• No results found

Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at √s=13 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at √s=13 TeV"

Copied!
23
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

a

right-handed

gauge

boson

decaying

into

a

high-momentum

heavy

neutrino

and

a

charged

lepton

in

pp collisions

with

the

ATLAS

detector

at

s

=

13 TeV

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t Article history:

Received30April2019

Receivedinrevisedform4August2019 Accepted22August2019

Availableonline18September2019 Editor: M.Doser

Asearchforaright-handedgaugebosonWR,decayingintoaboostedright-handedheavyneutrinoNR,

intheframeworkofLeft-RightSymmetricModelsispresented.Itisbasedondatafromproton–proton collisionswithacentre-of-massenergyof13 TeV collectedbytheATLASdetectorattheLargeHadron Colliderduringtheyears 2015,2016and 2017, correspondingtoanintegrated luminosityof80 fb−1. Thesearchisperformedseparatelyforelectronsand muonsinthefinalstate.Adistinguishingfeature ofthesearchistheuseoflarge-radiusjetscontainingelectrons.Selectionsbasedonthesignaltopology resultinsmallerbackgroundcomparedtotheexpectedsignal.NosignificantdeviationfromtheStandard ModelpredictionisobservedandlowerlimitsaresetintheWRandNRmassplane.Massvaluesofthe WRsmallerthan3.8–5 TeV areexcludedforNRinthemassrange0.1–1.8 TeV.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Overthepastdecades,therehavebeenseveralimportant devel-opments atthe theoretical andexperimental frontiers to address thequestion ofneutrinomassgeneration,whichisnot explained in the Standard Model (SM) of particle interactions. A widely adoptedapproachtoexplainsmallneutrinomassesistheso-called seesawmechanism[1],wherethelightneutrinosacquiretheir Ma-jorana masses from dimension-5 operators through electroweak symmetry breaking.The simplestseesaw mechanism can be cat-egorised into a few different classes, such as the Type-I [2–4], Type-II[5–7] andType-III[5,8] seesawscenarios.Type-Iand Type-II models can further be embedded into a Left-Right Symmetric Model (LRSM)[9–11]. The LRSMcontains SM-singlet heavy neu-trinos NR, which are introduced as the parity gauge partnersof thecorrespondingleft-handedneutrinofields,andaright-handed gaugebosonWR.

TheLRSMframeworkprovides anaturalset-upfortheseesaw mechanismandoffers severalfeatures includingparitysymmetry at high energy, mass generation of the light and heavy neutri-nos,explanationofparityviolationintheSMandexistenceofthe right-handedchargedcurrent.Thismodelcannaturallyexplainthe small neutrino masses through the Type-I seesaw via the right-handedneutrinos,andtheType-IIseesawviaSU(2)-tripletscalars. BoththeType-IandType-IIcontributionscancoexist.IntheLRSM,

 E-mail address:atlas.publications@cern.ch.

left-handedneutrinos(SMneutrinos) aswell asthe right-handed neutrinosare consideredtobe Majoranaparticles(i.e.to betheir ownantiparticles).The LRSMthus featuresviolationoftheglobal lepton number symmetry of the SM. Hence, the model can be testedbyobservinglepton-number-violatingprocesses,suchasthe Keung–Senjanovi ´cprocess [12],showninFig.1.

SearchesbytheATLAS [13,14] andCMS [15–19] collaborations for signatures of LRSMs have considered the final state contain-ing two chargedleptons andtwo jetsand haveexcluded regions ofthe (mWR, mNR) parameterspaceformWR andmNR up to sev-eralTeV,wheremNR andmWR denotethemassesofNR andWR, respectively.

This search is focused on the regime where the WR is very heavy compared with the NR (mNR/mWR ≤0.1), and investigates analternativesignatureforWR→NRdecays,followingRef. [20]. Theprobedmassregimeenablesexplorationofaparameterspace complementary to theone used inprevious searches that recon-struct the NR decayintoa chargedlepton andtwo jets, later re-ferred to asthe “resolved topology”. In the probed massregime, the heavy neutrinos are produced withlarge transverse momen-tum (i.e. are highly boosted) and their decay products are very collimated. Therefore a large-radius jet (large-R jet) can be used to reconstructall orpartofthe NR.Since jetconstruction in AT-LASincludestheenergydepositionofelectronsinthecalorimeters butnomuons,theanalysisstrategy isdifferentforthetwo cases. Intheelectronchannel,theelectronenergydepositisincludedin theconstructed large-R jetoriginatingfromthedecayofthe NR, and thelarge-R jet can be considered as a proxyfor the NR. In

https://doi.org/10.1016/j.physletb.2019.134942

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. Diagramofthe WRdecayvia NRintochargedleptonsandquarks.Theleptons needtobeofthesameflavour,butcanbethesameoroppositecharges.Thedashed purplelinesindicatethatthe NRdecayproductscanbeinsidealarge-R jet.

themuon channel, thefour-momentum ofthe muonis addedto thelarge-R jettoobtaintheNRfour-momentum.Thesearchis re-strictedtothescenarioswherebothleptonshavethesameflavour. No constraint on their charge is enforced, because of the higher probabilityofchargemisidentificationforhigh-pTelectrons.

Theresultsobtainedinthissearchare alsoapplicable toother variations of the LRSM that contain a right-handed gauge boson and neutral leptons, such as inverse seesaw models [21]. Addi-tionally, thissearch isalso applicable to R-parity-violating super-symmetry [22,23], wherea selectron is resonantly produced and subsequentlydecaysintoanelectronandaneutralino,andthe lat-terdecaystoaleptonandquarksthroughanon-zeroλcoupling. Whentheneutralino isboosted,its decayproducts canbe recon-structed asa single large-R jet [24], analogous to the final state probedinthisanalysis.

2. ATLASdetector

TheATLAS detector [25] at theLargeHadron Collider(LHC) is a multipurpose particle detector with a forward–backward sym-metric cylindricalgeometryand a near4π coverage in solid an-gle.1 Itconsistsofaninnertrackingdetector(ID)surroundedbya

thinsuperconductingsolenoidprovidinga2 Taxialmagneticfield, electromagnetic(EM)andhadroniccalorimeters,andamuon spec-trometer(MS). The ID consistsofsilicon pixel,siliconmicrostrip, andstraw-tubetransition-radiationtrackingdetectors,coveringthe pseudorapidityrange|η|<2.5.Thecalorimetersystemcoversthe pseudorapidityrange|η|<4.9.Electromagneticcalorimetryis pro-videdbybarrelandendcaphigh-granularityleadandliquid-argon (LAr) sampling calorimeters, within the region |η|<3.2. There is an additional thin LAr presampler covering |η|<1.8, to cor-rect for energy loss in material upstream of the calorimeters.

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthenominal in-teractionpoint(IP)inthecentreofthedetectorandthe z-axis alongthebeampipe. The x-axis pointsfromtheIPtothecentreoftheLHCring,andthe y-axis points upwards.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φbeingthe azimuthalanglearoundthe z-axis. Thepseudorapidityisdefinedintermsofthe po-larangleθasη= −ln tan(θ/2).Theangularseparationbetweentwoobjectsis de-finedas R ≡( η)2+ ( φ)2,where ηand φaretheseparationsinηandφ. Therapidityisdefinedas y =12ln

E+pz

Epz,where E is theenergyand pzisthe

longi-tudinalcomponentofthemomentumalongthebeampipe.Theangularseparation betweentwoobjectsintermsofrapidityisdefined as Ry≡



( y)2+ ( φ)2, where y and φaretheseparationsin y and φ.Momentuminthetransverse planeisdenotedby pT.

For |η|<2.5, the LAr calorimeters are divided into three layers in depth.Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter, segmented into three barrel structures within |η|<1.7,andtwocopper/LArhadronicendcapcalorimeters,which cover the region 1.5<|η|<3.2. The forward solid angle up to |η|=4.9 is covered by copper/LAr and tungsten/LAr calorimeter modules, which are optimised forenergy measurements of elec-trons/photons and hadrons, respectively. The muon spectrometer istheoutermostlayerofthedetector,andisdesignedtomeasure muons up to |η| of 2.7. It comprises separate trigger and high-precisiontrackingchambersthatmeasurethedeflectionofmuons inamagneticfield generatedbysuperconductingair-coretoroids. Themuontriggerchamberscoverupto|η|of2.4.

The ATLAS detector selects events using a tiered trigger sys-tem [26]. The first level is implemented in custom electronics andreducesthe eventratefromthebunch-crossing frequencyof 40 MHz to a design value of 100 kHz. The second level is im-plemented in software, running on a general-purpose processor farmwhichprocessestheeventsandreducestherateofrecorded eventstoabout1 kHz.

3. Dataandsimulationsamples

Thisanalysisusesproton–proton(pp)collisiondataata centre-of-massenergy√s=13 TeV collectedin2015,2016and2017that satisfyanumberofdata-qualitycriteria.Theamountofdataused inthisanalysiscorrespondstoanintegratedluminosityof80 fb−1. Simulated signal andbackground events are used to optimise the event selection, to validate the performance of large-R jets containing an electron,evaluatethe Z+jetsbackground contribu-tion,andcalculatesignalyieldsandtheirsystematicuncertainties. Signal events were simulated at leading order (LO) in QCD us-ing MG5_aMC@NLO 2.2.2 [27], with Pythia 8.186 [28] using the NNPDF23LO [29] parton distribution function (PDF) set and the A14setoftunedparameters(tune) [30] forpartonshoweringand hadronisation. A version of a LRSM model produced with Feyn-Rules [31] wasimplemented [32] in MG5_aMC@NLO and further modified by theauthorsofRefs. [33,34]. Thismodelassumesthe equivalenceofleftandright-handedweakgaugecouplings, univer-salityofalltheright-handedquarksandright-handedleptons,and thesamemassesforallthreeflavoursofheavy right-handed neu-trinos.Eventsweregeneratedwithoutconstraintsonthechargeof leptons, inlinewiththeproductionofMajorananeutrinos.Signal samples were generated for different mWR and mNR hypotheses, coveringtherangeof3–6 TeV formWR and150–600 GeV formNR. The production cross-sectionsare scaled to next-to-leadingorder (NLO)inQCDfollowingRef. [35].

