• No results found

Measurement of the W-+/- Z boson pair-production cross section in pp collisions at root s=13 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the W-+/- Z boson pair-production cross section in pp collisions at root s=13 TeV with the ATLAS detector"

Copied!
22
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

W

±

Z boson

pair-production

cross

section

in

pp

collisions

at

s

=

13 TeV with

the

ATLAS

detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory: Received13June2016

Receivedinrevisedform22August2016 Accepted24August2016

Availableonline6September2016 Editor:W.-D.Schlatter

The production of W±Z events in proton–proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb−1. The W±Z candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is σfid.

W±Z→ν=63.2 ±3.2 (stat.)±2.6 (sys.)±1.5 (lumi.) fb. In comparison, the

next-to-leading-order Standard Model prediction is 53.4+32..68fb. The extrapolation of the measurement from the fiducial to the total phase space yields σtot.

W±Z=50.6 ±2.6 (stat.)±2.0 (sys.)±0.9 (th.)±1.2 (lumi.) pb, in

agreement with a recent next-to-next-to-leading-order calculation of 48.2+11..10pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent W+Z andWZ cross sections and their ratio.

©2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

TheproductionofW±Z pairsinhadroncollisionsisan impor-tant test of the electroweak sector of the Standard Model (SM). The W±Z final states arise from two vector bosons radiated by quarksorfromthedecayofavirtual W boson intoa W±Z pair,

which involves a triple gauge coupling (TGC). In addition, W±Z

pairscanbe producedinvector-bosonscatteringprocesses,which involve triple and quartic gauge couplings (QGC) and are sensi-tivetotheelectroweaksymmetrybreakingsector oftheSM.New physics could manifest in W±Z final states asa modification of the TGC andQGC strength. Precise knowledge of the W±Z

pro-ductioncrosssectionisthereforenecessaryinthesearchfornew physics.

MeasurementsoftheW±Z productioncrosssectioninproton– antiprotoncollisions ata centre-of-massenergyof√s=1.96 TeV were publishedby the CDFandD0 Collaborations [1,2] using in-tegratedluminositiesof7.1 fb−1and8.6 fb−1,respectively.Atthe LargeHadron Collider(LHC),measurementshavebeen performed inproton–proton(pp) collisions by theATLAS Collaboration [3,4] at√s=7 TeV and8 TeV usingintegratedluminositiesof4.6 fb−1 and20.3 fb−1,respectively.

This Letter presents measurements of the W±Z production

crosssectionin pp collisionsatacentre-of-mass energyof√s=

13 TeV. The data sample analysed was collected in 2015 by the

 E-mailaddress:atlas.publications@cern.ch.

ATLAS experiment atthe LHC, andcorresponds to an integrated luminosity of 3.2 fb−1. The W and Z bosons are reconstructed using their decay modes into electrons or muons. The inclusive production cross section is measured in a fiducial phase space andextrapolatedtothetotalphase space.ThisLetteralsoreports the ratio of the cross sections at 13 TeV and 8 TeV [4], aswell asthe ratioofthe W+Z/WZ cross sections,which issensitive to thepartondistribution functions(PDF).Finally,the production crosssectionisalsomeasuredasafunctionofthejetmultiplicity. Thisdistributionprovidesan importanttestofperturbative quan-tumchromodynamics(QCD)fordibosonproductionprocesses.The

W±Z dibosonprocessisparticularlywellsuitedforthis measure-ment,sincethe W W finalstatehasaverylargebackgroundfrom top-quark production when associated jets are present, and the

Z Z final state has substantially fewer events.The reported mea-surementsarecomparedwiththeSM cross-sectionpredictionsat the next-to-leading order(NLO) in QCD [5,6] andthe total cross section is also compared to a very recent calculation at next-to-next-to-leadingorder(NNLO)inQCD[7].

2. ATLAS detector

TheATLASdetector[8]isamulti-purposedetectorwitha cylin-drical geometry1 andnearly 4π coverage insolid angle.The

col-1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthenominal

in-teractionpoint (IP)inthe centreofthedetectorand thez-axisalongthe beam

http://dx.doi.org/10.1016/j.physletb.2016.08.052

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

lisionpointissurroundedbyinnertrackingdetectors(collectively referred toasthe inner detector),followed bya superconducting solenoidprovidinga2 Taxialmagneticfield,acalorimetersystem andamuonspectrometer.

The inner detector (ID) provides precise measurements of charged-particle tracks in the pseudorapidity range |η|<2.5. It consists of three subdetectors arranged in a coaxial geometry aroundthebeamaxis:asiliconpixeldetector,asiliconmicrostrip detectorandatransitionradiationtracker.Thenewlyinstalled in-nermostlayerofpixelssensors[9,10]wasoperationalforthefirst timeduringthe2015datataking.

