chapman32,B. Chargeishvili160b,D.G. Charlton21, T.P. Charman93,C.C. Chau34,S. Che127, A. Chegwidden107,S. Chekanov6,S.V. Chekulaev169a, G.A. Chelkov80,as,M.A. Chelstowska36,B. Chen79,C. Chen60a, C.H. Chen79,H. Chen29, J. Chen60a, J. Chen39, S. Chen137, S.J. Chen15c,X. Chen15b,az, Y. Chen83, Y-H. Chen46, H.C. Cheng63a,H.J. Cheng15a, A. Cheplakov80,E. Cheremushkina123,R. Cherkaoui El Moursli35e,E. Cheu7, K. Cheung64,

T.J.A. Chevalérias145,L. Chevalier145, V. Chiarella51,G. Chiarelli72a,G. Chiodini68a,A.S. Chisholm36,21,

A. Chitan27b,I. Chiu164, Y.H. Chiu177,M.V. Chizhov80,K. Choi66,A.R. Chomont73a,73b, S. Chouridou163, Y.S. Chow120, M.C. Chu63a,X. Chu15a,15d, J. Chudoba141, A.J. Chuinard104, J.J. Chwastowski85,

L. Chytka131, K.M. Ciesla85, D. Cinca47,V. Cindro92,I.A. Cioar˘a27b,A. Ciocio18,F. Cirotto70a,70b,

Z.H. Citron181,m,M. Citterio69a,D.A. Ciubotaru27b,B.M. Ciungu168,A. Clark54,M.R. Clark39, P.J. Clark50, C. Clement45a,45b,Y. Coadou102, M. Cobal67a,67c,A. Coccaro55b, J. Cochran79, H. Cohen162,

A.E.C. Coimbra36,L. Colasurdo119,B. Cole39,A.P. Colijn120,J. Collot58,P. Conde Muiño140a,g, E. Coniavitis52,S.H. Connell33c,I.A. Connelly57,S. Constantinescu27b,F. Conventi70a,bb,

A.M. Cooper-Sarkar135, F. Cormier176, K.J.R. Cormier168, L.D. Corpe95,M. Corradi73a,73b, E.E. Corrigan97, F. Corriveau104,ai,M.J. Costa175, F. Costanza5, D. Costanzo150, G. Cowan94, J.W. Cowley32,J. Crane101, K. Cranmer125,S.J. Crawley57,R.A. Creager137,S. Crépé-Renaudin58, F. Crescioli136,M. Cristinziani24, V. Croft120,G. Crosetti41b,41a,A. Cueto5, T. Cuhadar Donszelmann150, A.R. Cukierman154,

S. Czekierda85, P. Czodrowski36, M.J. Da Cunha Sargedas De Sousa60b, J.V. Da Fonseca Pinto81b, C. Da Via101,W. Dabrowski84a,T. Dado28a, S. Dahbi35e,T. Dai106, C. Dallapiccola103,M. Dam40, G. D’amen23b,23a,V. D’Amico75a,75b, J. Damp100, J.R. Dandoy137, M.F. Daneri30, N.P. Dang182,k, N.S. Dann101,M. Danninger176, V. Dao36,G. Darbo55b,O. Dartsi5,A. Dattagupta132,T. Daubney46, S. D’Auria69a,69b, W. Davey24,C. David46,T. Davidek143, D.R. Davis49, I. Dawson150,K. De8,

R. De Asmundis70a, M. De Beurs120, S. De Castro23b,23a,S. De Cecco73a,73b,N. De Groot119,

P. de Jong120, H. De la Torre107,A. De Maria15c,D. De Pedis73a,A. De Salvo73a, U. De Sanctis74a,74b, M. De Santis74a,74b,A. De Santo157,K. De Vasconcelos Corga102,J.B. De Vivie De Regie65,

C. Debenedetti146, D.V. Dedovich80,A.M. Deiana42, M. Del Gaudio41b,41a, J. Del Peso99,

Figure

Fig. 1. Comparison of (a) the calibrated reconstructed Z -jet mass distribution and (b) the particle-level jet mass distribution of soft-drop (dashed line) and trimmed jets (solid line) in the signal region in the Z γ sample.
Fig. 2. The reconstructed jet mass distribution in the signal region (a, b) after fitting the Sherpa 2.1.1 signal model and background templates to the data and (c, d) the corresponding background-subtracted distributions for (a, c) trimmed and (b, d) soft-
Fig. 3. Unfolded distribution of the Z → b b candidate ¯ jet mass from background- background-subtracted data in the signal region along with the predictions from Sherpa 2.1.1.

References

Related documents

Laid Bouakaz (2015) lyfter fram kartläggning av elevernas tidigare kunskaper som en av de viktigaste pedagogiska åtgärderna och hävdar samtidigt att det är en

Since this study is a mixed-method study, in which a qualitative study is carried out to explore and further the understanding of the quantitative study, the data drawn from the

Detta har lett till fr˚ agan om vilka produkter som g˚ ar att ers¨ atta med mer milj¨ ov¨ anliga alternativ och om det finns komposterbara material som kan anv¨ andas ist¨ allet

Precis som tidigare nämnt skrev både Tornberg (1997 s. 233) att det är vanligt att elever utgår från ordlistor när de ska studera nya ord, dvs. att inlärningen ofta sker

När bildandet av miljögruppen och företagets miljöledningssystem introducerades i början på 2000-talet i Skövdebostäder så marknadsförde företaget sitt miljöarbete på

Personalens förhållningssätt till rehabiliteringsmetoder påverkar därmed vårdtagaren, med detta ska jag i denna studie även undersöka hur personal förhåller sig till

The individuals who were judged as low/moderate risk individuals at age 14 showed less caries experience (dmft mean value = 1.9) at age 6 and report less dmft value than individuals

Informanterna delger att de stödinsatser som nyanlända elever får ta del av är studiehandledning, flextid, modersmålsundervisning samt undervisning i lilla gruppen.