The background processesconsidered are top-quark pairs (tt), Z/W+jets, singletop-quark,dibosonandmultijetproduction. Ta-ble1summarisesthegeneratorconfigurationsusedtoproducethe samples. Thett sample cross-sectionsare scaled to next-to-next-to-leading order(NNLO)inperturbativeQCD,includingsoft-gluon resummation tonext-to-next-to-leading-log(NNLL) accuracy [36], assumingatop-quarkmassmt=172.5 GeV [37].Theresummation damping parameter, hdamp in the Powheg model, whichcontrols the matching of matrix elements to parton showers and regu-latesthehigh-pTradiation,wassetto1.5mt.Thesingle-top-quark and W/Z+jetssamplesarescaled totheNNLO theoretical cross-sections [38–41].

The MC samples were processed through the full ATLAS de-tector simulation [50] based on Geant4 [51], or a faster simula-tion [52] based ona parameterisationofthecalorimeterresponse and Geant4 fortheotherdetectorsystems,andreconstructedand analysed using thesame procedureandsoftware asusedfor the data.The signal modellingisfound tobe consistent betweenthe

(3)

Table 1

Mainfeatures oftheMonteCarlomodelsusedtosimulatebackgroundsamples.Topquarkreferstoboththe tt and single-top processes.MEandPSrefertomatrixelementandpartonshower,whileleadingorder(LO)andnext-to-leadingorder(NLO)indicate theaccuracyofthegeneratorsinperturbativeQCD(pQCD).For Powheg+Pythia8,differentPDFsetswereusedinMEandPS.

Process Top quark W+jets Z+jets Diboson Multijet

Generator Powheg[42–45]+Pythia8 Powheg+Pythia8 Sherpa[46] Pythia8

ME order in pQCD NLO NLO NLO LO

Version v2, 8.186 v2, 8.186 2.2.1 8.186

PDF (ME, PS) NNPDF30NLO [47], NNPDF23LO CT10 [48], CTEQ6L1 NNPDF30NNLO NNPDF23LO

PS tune A14 AZNLO [49] Default A14

full and the fast simulation, after application of dedicated cali-brationprocedures. Tosimulatetheeffectsofadditionalcollisions in the same and neighbouring bunch crossings (pile-up), addi-tionalminimum-biaseventsgeneratedusing Pythia8 withtheA3 tune [53] andMSTW2008 [54] PDFsetwereoverlaidontothe sig-nal andbackground simulated events, with a distribution of the number of collisions matching that of the data. To account for thedifferencesinparticlereconstruction,trigger,identificationand isolationefficiencies betweensimulationanddata,correction fac-tors are derived in dedicated measurements and applied to the simulatedevents.

4. Eventselectionandcharacterisation

The event selection is designed to select signal events, while rejecting background events, based on the signal topology. The eventsare selected ifthey contain exactlytwo same-flavour lep-tons (with no charge requirement) and at least one trimmed large-R jet[55] withlarge transverse momentum pT>200 GeV. Thehighest-pT(leading)leptonshouldbeback-to-backinazimuth with the large-R jet, while other (subleading) lepton should be containedin the large-R jet. In Fig. 2, the reconstructed pT dis-tributionsof theleading andsubleadinglepton,aswell asofthe selected large-R jet, and the candidate NR mass are shown for four representative signal samples. The leading electron and the large-R jet are balanced in pT, withthe maximaat roughly half ofthecorrespondingmWR values.TheleadingmuonpTshowsthe samecharacteristic,butthepTofthelarge-R jetislowerandhas abroaderdistribution,asitdoesnotcontaintheenergyfromthe subleadingmuon,andthemuon pT resolutionforhigh-pT muons isworse.ThereconstructedmassoftheNRineachcaseis consis-tentwiththeexpectedvalue.The naturalwidthoftheresonance varieswiththemassandis100GeV formWR=3 TeV.Atthismass thewidthofthereconstructedmasspeakisabout150GeV inthe electronchannel,andabout350GeV inthemuonchannel.

Thedetailedselection criteriaarelistedinTable2 andfurther discussed below. Events with electrons and muons are analysed separately.The leading lepton is required to passa single-lepton trigger.Fordatacollected in2015,thelowest pT triggerthreshold is24 GeV and20 GeV forsingle-electronandsingle-muontriggers, respectively.For2016and2017data,thethresholdis26 GeV for both.

Electroncandidatesare reconstructed froman isolated energy depositintheelectromagneticcalorimetermatchedtoanIDtrack, within thefiducial region oftransverse energy pT>26 GeV and |η|<2.47. Candidates within the transition region between the barrelandendcapelectromagneticcalorimeters,1.37<|η|<1.52, are excluded. Muon candidates are reconstructed by combining tracksfoundintheIDwithtracksfoundinthemuonspectrometer andare required to satisfy pT>28 GeV and |η|<2.5.Electrons and muons are required to be isolated using criteria based on tracksand calorimeterenergy deposits. Fortrack-based isolation, the discriminating variableis the scalar sumof the pT of tracks

comingfromthe primary vertex2 ina variable-sizeconearound

theleptondirection(excludingthetrackidentified asthelepton), with the cone size given by the maximum of R=10 GeV/pT and R0, where pT is the pT ofthe lepton, and R0 is a constant, setto 0.2forelectrons,and0.3formuons. Forcalorimeter-based isolation, thediscriminatingvariable isthesumofthetransverse energiesoftopologicalclusters [56] aroundtheleptoninaconeof size R=0.2.

The inputstothe jetconstruction are noise-suppressed three-dimensionaltopologicalclustersofenergydepositsinthe calorime-ters,builtfromcalorimetercells [56].Theyareclassifiedaseither electromagneticorhadronic,basedon theirshape,depthand en-ergy density. The energy clusters are calibrated to the hadronic scale.The momentaofthe jetsarecorrected forenergylossesin passive material and for the non-compensating response of the calorimeter [57].Thelarge-R jetsareconstructedwiththeanti-kt algorithm [58] with a radius parameter of R=1.0, through its implementation inFastJet [59]. Theyare furthertrimmed [55] to reducethecontaminationfromsoftuncorrelatedradiation.Inthis method,theoriginalconstituentsofthejetsarereclusteredusing thekt algorithm [60] witharadiusparameter Rsub=0.2 inorder to produce a collection ofsubjets. These subjets are discarded if theycarrylessthenaspecificfraction( fcut=5%)ofthepTofthe original jet. The remaining constituents are summedto form the four-momentumofthefinaljet.

Intheelectronchannel,thelarge-R jetsarerequiredtohavea massofatleast50 GeV,whilenosuch requirementis appliedin themuonchannel.Thisisbecauseintheformercase,thelarge-R jetincludestheelectron,whileinthemuonchannel,themuon is notincludedinthelarge-R jet.

Small-radiusjets constructedwiththe anti-kt algorithm using energyclusterscalibratedto theelectromagnetic scalewitha ra-dius parameterof R=0.4 areused tocheck forpossible overlap betweenobjects,andtoperformb-tagging(describedinSection5). Inthemuonchannel,theeventisdiscardedifeithermuonsatisfies Ry(μ,jet)<min(0.4,0.04+10 GeV/pμT), inorder to avoidjets formedfromenergydepositsassociatedtohighenergymuons. In theelectronchannel,fortheleadingelectron,firstallsmall-radius jets within Ry=0.2 of a selected electron are removed. Then theeventisdiscardediftheleading electroniswithin Ry=0.4 of a remaining small-radiusjet. This is referred to as the nomi-naloverlapremovalprocedureforelectrons.Amodifiedprocedure, described in Section 5, is applied for thesubleading electron as, unlikemuons,electronclusterscanoverlapwithajetandthe sig-nalefficiencydropsoffifthestandardoverlapremovalapproachis followed.

Furtherrequirementsbasedonthecharacteristicsofthesignal areapplied:

2 Collisionverticesareformedfromtrackswith pT>400 MeV.Ifanevent con-tainsmorethanonevertexcandidate,theonewiththehighestp2

Tofits associ-atedtracksisselectedastheprimaryvertex.

(4)

Fig. 2. Reconstructeddistributionsofthetransversemomentumoftheleadinglepton,subleadinglepton,theselectedlarge-R jet,andthe NR candidatemassinelectron (leftcolumn)andmuon(rightcolumn)channelsforfourrepresentativesignalsamplesinthesignalregion.Theindices1and2indicateleadingandsubleadinglepton, respectively.

(5)

Table 2

Objectselectioncriteria.Thesignificanceofthetransverseimpactparameterisdefinedasthetransverseimpact parameter d0 dividedbyitsuncertainty,σd0,oftracksrelativetotheprimaryvertexwiththehighestsumof

track pT.Thelongitudinalimpactparameter z0ismultipliedbysinθ,whereθisthepolarangleofthetrack. Electron channel Muon channel

Lepton:

pT >26 GeV >28 GeV

|η| |η| <1.37 or 1.52<|η| <2.47 <2.5

Leading lepton quality Medium [61], isolated [61] Medium [62], isolated [62] Subleading lepton quality Medium, no isolation Medium, no isolation Transverse impact parameter significance |d0|/σd0<5.0 |d0|/σd0<3.0

Longitudinal impact parameter |z0|sinθ <0.5 mm

Trimmed large-R jet:

pT >200 GeV

|η| <2.0

Mass >50 GeV None

• Ry betweenthesubleadingleptonandthelarge-R jetis re-quiredbelessthan1,inorderfortheleptontobeinsidethe jet.

• φbetweentheleadingleptonandthelarge-R jetisrequired tobegreaterthan2,inordertohaveabalancedtopology be-tweentheNRandtheleptonfromtheWRdecay.

•InordertoreducetheZ+jetsbackground,eventswitha dilep-ton invariant mass oflessthan 200 GeV are vetoed,andthe φ betweentheleadingandsubleadingleptonsisrequiredto begreaterthan1.5.