Theelectromagneticcalorimetercoverstheregion|η|<3.2 and is based on a high-granularity, lead/liquid-argon (LAr) sampling technology. The hadronic calorimeter uses a steel/scintillator-tile detectorinthe region|η|<1.7 and a copper/LArdetectorin the region 1.5<|η|<3.2. The mostforward region of the detector, 3.1<|η|<4.9,isequippedwithaforwardcalorimeter,measuring electromagnetic and hadronic energies in copper/LAr and tung-sten/LArmodules.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers to measure the deflection of muons in a magnetic field generated by three large supercon-ducting toroids arranged with an eightfold azimuthal coil sym-metryaroundthecalorimeters.Thehigh-precisionchamberscover a range of |η|<2.7. The muon trigger system covers the range |η|<2.4 withresistive-platechambersinthebarrelandthin-gap chambersintheendcapregions.

Atwo-leveltriggersystemisusedtoselecteventsinrealtime. Itconsistsof ahardware-based first-leveltrigger anda software-basedhigh-level trigger. The latteremploys algorithms similar to thoseusedofflinetoidentifyelectrons,muons,photonsandjets. 3. Phase space definition

Thefiducialphasespaceusedtomeasurethe W±Z cross sec-tionisdefinedtocloselyfollowthecriteriausedtodefinethe sig-nalregiondescribedinSection5.Thephasespaceisbasedonthe kinematicsofthefinal-stateleptonsassociatedwiththeW and Z

bosondecays.Leptonsproduced inthedecayofahadron,a τ or theirdescendantsarenotconsideredinthedefinitionofthe fidu-cialphasespace. Inthesimulation,thekinematicsofthecharged lepton after quantum electrodynamics (QED) final-stateradiation (FSR) are “dressed” at particle level by including contributions fromphotonswithan angulardistance R≡( η)2+ ( φ)2< 0.1 fromthelepton.Dressedleptons,andfinal-stateneutrinosthat do not originate from hadron or τ decays, are matched to the

W and Z boson decay products using a Monte Carlo

generator-independentalgorithmicapproach,calledthe“resonantshape” al-gorithm[4],thattakesintoaccountthenominallineshapesofthe

W and Z resonances.

The reported cross sections are measured in a fiducial phase spacedefinedatparticlelevelby thefollowingrequirements:the transverse momentum pT of thedressed leptons fromthe Z bo-son decay is above 15 GeV, the pT of the charged lepton from theW decayisabove20 GeV,theabsolutevalueofthe pseudora-pidityofthechargedleptons fromthe W and Z bosons isbelow 2.5, theinvariant massofthe two leptonsfromthe Z boson de-cay differs at most by 10 GeV from the world average value of

the Z boson massmPDG

Z [11].The W transverse mass,definedas

direction.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axispointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverse(x,y) plane,φbeingtheazimuthalanglearoundthebeamdirection.Thepseudorapidity isdefinedintermsofthepolarangleθasη= −ln[tan(θ/2)].

mW

T =



T·p

T· [1−cos φ (,ν)],where φ (, ν) is the an-gle betweenthelepton andtheneutrino inthetransverse plane, isrequiredtobeabove30 GeV.Inaddition,itisrequiredthatthe angulardistance R betweenthechargedleptonsfromtheW and Z decayislargerthan0.3,andthat R betweenthetwoleptons fromthe Z decayislargerthan0.2.

The fiducial cross section is extrapolated to the total phase spaceandcorrectedfortheleptonic branchingfractionsofthe W

andZ bosons.Thetotalphasespaceisdefinedbyrequiringthe in-variantmassoftheleptonpairassociatedwiththe Z bosontobe intherange66<m<116 GeV.

Forthejet multiplicity differentialmeasurement,particle-level jets are reconstructed from stable particles with a lifetime of

τ>30 psinthesimulationafterpartonshowering,hadronisation, anddecayofparticleswith τ<30 ps.Muons,electrons,neutrinos and photonsassociated with W and Z decays are excluded. The particle-leveljetsarereconstructedwiththeanti-kt algorithm[12] with a radius parameter R=0.4 and are required to have a pT above25 GeV andanabsolutevalueofpseudorapiditybelow4.5. 4. Simulated event samples

MonteCarlo(MC)simulationisusedtomodelsignaland back-groundprocesses.AllgeneratedMCeventsarepassedthroughthe ATLAS detector simulation[13],based on GEANT4 [14],and pro-cessed usingthe samereconstruction softwareusedfor thedata. The event samples include the simulation of additional proton– protoninteractions(pile-up)generatedwith Pythia 8.186[15] us-ing theMSTW2008LO PDF [16] andtheA2[17] set oftuned pa-rameters.