Afterapplyingtheserequirements,simulationstudiesshowthat thebackgroundconsistsmainlyoftt and Z+jetsprocesses (includ-ingoff-shell Z/γ∗ production),whilecontributionsfromW+jets, single-top-quarkandmultijetprocessesarenegligible.No require-ments onb-tagged jets are applied, asthe WR inthe signal can decaytoatopandbottomquarkpair.

Thefinal discriminating observableused inthe analysisisthe reconstructed mass of the WR candidate, mrecoWR. In the electron channel,theselectedlarge-R jetcorrespondstotheNR candidate, andtherefore the WR candidate four-momentum is obtained by addingthelarge-R jetandtheleading electronfour-momenta.In themuonchannel, the NR candidatefour-momentumisobtained byaddingthefour-momentumoftheselectedlarge-R jettothatof themuoncontainedinthejet.TheWRcandidatefour-momentum isobtainedbyaddingtheNRcandidatefour-momentumtothatof theleadingmuon.Inbothcases,ifthereismorethanonelarge-R jetintheevent,thelarge-R jetwiththelargestmassisused.

Based on the range of mrecoW

R, control and signal regions (CR, SR) are defined as specified in Table 3. The CR is defined in a region of low reconstructed mrecoW

R corresponding to a parameter spaceexcluded by previoussearches [14]. The backgroundinthe SRisevaluatedfromacombinedfitofMC anddataeventsinthe CR (described in Section 6). To test the performance of large-R jetscontainingelectrons, a validationregion (VR)isdefinedwith aselectionorthogonaltotheCRandtheSR.Thisrequiresamuon balanced in pT by a large-R jet withan electron inside. By con-struction,theVRisdominatedbyt¯t eventsdecayingdileptonically tofinalstates.

InFig. 3,good agreement isobserved betweendata and sim-ulation in the mrecoWR distributions in the control regions of the electron andmuon channels, as well as inthe validation region. Inthebottom-rightplot,theselectionefficiencytimesacceptance isshownfordifferentsignalsamples.Theefficiencydecreasesfor lowermNR andhighermWR values.Thelargest inefficiencyarises fromthedifficultyofelectronreconstructionclosetohadronic ac-tivity, which is discussed in the next section. The probability of producinganoff-shellWRincreaseswiththemass.Thiscanresult

Table 3

Definitionofsignal,controlandvalidationregions. Region Range of mreco

WR Leptonflavour

Signal region (SR) >2 TeV Sameflavour Control region (CR) <2 TeV Sameflavour Validation region (VR) All Mixedflavour(leading:

muon;subleading:electron)

in a lessboosted NR, explaining thedrop insignal efficiencyfor highermWR values.

5. Performanceoflarge-R jetscontainingelectrons

A distinguishing feature of this search is the use of large-R jetscontaining electrons as aproxy forNR inthe electron chan-nel. Sincethe large-R jetconstruction procedure isbased on en-ergyclusterscalibratedatthehadronicscale,theeffectofa non-negligible fraction of EM clusters in the large-R jet needs to be investigated.Theanalysisdoesnotusethekinematicpropertiesof the identified electron inside the large-R jets to reconstruct the NRor WRinvariant masses,butusesthemassofthelarge-R jet, which includes the associated electron clusters. The presence of real hadronic activity closeto an electron may affect the recon-structionoftheelectron.

The jet mass andenergy scales, JMS and JES, defined as the average of the ratio of the mass or energy of the reconstructed andcorresponding generator-level large-R jets, are usedto study the effect of including the large EM-cluster of the electron in the jet reconstruction. The matching between detector-level and generator-level large-R jets is performed with Ry<0.75. The generator-leveljetisobtainedbyclusteringstablefinal-state parti-cles(withlifetimegreaterthan30ps)exceptmuonsandneutrinos usingthesamejetalgorithm,radiusparameterandtrimmingused atthedetector-level.TheJMSandJESofthe selectedlarge-R jets for a few representative signal samplesare shown in Fig.4 asa functionoftheratiooftheenergyoftheelectrontotheenergyof thelarge-R jet. Thisratiocanbe consideredaproxyforthe elec-tromagneticenergyfractioninthe large-R jet.Constantvaluesof JESandJMSwithinafewpercentofunityindicatethatthelarge-R jethasonlyaweakdependenceonthefractionofelectromagnetic energyinsidethejet,andthusnoparticularadditionalcorrections are required for the signal large-R jets.Typical numbers for the large-R jetmassresolution(JMR)in signaleventsare about4-6% in the electron channel and about 7-14% in the muon channel, while the large-R jetenergy resolution (JER) is about 3-5% GeV inbothchannels.Asopposedtothemuonchannel,intheelectron channelthelarge-R jetdoescontaintheelectronasacompactand highenergydeposit.Thisimpliesamorepreciseangular

(6)

distribu-Fig. 3. Distributionsofthereconstructedmassofthe WR,intheelectron(topleft),muon(topright)channelcontrolregions,inthevalidationregion(bottomleft),and thesignalselectionefficiencyforanumberofbenchmarkpoints(bottomright)usingsimulatedsignalsamples.The mrecoWR distributionsonlyincludestatisticaluncertainties,

whichareshownforboththedataandsimulationintheratios.

Fig. 4. Large-R jet average JMS (left) and JES (right) as a function of subleading electron energy divided by the large-R jet energy for signal samples.

tionoftheenergiesinthejetandthusabetterJMRintheelectron channel.

Insignalevents,asalmost allselectedlarge-R jetscontain ac-tivityfromboththe WR hadronicdecayandthenearby electron, applicationofthenominaloverlapremovalprocedure,asdescribed in Section 4, for the subleading electron results in a large loss ofsignal efficiency.However, it isobserved that removing events wheretheelectronandthenearestjet arewithin Ry<0.04 re-tains a sizeable fraction of the signal events and rejects a large fractionofthebackgroundevents.Thediscardedeventsare dom-inated by the casewhere isolated electrons are reconstructed as jets.

Astudyisperformedtocheckthevalidity oftheelectron effi-ciency correction factors, which account for potential differences in electron reconstruction, identification and isolation efficiency betweendata andsimulation andarederived usingwell-isolated electrons [61].Asampleoftt eventsdecayingintoamixed-flavour dileptonicfinalstate ischosen.Theleading leptonischosentobe a muon withnominalisolation requirements,andthe subleading leptonischosentobeanelectronwithnoisolationrequirements. Therestoftheselectionisthesameasthesignalselection,except thattheeventsareselectedwithatleastoneb-taggedsmall-radius jet. The b-taggingisbased ona multivariate algorithm [63]. Sev-eral observablesbasedon thelonglifetime ofb-hadrons andthe

(7)

Fig. 5. Angularseparationbetweenthesubleadingelectronandnearestsmall-radiusjet(left)andtransversemomentumdistributionofthesubleadingelectron(right)in eventswithaleadingmuonandsubleadingelectron,requiringone b-tagged small-radius jet.Thedistributionsonlyincludestatisticaluncertainties,whichareshownfor boththedataandsimulationintheratios.

b- to c-hadron decay topology, are used as algorithm input to

discriminate betweenb-jets, c-jets andother jets. The b-tagging requirement corresponds to the 70% efficient working point for b-jets, asdetermined in simulatedtt events,¯ while the rejection ratesof τ-jets,c-jetsandlight-flavourjetsare55,12 and381, re-spectively [64,65].

The large-R jet requirements are the sameas inthe nominal selection. Only the events in which the electrons and the near-estsmall-radiusjetare within0.04< Ry<0.4 arestudied.The distributions of electron pT and Ry between the electron and thesmall-radiusjetshowsatisfactoryagreementbetweendataand simulation,as shown inFig. 5. An additional uncertainty of 30% on the electron efficiency forelectrons within 0.04< Ry<0.4 is derived from the difference in yields between data and the simulation,statisticaluncertainties as well asthe theoreticaland b-tagginguncertaintiesonthesimulation.

6. Backgroundestimationandsystematicuncertainty

WhiletheCRisdominatedbytt events,¯ thefractionofZ+jets eventsbecomeslargerathighermassesastheyhavealesssteeply fallingmassdistributionthant¯t events,asshowninFig.3.In or-derto takethisintoaccount inevaluating thebackgroundinthe SR, which islocated at highermasses, a data-drivenapproach is usedto evaluate the t¯t contribution inconjunction witha fitted MCpredictionoftheZ+jetsbackground.Thefittothedatainthe CRisextrapolatedtotheSR.

Different steeply falling functions are tested, motivated by Refs. [66,67], where they are found to fit steeply falling distri-butions like the scalar sum of jet transverse momenta in mul-tijet events or the dijetmass. It is observed that the functional formAexp(Bu)/uC describesthedatadistributionintheCRthe best, while the functional form A(1−u)B(1+u)(Cu) best

de-scribes the Z+jets MC distribution. In both cases, u=mrecoWR/s andthe choice of fit function is determined by the goodness of fit (based on the χ2 per degree of freedom) as well as by the best agreement with the yields from the MC background esti-mate in the CR. First, the fit parameters A, B, and C are de-termined from Z+jets MC using a reconstructed mreco

WR range of 400–4000 GeV,thenthe fitto data isperformedusingthe func-tion Aexp(Bu)/uC + A(1−u)B(1+u)(Cu), to determine the valuesoftheparameters A,B andC .Thisfunctionalformisfitted intheCRrangeof600–1800 GeV,wheretherangeischosen de-pendingonthegoodnessofthefits. Theslopeofthebackground fitissteeperinthemuonchannelcomparedtotheelectron chan-nel.

In the VR the fit performed for reconstructed WR candidate masses 600–1800 GeV is extrapolated into the region >2 TeV andthefitpredictioniscomparedtothedatayieldfinding consis-tency.Inordertoassessthesystematicuncertaintyrelatedto the tt data-driven¯ fit, variations of the data fit range are made, and thelargest changeinthe SRyieldobtainedfromthesevariations istakenasthe uncertainty.The sameis doneforthe Z+jetsMC fit,andtheuncertaintyisaddedinquadraturetothe uncertainty derivedfromfittingalternative Z+jetsMC samplesobtainedafter varyingthescale(byfactorsoftwoandonehalf)andusing alter-nativePDFsets [14].Thisuncertaintyislargerthanthedifference yield obtainedusing Powheg+ Pythia8.Therelative uncertainty ofthebackgroundyieldintheSRisabout25% forbothchannels. Statistical uncertainties on the fits are estimated using pseudo-experiments built by varying the input data points within their statistical uncertainties. The resultant background fit, along with theestimateduncertaintyisshowninFig.6.

7. Systematicuncertaintiesofthesignalyield

Systematicuncertainties affecttheshapeandnormalisation of the mreco

WR distributions, thereby changing the signal yield. The dominantuncertaintiesintheSRareshowninTable4.Theycanbe classifiedasoriginatingfromexperimentalortheoreticalsources.

The yields fromsimulated samplesare affected by uncertain-tiesrelatedtothedescriptionofthedetectorresponse.The domi-nantuncertaintyisrelatedtotheelectronandmuonidentification, whichis(4–20)%intheelectronchannel(includingtheadditional 30% uncertainty forelectrons reconstructednearbya small-radius jet)and(4–8)%inthemuonchannel, dependingon thevaluesof mWR and mNR. The uncertainties related to the electron trigger, reconstruction,andisolation are (4–5)%.Theuncertainties related to themuon triggerandisolation are about1%. These uncertain-ties are assessed by comparing data and simulation samples of Z → +− decays [62,61]. The simulation is used to extrapolate to lepton pT beyondafew hundred GeV.Theother uncertainties such asthose relatedto JESandJMS ofthelarge-R jetsare eval-uated by comparingthe ratioofcalorimeter-basedto track-based measurementsinmultijeteventsindataandsimulation [68,69,57]. The uncertaintiesrelatedtoJMR andJERmodellingareevaluated by increasing thenominalresolution by 20% [70] and2% respec-tively. These uncertainties are at sub-percent level. The average numberofinteractions per bunchcrossing isrescaled toimprove theagreementofsimulationwithdata,andthecorresponding un-certainty, aslarge asthe correction, has an effectof 0.5% in the

(8)

Fig. 6. Comparisonofthe mreco

WR distributionbetweendataand thefittedbackgroundpredictionforthe electron(left)andmuon(right)channels.Twosignalscenarios

consideredinthissearchareoverlayed.Thedashedbrownlinesat2 TeV showtheboundarybetweentheCRandSR.Thedashedblacklinesdepicttheuncertaintyon thebackgroundfit.ThesolidblacklinesonthedatapointsindicatethePoissonuncertainties.Thesignificance,whichindicatesthedeviationofdataineachbinfromthe backgroundfit,iscomputedasthedifferencebetweentheobserveddataandfitvalues,dividedbythesquarerootoftheobserveddatavalue.

Table 4

Relativesystematicuncertaintiesofthesignalyieldinthesignalregion,in percent-ageforeachsource.Therangesindicatethedifferentsignalsamples.Thesystematic uncertaintieswithsub-percentcontributionsarenotshown.

Component Electron channel (%) Muon channel (%)

Lepton identification 4–20 4–8 Lepton isolation 4–5 1.0–1.5 Lepton reconstruction 4–5 1–4 Lepton trigger 4–5 0.5 Pile-up <0.5 2–3 Luminosity 2 2 Theory 10 10

electron channel, and up to 3% in the muon channel, caused by the lack of a large-R jet mass threshold in the latter case. The uncertainty inthe 2015, 2016 and2017 integratedluminosity is 2%. It is derived from thecalibration of the luminosity scale

us-ing x– y beam-separation scans, following a methodology similar

to that detailed in Ref. [71], andusing the LUCID-2 detector for thebaselineluminositymeasurements [72].

The theory uncertainty of the signal yield is evaluated by varying the renormalisationand factorisationscales by factorsof 2 and 0.5, and using alternative PDF sets, CTEQ6L1 [73] and MSTW2008LO [54] via SysCalc [74]. The dominant effect on the yieldcomesfromthescalevariation.Thetotaleffectonthesignal yieldisatmost10%.Theuncertaintiesonthebackgroundyieldare describedinSection6.

8. Results

Fig. 6 shows the mreco

WR distributions in the SR for the elec-tron and muon channels. In order to search for the presence of amassiveresonance,yieldsfromsimulatedsignalsamplesandthe data-drivenbackgroundestimate(correspondingtomrecoWR >2 TeV) arefitto thedata,separatelyintheelectron andmuon channels, usingasinglebincoveringtheentireSR.Theintegralofthe back-groundfunctionalshapeintheSRisusedtoevaluatetheexpected background,asshowninTable5.The statisticalanalysisisbased on a likelihood fit to data. The likelihood is constructed using a single-binPoissoniancounting-experimentapproachbasedonthe RootStats framework [75,76].The uncertaintiesofthe background yieldareincorporatedasGaussianconstraintsinthelikelihood it-selfintermsofasetofnuisanceparameters.

The compatibility of the observed data withthe background-onlyhypothesis istestedby fittingthedatawiththe background

Table 5

Observedyieldsandexpectedbackgroundyieldsinthesignalregion.The signif-icanceandthe p-values areshownforthebackground-onlyhypothesis.Expected yieldsfromthreerepresentativesignalsamplesarealsoshown.

Electron channel Muon channel Signal (mWR=3 TeV,mNR=150 GeV) 346

+48

−75 411+

36

−48 Signal (mWR=3 TeV,mNR=300 GeV) 471

+42

−69 429+

29

−40 Signal (mWR=4 TeV,mNR=400 GeV) 66

+6 −10 57+ 4 −4 Expected background 2.8+0.5 −0.7 1.9+ 0.5 −0.7 Observed events 8 4 Significance 2.4σ 1.2σ p-value 0.0082 0.12

modeltoobtainthe p-value. Thesignificanceofanexcesscanbe quantifiedbytheprobability(p-value)thatabackground-only ex-perimentismoresignal-likethanobserved.The p-valuesaregiven in Table 5.In theelectron channel, 8 eventsare observed, while the expected backgroundis 2.8+0−0..57 events. In themuon channel 4 events are observed,while the expectedbackground is1.9+00..57 events.Theobservedsignificancecorrespondsto2.4 σ inthe elec-tronchanneland1.2 σ inthemuonchannel.

LowerlimitsonthemassesofNRandWRforeachofthe con-sideredsignalscenariosaredeterminedbyusingtheprofiled likeli-hoodteststatistic [77] withtheCLs method [78,79].Theinputsto the limit calculationsare thesignal cross-sectionsand thesignal efficiencies in themWR–mNR grid. Alinear interpolationbetween several benchmark samples in the mWR range 3–6 TeV and in themNR range0.1–1.8 TeV isperformed. Theresultsare shownin Fig.7,separatelyforelectronandmuonchannels.TheCLs is com-puted using pseudo-experiments. The data statistical uncertainty hasasignificantlylargerimpactonthelimitsthanthesystematic uncertainties.Theleadingsystematicuncertaintyisthebackground modelling uncertainty and, in the caseof the WR and NR mass limits,thesignaltheoryuncertaintiesortheelectronidentification uncertainty,dependingonthesignalmassvalues.

TheexcludedregionextendstomWR of4.8 TeV intheelectron channelandto5 TeV inthemuonchannel,formNR of0.4–0.5 TeV wherethesearchismostsensitive.FormNR of1.8 TeV theexcluded

mWR is4 TeV inbothchannels.Thelimitsintheelectronchannel are weaker comparedtothose inthemuon channel forlowmNR values,astheelectron reconstructionandidentificationefficiency islowerfortheseWR,NRmassconfigurations.ForhighermNR val-ues,the worseningmuonresolution andreconstruction efficiency result inweaker limitsin themuon channel. The exclusion

(9)

con-Fig. 7. Observed(blacksolidline)andexpected(reddashedline)95%CLexclusioncontoursinthe(mWR, mNR)plane,alongwiththe±1σand±2σuncertaintybands(green

andyellow)aroundtheexpectedexclusioncontourintheelectron(left)andmuon(right)channels.Theexclusionlimitsintheresolvedtopology [14] areshownbytheblue line.

tourfortheresolvedtopology [14] isoverlaidforbothchannelsin Fig.7,to indicatethecomplementarityofthepresentanalysis,as lowervaluesofmNR areexcluded.

Astheanalysisisasingle-binPoissoniancountingexperiment, thelimitsonthecross-sectionareonlysensitivetotheefficiencies ofeach signal,anddonotdepend significantlyonmWR andmNR. The observedlimits onthe number ofselected signal events are 13.3eventsfortheelectronchanneland8.1forthemuonchannel. Thecorresponding expectedlimitsare 5.4eventsfortheelectron channeland4.9forthemuonchannel.

9. Summary

A search for a heavy right-handed WR boson decaying into a boosted right-handed neutrino NR is presented using 80 fb−1 of√s=13 TeV proton–protoncollision datarecorded bythe AT-LASdetectorat theLHC.Both electron andmuon final statesare analysedforthedecayintotwosame-flavourleptons, WR→NR, NR→ +jets. In the electron final state, the analysis makes use ofa large-R jet containing an electron as a proxy for NR, while inthemuon channel, themuon four-momentum isaddedto the large-R jetfour-momentum.The observedmrecoWR spectrumis con-sistentwiththebackgroundpredictionandexclusionlimitsat95% confidence level are set on the NR masses as a function of the WRmasses.TheexcludedregionextendstomWR of4.8 TeV inthe electron channel and to 5 TeV in the muon channel, for mNR of 0.4–0.5 TeV.Theuseoflarge-R jetsresultsinasignificant reduc-tion of the background contribution.Due to the signal topology, and a higher integrated luminosity this result represents an in-creaseoftheexclusionlimitsinacomplementaryparameterspace compared with previous results that reconstruct the WR as two resolvedjets.

Acknowledgements

We thankCERN for thevery successful operation ofthe LHC, aswell asthe support stafffromour institutions without whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan;SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,Canada; CERN; CONICYT,Chile; CAS, MOSTandNSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, andMPG, Germany; GSRT, Greece;RGC,HongKong SAR,China;ISFandBenoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO,

Netherlands; RCN,Norway;MNiSW andNCN, Poland;FCT, Portu-gal; MNE/IFA, Romania; MES ofRussia andNRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;DST/NRF,SouthAfrica; MINECO,Spain;SRCand Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF,UnitedStatesofAmerica. Inaddition, in-dividualgroupsandmembershavereceived supportfromBCKDF, Canarie,CRCandComputeCanada,Canada;COST,ERC,ERDF, Hori-zon 2020, and Marie Skłodowska-Curie Actions,European Union; Investissements d’ AvenirLabex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammesco-financedbyEU-ESFandtheGreekNSRF,Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain;TheRoyalSocietyandLeverhulmeTrust,UnitedKingdom.

The crucial computingsupport from all WLCG partnersis ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresourcesare listedin Ref. [80].

References

[1]S.Weinberg,Baryonandleptonnonconservingprocesses,Phys. Rev.Lett.43 (1979)1566.

[2]P.Minkowski,μ atarateofoneoutof109muondecays?,Phys.Lett.B

67(1977)421.

[3]T. Yanagida, Horizontal symmetry and masses of neutrinos,Conf. Proc. C 7902131(1979)95.

[4]M. Gell-Mann,P.Ramond,R.Slansky,Complexspinorsand unifiedtheories, Conf.Proc.C790927(1979)315,arXiv:1306.4669 [hep-th].

[5]M.Magg,C.Wetterich,Neutrinomassproblemandgaugehierarchy,Phys.Lett. B94(1980)61.

[6]T.P.Cheng,L.-F.Li,Neutrinomasses,mixings,andoscillationsinSU(2)×U(1)

modelsofelectroweakinteractions,Phys.Rev.D22 (11)(1980)2860.

[7]R.N.Mohapatra,G.Senjanovic,Neutrinomassesandmixingsingaugemodels withspontaneousparityviolation,Phys.Rev.D23 (1)(1981)165.

[8]R. Foot,H. Lew,X.G.He, G.C.Joshi,See-saw neutrinomassesinduced bya tripletofleptons,Z.Phys.C44(1989)441.

[9]J.C.Pati,A.Salam,Leptonnumberasthefourthcolor,Phys.Rev.D10(1974) 275,Erratum:Phys.Rev.D11(1975)703.

[10]R.N.Mohapatra,J.C.Pati,“Natural”left-rightsymmetry,Phys.Rev.D11(1975) 2558.

[11]G.Senjanovic,R.N.Mohapatra,Exactleft-rightsymmetryandspontaneous vi-olationofparity,Phys.Rev.D12(1975)1502.

[12]W.-Y. Keung, G. Senjanovic,Majorana neutrinos and the production ofthe right-handedchargedgaugeboson,Phys.Rev.Lett.50 (19)(1983)1427.

[13]ATLASCollaboration,SearchforheavyMajorananeutrinoswiththeATLAS de-tector inpp collisionsat √s=8 TeV,J. HighEnergy Phys.07(2015) 162, arXiv:1506.06020 [hep-ex].

(10)

[14]ATLASCollaboration,SearchforheavyMajoranaorDiracneutrinosand right-handedW gaugebosonsinfinalstateswithtwochargedleptonsandtwojets at√s=13 TeVwiththeATLASdetector,J.HighEnergyPhys.01(2019)016, arXiv:1809.11105 [hep-ex].

[15]CMS Collaboration, Search for heavy neutrinos and W bosons with right-handedcouplingsinproton-protoncollisionsat√s=8 TeV,Eur.Phys.J.C74 (2014)3149,arXiv:1407.3683 [hep-ex].

[16]CMSCollaboration,Searchforheavyneutrinosorthird-generationleptoquarks infinalstateswithtwohadronicallydecayingtleptonsandtwojetsin proton-protoncollisionsat√s=13 TeV,J.HighEnergyPhys.03(2017)077,arXiv: 1612.01190 [hep-ex].

[17]CMSCollaboration,Searchforaheavyright-handedWbosonandaheavy neu-trinoineventswithtwosame-flavorleptonsandtwojetsat√s=13 TeV,J. HighEnergyPhys.05(2018)148,arXiv:1803.11116 [hep-ex].

[18]CMSCollaboration,SearchforheavyMajorananeutrinosinsame-signdilepton channelsinproton-protoncollisionsat√s=13 TeV,J.HighEnergyPhys.01 (2019)122,arXiv:1806.10905 [hep-ex].

[19]CMS Collaboration, Search for heavy neutrinos and third-generation lepto-quarksin hadronicstates oftwo τ leptons and twojets inproton-proton collisionsat√s=13 TeV,J.HighEnergyPhys.03(2019)170,arXiv:1811.00806 [hep-ex].

[20]M.Mitra,R.Ruiz,D.J.Scott,M.Spannowsky,Neutrinojetsfromhigh-massWR

gaugebosonsinTeV-scaleleft-rightsymmetricmodels,Phys.Rev.D94(2016) 095016,arXiv:1607.03504 [hep-ph].

[21]A.G.Dias, C.A.de, S.Pires, P.S. RodriguesdaSilva,A.Sampieri, Simple re-alizationoftheinverseseesaw mechanism,Phys.Rev.D86(2012)035007, arXiv:1206.2590 [hep-ph].

[22]R.Barbier,etal.,R-parity-violatingsupersymmetry,Phys. Rep.420(2005)1, arXiv:hep-ph/0406039.

[23]ATLAS Collaboration, Search for newphenomena in alepton plushighjet multiplicityfinalstatewiththeATLASexperimentusing√s=13 TeVproton– proton collisiondata,J.HighEnergy Phys.09(2017)088,arXiv:1704.08493 [hep-ex].

[24]B.C. Allanach, S. Biswas, S. Mondal,M. Mitra, Resonant slepton production yieldsCMS eej j andep/Tj j excesses, Phys.Rev.D91 (2015)015011, arXiv:

1410.5947 [hep-ph].

[25]ATLASCollaboration,TheATLASexperimentattheCERNlargehadroncollider, JINST3(2008)S08003.

[26]ATLAS Collaboration,PerformanceoftheATLAS triggersystemin2015,Eur. Phys.J.C77(2017)317,arXiv:1611.09661 [hep-ex].

[27]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301 [hep-ph].

[28]T.Sjostrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820 [hep-ph].

[29]R.D.Ball,etal.,PartondistributionswithLHCdata,Nucl.Phys.B867(2013) 244,arXiv:1207.1303 [hep-ph].

[30] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7TeV data, ATL-PHYS-PUB-2014-021,https://cds.cern.ch/record/1966419,2014.

[31]A.Alloul,N.D.Christensen,C.Degrande,C.Duhr,B.Fuks,FeynRules2.0–a completetoolboxfortree-levelphenomenology,Comput.Phys.Commun.185 (2014)2250,arXiv:1310.1921 [hep-ph].

[32]A.Roitgrund,G.Eilam,S.Bar-Shalom,Implementationoftheleft-right sym-metricmodel inFeynRules, Comput. Phys. Commun.203(2016)18, arXiv: 1401.3345 [hep-ph].

[33]A.Maiezza,M.Nemevsek,F.Nesti,LeptonnumberviolationinHiggsdecayat LHC,Phys.Rev.Lett.115(2015)081802,arXiv:1503.06834 [hep-ph].

[34]M.Nemevsek,F.Nesti,J.C.Vasquez,MajoranaHiggsesatcolliders,J.High En-ergyPhys.04(2017)114,arXiv:1612.06840 [hep-ph].

[35]O.Mattelaer,M.Mitra,R.Ruiz,Automatedneutrinojetandtopjetpredictions at next-to-leading-orderwith partonshowermatching ineffective left-right symmetricmodels,arXiv:1610.08985 [hep-ph],2016.

[36]M. Czakon, A.Mitov, Top++:a programfor the calculation ofthe top-pair cross-sectionathadron colliders,Comput. Phys.Commun.185(2014)2930, arXiv:1112.5675 [hep-ph].

[37] ATLASCollaboration,Studiesontop-quarkMonteCarlomodellingforTop2016, ATL-PHYS-PUB-2016-020,https://cds.cern.ch/record/2216168,2016.

[38]N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon correc-tionsfort-channelsingletopquarkproduction,Phys.Rev.D83(2011)091503, arXiv:1103.2792 [hep-ph].

[39]N. Kidonakis,Two-loopsoft anomalousdimensionsforsingle topquark as-sociatedproductionwithaW- orH-,Phys.Rev.D82(2010)054018,arXiv: 1005.4451 [hep-ph].

[40]N. Kidonakis,NNLLresummationfors-channelsingletopquarkproduction, Phys.Rev.D81(2010)054028,arXiv:1001.5034 [hep-ph].

[41]C.Anastasiou,L.J.Dixon,K.Melnikov,F.Petriello,HighprecisionQCDathadron colliders:electroweakgaugebosonrapiditydistributionsatNNLO,Phys.Rev.D 69(2004)094008,arXiv:hep-ph/0312266 [hep-ph].

[42]P.Nason, Anewmethodfor combiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.11(2004)040,arXiv:hep-ph/0409146 [hep -ph].

[43]S.Frixione,P.Nason,G.Ridolfi,Apositive-weightnext-to-leading-orderMonte Carloforheavyflavourhadroproduction,J.HighEnergyPhys.09(2007)126, arXiv:0707.3088 [hep-ph].

[44]S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070, arXiv:0709.2092 [hep-ph].

[45]S.Alioli,P.Nason,C.Oleari,E.Re,AgeneralframeworkforimplementingNLO calculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High En-ergyPhys.06(2010)043,arXiv:1002.2581 [hep-ph].

[46]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02 (2009)007,arXiv:0811.4622 [hep-ph].

[47]R.D.Ball,etal.,PartondistributionsfortheLHCRunII,J.HighEnergyPhys.04 (2015)040,arXiv:1410.8849 [hep-ph].

[48]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241 [hep-ph].

[49]ATLASCollaboration,Measurementofthe Z/y∗ bosontransversemomentum distributionin pp collisionsat √s=7 TeVwiththeATLASdetector,J.High EnergyPhys.09(2014)145,arXiv:1406.3660 [hep-ex].

[50]ATLASCollaboration, TheATLASsimulation infrastructure,Eur.Phys. J.C70 (2010)823,arXiv:1005.4568 [physics.ins-det].

[51]S.Agostinelli,etal.,Geant4:asimulationtoolkit,Nucl.Instrum.MethodsA506 (2003)250.

[52] ATLASCollaboration,ThesimulationprincipleandperformanceoftheATLAS fastcalorimetersimulationFastCaloSim,ATL-PHYS-PUB-2010-013,https://cds. cern.ch/record/1300517,2010.

[53] ATLASCollaboration,ThePythia8A3tunedescriptionofATLASminimumbias andinelasticmeasurementsincorporatingtheDonnachie–Landshoffdiffractive model,ATL-PHYS-PUB-2016-017,https://cds.cern.ch/record/2206965,2016. [54]A.D.Martin,W.J.Stirling,R.S.Thorne,G.Watt,PartondistributionsfortheLHC,

Eur.Phys.J.C63(2009)189,arXiv:0901.0002 [hep-ph].

[55]D.Krohn,J.Thaler,L.-T.Wang,Jettrimming,J.HighEnergyPhys.02(2010) 084,arXiv:0912.1342 [hep-ph].

[56]ATLASCollaboration,TopologicalcellclusteringintheATLAScalorimetersand itsperformanceinLHCRun1,Eur.Phys.J.C77(2017)490,arXiv:1603.02934 [hep-ex].

[57]ATLASCollaboration,Insitucalibrationoflarge-R jetenergyandmassin13 TeVproton–protoncollisionswiththeATLASdetector,Eur.Phys.J.C79(2019) 135,arXiv:1807.09477 [hep-ex].

[58]M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,arXiv:0802.1189 [hep-ph].

[59]M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,arXiv:1111.6097 [hep-ph].

[60]S.Catani,Y.L.Dokshitzer,M.H.Seymour,B.R.Webber,Longitudinallyinvariant

k⊥clusteringalgorithmsforhadronhadroncollisions,Nucl.Phys.B406(1993) 187.

[61]ATLASCollaboration,Electron reconstructionandidentificationinthe ATLAS experimentusingthe2015and2016LHCproton-protoncollisiondataat√s=

13 TeV,arXiv:1902.0465,2019.

[62]ATLASCollaboration,MuonreconstructionperformanceoftheATLASdetector inproton–protoncollisiondataat√s=13 TeV,Eur.Phys.J.C76(2016)292, arXiv:1603.05598 [hep-ex].

[63]ATLASCollaboration,Performanceofb-jetidentificationintheATLAS experi-ment,JINST11(2016)P04008,arXiv:1512.01094 [hep-ex].

[64] ATLASCollaboration,ExpectedperformanceoftheATLAS b-tagging algorithms inRun-2,ATL,PHYS-PUB-2015-022,https://cds.cern.ch/record/2037697,2015. [65] ATLASCollaboration,OptimisationoftheATLAS b-tagging performanceforthe

2016 LHCRun, ATL-PHYS-PUB-2016-012, https://cds.cern.ch/record/2160731, 2016.

[66]ATLASCollaboration,Searchforstronggravityinmultijetfinalstatesproduced inpp collisionsat√s=13 TeVusingtheATLASdetectorattheLHC,J.High EnergyPhys.03(2016)026,arXiv:1512.02586 [hep-ex].

[67]ATLASCollaboration,Searchfornewphenomenaindijeteventsusing37fb−1

ofpp collisiondatacollectedat√s=13 TeVwiththeATLASdetector,Phys. Rev.D96(2017)052004,arXiv:1703.09127 [hep-ex].

[68]ATLASCollaboration, Performanceofjetsubstructure techniquesforlarge-R jetsinproton–protoncollisionsat√s=7 TeVusingtheATLASdetector,J.High EnergyPhys.09(2013)076,arXiv:1306.4945 [hep-ex].

[69]ATLASCollaboration,Jetenergyscalemeasurementsandtheirsystematic un-certaintiesinprotonprotoncollisionsat√s=13 TeVwiththeATLASdetector, Phys.Rev.D96(2017)072002,arXiv:1703.09665 [hep-ex].

[70] ATLASCollaboration,JetmassresolutionsinATLASusingRun2MonteCarlo simulation,ATL-PHYS-PUB-2018-015,https://cds.cern.ch/record/2631339,2018. [71]ATLASCollaboration,Luminositydeterminationinpp collisionsat√s=8 TeV usingtheATLASdetectorattheLHC,Eur.Phys.J.C76(2016)653,arXiv:1608. 03953 [hep-ex].

[72]G.Avoni,et al.,ThenewLUCID-2detectorforluminositymeasurementand monitoringinATLAS,JINST13(2018)P07017.

(11)

[73]J.Pumplin,et al.,Newgenerationofpartondistributionswithuncertainties fromglobalQCDanalysis,J.HighEnergyPhys.07(2002)012,arXiv:hep-ph/ 0201195.

[74]A.Kalogeropoulos,J.Alwall,TheSysCalccode:atooltoderivetheoretical sys-tematicuncertainties,arXiv:1801.08401 [hep-ph],2018.

[75]L.Moneta,etal.,TheRooStatsproject,PoSACAT2010(2010)057,arXiv:1009. 1003 [physics.data-an].

[76]M.Baak,etal.,HistFittersoftwareframeworkforstatisticaldataanalysis,Eur. Phys.J.C75(2015)153,arXiv:1410.1280 [hep-ex].

[77]G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554,Erratum:Eur.Phys. J.C73(2013)2501,arXiv:1007.1727 [physics.data-an].

[78]T.Junk,Confidencelevelcomputationforcombiningsearcheswithsmall statis-tics,Nucl.Instrum.MethodsA434(1999)435,arXiv:hep-ex/9902006.

[79]A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002)

2693.

[80] ATLAS Collaboration, ATLAS computing acknowledgements, ATL-GEN-PUB-2016-002,https://cds.cern.ch/record/2202407,2016.

TheATLASCollaboration

M. Aaboud35d, G. Aad101, B. Abbott128,D.C. Abbott102, O. Abdinov13,∗, A. Abed Abud70a,70b,

K. Abeling53,D.K. Abhayasinghe93, S.H. Abidi167, O.S. AbouZeid40,N.L. Abraham156,H. Abramowicz161,

H. Abreu160, Y. Abulaiti6,B.S. Acharya66a,66b,n,B. Achkar53, S. Adachi163,L. Adam99,

C. Adam Bourdarios132,L. Adamczyk83a,L. Adamek167,J. Adelman121,M. Adersberger114,

A. Adiguzel12c,ah, S. Adorni54,T. Adye144, A.A. Affolder146, Y. Afik160, C. Agapopoulou132,

M.N. Agaras38,A. Aggarwal119, C. Agheorghiesei27c,J.A. Aguilar-Saavedra140f,140a,ag, F. Ahmadov79,

X. Ai15a,G. Aielli73a,73b,S. Akatsuka85,T.P.A. Åkesson96,E. Akilli54,A.V. Akimov110, K. Al Khoury132,

G.L. Alberghi23b,23a, J. Albert176,M.J. Alconada Verzini88, S. Alderweireldt119,M. Aleksa36,

I.N. Aleksandrov79, C. Alexa27b,D. Alexandre19, T. Alexopoulos10,A. Alfonsi120,M. Alhroob128,

B. Ali142, G. Alimonti68a,J. Alison37, S.P. Alkire148, C. Allaire132, B.M.M. Allbrooke156,B.W. Allen131,

P.P. Allport21, A. Aloisio69a,69b,A. Alonso40,F. Alonso88, C. Alpigiani148,A.A. Alshehri57,M.I. Alstaty101,

M. Alvarez Estevez98,B. Alvarez Gonzalez36, D. Álvarez Piqueras174,M.G. Alviggi69a,69b,

Y. Amaral Coutinho80b, A. Ambler103,L. Ambroz135,C. Amelung26,D. Amidei105,

S.P. Amor Dos Santos140a,140c,S. Amoroso46, C.S. Amrouche54,F. An78, C. Anastopoulos149,

N. Andari145, T. Andeen11, C.F. Anders61b,J.K. Anders20, A. Andreazza68a,68b,V. Andrei61a,

C.R. Anelli176, S. Angelidakis38,I. Angelozzi120, A. Angerami39, A.V. Anisenkov122b,122a,A. Annovi71a,

C. Antel61a, M.T. Anthony149,M. Antonelli51,D.J.A. Antrim171,F. Anulli72a, M. Aoki81,

J.A. Aparisi Pozo174,L. Aperio Bella36,G. Arabidze106, J.P. Araque140a,V. Araujo Ferraz80b,

R. Araujo Pereira80b, C. Arcangeletti51,A.T.H. Arce49,F.A. Arduh88, J-F. Arguin109,S. Argyropoulos77,

J.-H. Arling46, A.J. Armbruster36, L.J. Armitage92,A. Armstrong171,O. Arnaez167,H. Arnold120,

A. Artamonov111,∗, G. Artoni135, S. Artz99,S. Asai163, N. Asbah59,E.M. Asimakopoulou172,

L. Asquith156,K. Assamagan29,R. Astalos28a, R.J. Atkin33a,M. Atkinson173, N.B. Atlay151,H. Atmani132,

K. Augsten142,G. Avolio36,R. Avramidou60a,M.K. Ayoub15a, A.M. Azoulay168b, G. Azuelos109,aw,

A.E. Baas61a, M.J. Baca21,H. Bachacou145, K. Bachas67a,67b,M. Backes135, F. Backman45a,45b,

P. Bagnaia72a,72b,M. Bahmani84,H. Bahrasemani152,A.J. Bailey174,V.R. Bailey173, J.T. Baines144,

M. Bajic40,C. Bakalis10, O.K. Baker183, P.J. Bakker120, D. Bakshi Gupta8,S. Balaji157,

E.M. Baldin122b,122a,P. Balek180,F. Balli145, W.K. Balunas135, J. Balz99, E. Banas84, A. Bandyopadhyay24,

Sw. Banerjee181,i, A.A.E. Bannoura182,L. Barak161, W.M. Barbe38,E.L. Barberio104, D. Barberis55b,55a,

M. Barbero101,T. Barillari115,M-S. Barisits36,J. Barkeloo131, T. Barklow153, R. Barnea160, S.L. Barnes60c,

B.M. Barnett144,R.M. Barnett18, Z. Barnovska-Blenessy60a,A. Baroncelli60a, G. Barone29,A.J. Barr135,

L. Barranco Navarro174,F. Barreiro98, J. Barreiro Guimarães da Costa15a,R. Bartoldus153,G. Bartolini101,

A.E. Barton89,P. Bartos28a,A. Basalaev46, A. Bassalat132,ap,R.L. Bates57,S.J. Batista167,S. Batlamous35e, J.R. Batley32, B. Batool151,M. Battaglia146,M. Bauce72a,72b,F. Bauer145,K.T. Bauer171,H.S. Bawa31,l,

J.B. Beacham49,T. Beau136,P.H. Beauchemin170, F. Becherer52, P. Bechtle24, H.C. Beck53,H.P. Beck20,q,

K. Becker52,M. Becker99,C. Becot46,A. Beddall12d,A.J. Beddall12a,V.A. Bednyakov79, M. Bedognetti120,

C.P. Bee155,T.A. Beermann76, M. Begalli80b, M. Begel29, A. Behera155,J.K. Behr46, F. Beisiegel24,

A.S. Bell94,G. Bella161, L. Bellagamba23b,A. Bellerive34,P. Bellos9,K. Beloborodov122b,122a,

K. Belotskiy112, N.L. Belyaev112,O. Benary161,∗, D. Benchekroun35a, N. Benekos10, Y. Benhammou161,

D.P. Benjamin6,M. Benoit54, J.R. Bensinger26, S. Bentvelsen120, L. Beresford135, M. Beretta51,

D. Berge46, E. Bergeaas Kuutmann172,N. Berger5, B. Bergmann142, L.J. Bergsten26,J. Beringer18,

S. Berlendis7, N.R. Bernard102,G. Bernardi136, C. Bernius153,F.U. Bernlochner24,T. Berry93,P. Berta99,

C. Bertella15a,I.A. Bertram89, G.J. Besjes40,O. Bessidskaia Bylund182,N. Besson145,A. Bethani100,

(12)

D. Biedermann19, R. Bielski36,K. Bierwagen99,N.V. Biesuz71a,71b,M. Biglietti74a,T.R.V. Billoud109, M. Bindi53,A. Bingul12d, C. Bini72a,72b, S. Biondi23b,23a,M. Birman180,T. Bisanz53, J.P. Biswal161,

A. Bitadze100,C. Bittrich48, D.M. Bjergaard49, K. Bjørke134,J.E. Black153,K.M. Black25,T. Blazek28a,

I. Bloch46, C. Blocker26, A. Blue57,U. Blumenschein92, G.J. Bobbink120,V.S. Bobrovnikov122b,122a,

S.S. Bocchetta96,A. Bocci49, D. Boerner46, D. Bogavac14,A.G. Bogdanchikov122b,122a,C. Bohm45a,

V. Boisvert93,P. Bokan53,172,T. Bold83a,A.S. Boldyrev113,A.E. Bolz61b,M. Bomben136,M. Bona92,

J.S. Bonilla131,M. Boonekamp145, H.M. Borecka-Bielska90,A. Borisov123, G. Borissov89, J. Bortfeldt36,

D. Bortoletto135,V. Bortolotto73a,73b,D. Boscherini23b, M. Bosman14,J.D. Bossio Sola103,

K. Bouaouda35a,J. Boudreau139,E.V. Bouhova-Thacker89,D. Boumediene38, S.K. Boutle57, A. Boveia126,

J. Boyd36, D. Boye33b,aq, I.R. Boyko79, A.J. Bozson93, J. Bracinik21, N. Brahimi101, G. Brandt182,

O. Brandt61a,F. Braren46, U. Bratzler164,B. Brau102, J.E. Brau131,W.D. Breaden Madden57,

K. Brendlinger46,L. Brenner46, R. Brenner172,S. Bressler180,B. Brickwedde99,D.L. Briglin21,

D. Britton57, D. Britzger115,I. Brock24, R. Brock106,G. Brooijmans39,T. Brooks93, W.K. Brooks147b,

E. Brost121,J.H Broughton21,P.A. Bruckman de Renstrom84,D. Bruncko28b,A. Bruni23b, G. Bruni23b,

L.S. Bruni120,S. Bruno73a,73b, B.H. Brunt32, M. Bruschi23b,N. Bruscino139,P. Bryant37,L. Bryngemark96,

T. Buanes17, Q. Buat36, P. Buchholz151,A.G. Buckley57,I.A. Budagov79,M.K. Bugge134,F. Bührer52,

O. Bulekov112, T.J. Burch121,S. Burdin90,C.D. Burgard120,A.M. Burger129, B. Burghgrave8,K. Burka84,

J.T.P. Burr46,V. Büscher99, E. Buschmann53,P.J. Bussey57,J.M. Butler25, C.M. Buttar57,

J.M. Butterworth94, P. Butti36, W. Buttinger36,A. Buzatu158,A.R. Buzykaev122b,122a, G. Cabras23b,23a,

S. Cabrera Urbán174,D. Caforio56,H. Cai173, V.M.M. Cairo153, O. Cakir4a, N. Calace36, P. Calafiura18,

A. Calandri101,G. Calderini136, P. Calfayan65,G. Callea57, L.P. Caloba80b,S. Calvente Lopez98,

D. Calvet38, S. Calvet38,T.P. Calvet155,M. Calvetti71a,71b, R. Camacho Toro136, S. Camarda36,

D. Camarero Munoz98, P. Camarri73a,73b, D. Cameron134,R. Caminal Armadans102,C. Camincher36,

S. Campana36, M. Campanelli94,A. Camplani40, A. Campoverde151,V. Canale69a,69b,A. Canesse103,

M. Cano Bret60c,J. Cantero129,T. Cao161,Y. Cao173,M.D.M. Capeans Garrido36, M. Capua41b,41a,

R. Cardarelli73a, F.C. Cardillo149,I. Carli143,T. Carli36,G. Carlino69a, B.T. Carlson139, L. Carminati68a,68b, R.M.D. Carney45a,45b,S. Caron119, E. Carquin147b, S. Carrá68a,68b,J.W.S. Carter167,M.P. Casado14,e,

A.F. Casha167, D.W. Casper171, R. Castelijn120,F.L. Castillo174,V. Castillo Gimenez174,

N.F. Castro140a,140e, A. Catinaccio36,J.R. Catmore134, A. Cattai36, J. Caudron24, V. Cavaliere29,

E. Cavallaro14,D. Cavalli68a,M. Cavalli-Sforza14,V. Cavasinni71a,71b,E. Celebi12b, F. Ceradini74a,74b, L. Cerda Alberich174,A.S. Cerqueira80a, A. Cerri156, L. Cerrito73a,73b,F. Cerutti18,A. Cervelli23b,23a,

S.A. Cetin12b,A. Chafaq35a, D. Chakraborty121, S.K. Chan59,W.S. Chan120,W.Y. Chan90, J.D. Chapman32,

B. Chargeishvili159b, D.G. Charlton21,T.P. Charman92,C.C. Chau34,S. Che126,A. Chegwidden106,

S. Chekanov6,S.V. Chekulaev168a,G.A. Chelkov79,av,M.A. Chelstowska36,B. Chen78,C. Chen60a,

C.H. Chen78, H. Chen29,J. Chen60a, J. Chen39,S. Chen137,S.J. Chen15c, X. Chen15b,au, Y. Chen82,

Y-H. Chen46, H.C. Cheng63a,H.J. Cheng15a,15d, A. Cheplakov79, E. Cheremushkina123,

R. Cherkaoui El Moursli35e,E. Cheu7, K. Cheung64, T.J.A. Chevalérias145, L. Chevalier145,V. Chiarella51,

G. Chiarelli71a, G. Chiodini67a,A.S. Chisholm36,21, A. Chitan27b, I. Chiu163,Y.H. Chiu176,M.V. Chizhov79,

K. Choi65, A.R. Chomont132, S. Chouridou162,Y.S. Chow120,M.C. Chu63a,J. Chudoba141,

A.J. Chuinard103, J.J. Chwastowski84, L. Chytka130,K.M. Ciesla84,D. Cinca47,V. Cindro91, I.A. Cioar˘a27b,

A. Ciocio18, F. Cirotto69a,69b, Z.H. Citron180, M. Citterio68a,D.A. Ciubotaru27b,B.M. Ciungu167,

A. Clark54, M.R. Clark39,P.J. Clark50,C. Clement45a,45b,Y. Coadou101,M. Cobal66a,66c,A. Coccaro55b,

J. Cochran78,H. Cohen161,A.E.C. Coimbra180,L. Colasurdo119,B. Cole39,A.P. Colijn120,J. Collot58,

P. Conde Muiño140a,f,E. Coniavitis52,S.H. Connell33b,I.A. Connelly57,S. Constantinescu27b,

F. Conventi69a,ax,A.M. Cooper-Sarkar135, F. Cormier175, K.J.R. Cormier167,L.D. Corpe94,

M. Corradi72a,72b, E.E. Corrigan96,F. Corriveau103,ac,A. Cortes-Gonzalez36,M.J. Costa174, F. Costanza5,

D. Costanzo149, G. Cowan93, J.W. Cowley32, J. Crane100, K. Cranmer124, S.J. Crawley57, R.A. Creager137,

S. Crépé-Renaudin58,F. Crescioli136, M. Cristinziani24,V. Croft120, G. Crosetti41b,41a,A. Cueto5,

T. Cuhadar Donszelmann149,A.R. Cukierman153, S. Czekierda84,P. Czodrowski36,

M.J. Da Cunha Sargedas De Sousa60b,J.V. Da Fonseca Pinto80b, C. Da Via100,W. Dabrowski83a,

T. Dado28a,S. Dahbi35e, T. Dai105,C. Dallapiccola102,M. Dam40, G. D’amen23b,23a, V. D’Amico74a,74b,

(13)

G. Darbo55b,O. Dartsi5,A. Dattagupta131,T. Daubney46,S. D’Auria68a,68b, W. Davey24,C. David46,

T. Davidek143,D.R. Davis49,E. Dawe104,I. Dawson149, K. De8,R. De Asmundis69a, A. De Benedetti128,

M. De Beurs120,S. De Castro23b,23a,S. De Cecco72a,72b,N. De Groot119, P. de Jong120,H. De la Torre106,

A. De Maria15c, D. De Pedis72a, A. De Salvo72a,U. De Sanctis73a,73b, M. De Santis73a,73b,A. De Santo156,

K. De Vasconcelos Corga101, J.B. De Vivie De Regie132,C. Debenedetti146,D.V. Dedovich79,

A.M. Deiana42, M. Del Gaudio41b,41a, J. Del Peso98, Y. Delabat Diaz46, D. Delgove132, F. Deliot145,

C.M. Delitzsch7,M. Della Pietra69a,69b, D. Della Volpe54, A. Dell’Acqua36,L. Dell’Asta25,M. Delmastro5,

C. Delporte132,P.A. Delsart58, D.A. DeMarco167, S. Demers183, M. Demichev79,G. Demontigny109,

S.P. Denisov123,D. Denysiuk120,L. D’Eramo136, D. Derendarz84, J.E. Derkaoui35d,F. Derue136,

P. Dervan90, K. Desch24,C. Deterre46,K. Dette167, M.R. Devesa30,P.O. Deviveiros36,A. Dewhurst144,

S. Dhaliwal26,F.A. Di Bello54, A. Di Ciaccio73a,73b, L. Di Ciaccio5, W.K. Di Clemente137,

C. Di Donato69a,69b, A. Di Girolamo36, G. Di Gregorio71a,71b,B. Di Micco74a,74b, R. Di Nardo102,

K.F. Di Petrillo59, R. Di Sipio167,D. Di Valentino34, C. Diaconu101, F.A. Dias40,T. Dias Do Vale140a,140e,

M.A. Diaz147a, J. Dickinson18, E.B. Diehl105,J. Dietrich19,S. Díez Cornell46, A. Dimitrievska18,

W. Ding15b, J. Dingfelder24,F. Dittus36,F. Djama101,T. Djobava159b,J.I. Djuvsland17, M.A.B. Do Vale80c,

M. Dobre27b,D. Dodsworth26,C. Doglioni96,J. Dolejsi143, Z. Dolezal143,M. Donadelli80d, J. Donini38,

A. D’onofrio92,M. D’Onofrio90, J. Dopke144,A. Doria69a, M.T. Dova88, A.T. Doyle57,E. Drechsler152,

E. Dreyer152, T. Dreyer53,Y. Du60b,Y. Duan60b,F. Dubinin110,M. Dubovsky28a, A. Dubreuil54,

E. Duchovni180, G. Duckeck114, A. Ducourthial136, O.A. Ducu109,D. Duda115,A. Dudarev36,

A.C. Dudder99, E.M. Duffield18,L. Duflot132, M. Dührssen36,C. Dülsen182,M. Dumancic180,

A.E. Dumitriu27b, A.K. Duncan57, M. Dunford61a, A. Duperrin101,H. Duran Yildiz4a, M. Düren56,

A. Durglishvili159b, D. Duschinger48,B. Dutta46,D. Duvnjak1,G.I. Dyckes137,M. Dyndal36, S. Dysch100,

B.S. Dziedzic84, K.M. Ecker115,R.C. Edgar105,T. Eifert36,G. Eigen17, K. Einsweiler18,T. Ekelof172,

M. El Kacimi35c,R. El Kosseifi101,V. Ellajosyula172,M. Ellert172, F. Ellinghaus182, A.A. Elliot92,

N. Ellis36,J. Elmsheuser29,M. Elsing36,D. Emeliyanov144,A. Emerman39,Y. Enari163,J.S. Ennis178,

M.B. Epland49, J. Erdmann47, A. Ereditato20, M. Escalier132,C. Escobar174, O. Estrada Pastor174,

A.I. Etienvre145, E. Etzion161,H. Evans65, A. Ezhilov138,F. Fabbri57,L. Fabbri23b,23a, V. Fabiani119,

G. Facini94, R.M. Faisca Rodrigues Pereira140a,R.M. Fakhrutdinov123,S. Falciano72a, P.J. Falke5, S. Falke5,

J. Faltova143,Y. Fang15a, Y. Fang15a,G. Fanourakis44, M. Fanti68a,68b, A. Farbin8, A. Farilla74a, E.M. Farina70a,70b, T. Farooque106,S. Farrell18,S.M. Farrington178, P. Farthouat36,F. Fassi35e,

P. Fassnacht36,D. Fassouliotis9,M. Faucci Giannelli50,W.J. Fawcett32,L. Fayard132,O.L. Fedin138,o,

W. Fedorko175,M. Feickert42,S. Feigl134, L. Feligioni101,A. Fell149,C. Feng60b, E.J. Feng36,M. Feng49,

M.J. Fenton57, A.B. Fenyuk123, J. Ferrando46,A. Ferrante173, A. Ferrari172,P. Ferrari120, R. Ferrari70a,

D.E. Ferreira de Lima61b, A. Ferrer174, D. Ferrere54, C. Ferretti105, F. Fiedler99,A. Filipˇciˇc91,

F. Filthaut119, K.D. Finelli25,M.C.N. Fiolhais140a, L. Fiorini174,F. Fischer114,W.C. Fisher106,I. Fleck151,

P. Fleischmann105, R.R.M. Fletcher137, T. Flick182, B.M. Flierl114,L.F. Flores137,L.R. Flores Castillo63a,

F.M. Follega75a,75b, N. Fomin17, G.T. Forcolin75a,75b,A. Formica145,F.A. Förster14,A.C. Forti100, A.G. Foster21,M.G. Foti135, D. Fournier132, H. Fox89,S. Fracchia149, P. Francavilla71a,71b,

M. Franchini23b,23a,S. Franchino61a, D. Francis36, L. Franconi20, M. Franklin59,M. Frate171, A.N. Fray92,

B. Freund109, W.S. Freund80b,E.M. Freundlich47, D.C. Frizzell128, D. Froidevaux36,J.A. Frost135,

C. Fukunaga164, E. Fullana Torregrosa174,E. Fumagalli55b,55a,T. Fusayasu116, J. Fuster174,

A. Gabrielli23b,23a, A. Gabrielli18,G.P. Gach83a,S. Gadatsch54, P. Gadow115, G. Gagliardi55b,55a,

L.G. Gagnon109,C. Galea27b, B. Galhardo140a,140c, G.E. Gallardo135, E.J. Gallas135,B.J. Gallop144,

P. Gallus142,G. Galster40,R. Gamboa Goni92,K.K. Gan126,S. Ganguly180,J. Gao60a,Y. Gao90,

Y.S. Gao31,l, C. García174,J.E. García Navarro174, J.A. García Pascual15a, C. Garcia-Argos52,

M. Garcia-Sciveres18,R.W. Gardner37,N. Garelli153, S. Gargiulo52,V. Garonne134,A. Gaudiello55b,55a,

G. Gaudio70a,I.L. Gavrilenko110, A. Gavrilyuk111,C. Gay175,G. Gaycken24,E.N. Gazis10,A.A. Geanta27b,

C.N.P. Gee144,J. Geisen53, M. Geisen99,M.P. Geisler61a,C. Gemme55b,M.H. Genest58,C. Geng105,

S. Gentile72a,72b, S. George93,T. Geralis44,D. Gerbaudo14,L.O. Gerlach53, P. Gessinger-Befurt99,

G. Gessner47,S. Ghasemi151,M. Ghasemi Bostanabad176,M. Ghneimat24, A. Ghosh77,B. Giacobbe23b,

S. Giagu72a,72b,N. Giangiacomi23b,23a,P. Giannetti71a, A. Giannini69a,69b, S.M. Gibson93,M. Gignac146,

Figure

Fig. 1. Diagram of the W R decay via N R into charged leptons and quarks. The leptons need to be of the same flavour, but can be the same or opposite charges
Fig. 2. Reconstructed distributions of the transverse momentum of the leading lepton, subleading lepton, the selected large-R jet, and the N R candidate mass in electron (left column) and muon (right column) channels for four representative signal samples
Fig. 4. Large-R jet average JMS (left) and JES (right) as a function of subleading electron energy divided by the large-R jet energy for signal samples.
Fig. 5. Angular separation between the subleading electron and nearest small-radius jet (left) and transverse momentum distribution of the subleading electron (right) in events with a leading muon and subleading electron, requiring one b-tagged small-radiu
+3

References

Related documents

Då är det viktigt att lärare har en bra kontakt med eleverna, det kan vara helt avgörande för hur en elev väljer en inriktning. Jag skrev innan att en bra lärare kan påverka elever

I jämförelse med pressreleasen framkommer den sociala modellen inte lika tydligt som en förklarande faktor för vilka hinder det finns att ta ett aktivt ansvar, utan fokus är

The research questions guiding this thesis  have therefore been phrased; How do museum visitors in New Zealand reflect on museum exhibits as  tools and places for development of

Informanterna talar om likvärdighet som jämlikhet mellan könen, rättvisa både för individen och för klassen, samt enhetlighet inom skolan lokalt och nationellt.. Rättvisa är

Privacy by design innehåller principer som att inte samla in mer data än det som behövs för behandling, att data ska raderas när det inte längre används och att data inte

Populasjonen for vår undersøkelse er pasienter som har fått dentale implantater ved Det odontologiske fakultet, Avdeling for oral kirur- gi og oral medisin, UiO i årene 2008 og

Förskolans och pedagogernas förhållningssätt gentemot familjer som befinner sig i fattigdom har inte enligt vår empiri förändrats nämnvärt sedan förskolan

Problem:.. ”It is mainly security related problems, if a package is mechano-active and influenced by stimuli such as heat from your body temperature I believe that people would