Scalefactorsare appliedtosimulatedeventstocorrectforthe smalldifferences betweendata andMC simulationinthe trigger, reconstruction, identification,isolation andimpactparameter effi-cienciesofelectronsandmuons[18–20].Furthermore,theelectron energy and muon momentum in simulated events are smeared to account for small differences in resolution between data and MC[20,21].

Asample ofsimulated W±Z eventsisusedtocorrectthe sig-nal yield for detector effects, to extrapolate from the fiducial to the total phase space, andto comparethe measurements to the theoreticalpredictions.TheproductionofW±Z pairsandthe sub-sequentleptonicdecaysofthevectorbosonsaregeneratedatNLO inQCDusingthe Powheg-Box v2[22–25]generator,interfacedto the Pythia 8.210partonshower model usingtheAZNLO [26] set oftuned parameters.TheCT10[27] PDFset isusedforthe hard-scatteringprocess,whiletheCTEQ6L1[28] PDFsetisusedforthe partonshower.Thejetmultiplicitymeasurementisalsocompared to the theoretical NLO prediction from the Sherpa 2.1.1 genera-tor [29],calculatedusing theCT10PDFset inconjunctionwitha dedicated set of tuned parameters for the parton shower devel-opedbythe Sherpa authors[30].

Thebackgroundsourcesinthisanalysisincludeprocesseswith two or more electroweak gauge bosons, namely Z Z , W W and V V V (V=W,Z ); processeswithtopquarks,suchastt and¯ t¯t V ,

singletopandt Z ;orprocesseswithgaugebosonsassociatedwith jetsorphotons( Z+j and ).MCsimulationisusedtoestimate the contribution from background processes with three or more prompt leptons.Background processeswithatleastone misiden-tified leptonare evaluatedusing data-driventechniquesand sim-ulated events are used to assess the systematic uncertainties in thesebackgrounds.

The qq¯ →Z Z(∗), tt,¯ and single-top processes are generated at NLO using the Powheg-Box v2 program. The CT10 PDF set is used for the matrix-element calculations. For the Z Z

(3)

CTEQ6L1PDFandAZNLO setoftunedparameters. Themodelling ofthepartonshower forprocesseswithtop quarksis done with Pythia6.428 [31], usingtheCTEQ6L1PDF andPerugia 2012[32] setoftuned parameters. The Sherpa[29,30,33–36] event genera-torisusedtomodelthe , V V V ,andggZ Z(∗) processesat

leadingorder(LO)usingtheCT10PDFset.Finally,thet¯t V andt Z

processes are generated at LO using MadGraph5_aMC@NLO [37] with the NPDF23LO [38] PDF set, interfaced with Pythia 8.186 (t¯t V )and Pythia 6.428(t Z ).

5. Data sample and selections

The pp collisiondataanalysed correspondtoan integrated lu-minosityof3.2 fb−1 collected withtheATLASdetectorin2015at √

s=13 TeV.Onlydatarecordedwithstablebeamconditionsand withallrelevantdetectorsubsystemsoperationalareconsidered.

Candidate events are selected using triggers [39] that require atleast one electron or muon with pT>24 GeV or 20 GeV, re-spectively, that satisfies a loose isolation requirement. Possible inefficiencies for leptons with large transverse momenta are re-ducedby includingadditionalelectronandmuontriggers thatdo not include any isolation requirements with transverse momen-tumthresholds of pT=60 GeV and 50 GeV, respectively.Finally, asingle-electrontrigger requiringpT>120 GeV withless restric-tiveelectronidentificationcriteriaisusedtoincreasetheselection efficiencyforhigh-pT electrons.

Events are required to have a primary vertex reconstructed fromatleasttwochargedparticletracksandcompatiblewiththe luminousregion.Ifseveralsuch verticesarepresentintheevent, theonewiththehighestsumofthe p2

T oftheassociatedtracksis selectedastheprimaryvertexoftheW±Z production.

All final states with three charged leptons (electrons e or

muonsμ) andneutrinos from W±Z leptonic decaysare consid-ered.In thefollowing,the differentfinal statesarereferred to as

μ±μ+μ−,e±μ+μ−, μ±e+e−ande±e+e−.

Muon candidatesare identified by tracks reconstructedin the muonspectrometerandmatchedtotracksreconstructedinthe in-nerdetector.Muonsarerequiredtopassa“medium”identification selection,which isbasedon requirementson thenumberof hits intheIDandtheMS[20].Theefficiencyofthisselectionaveraged over pT and ηislargerthan98%. Themuonmomentumis calcu-latedbycombiningtheMSmeasurement,correctedfortheenergy deposited in the calorimeters, and the ID measurement. The pT ofthe muonmustbegreater than15 GeVandits pseudorapidity mustsatisfy|η|<2.5.

Electroncandidates are reconstructed from energy clustersin theelectromagneticcalorimetermatched toinnerdetectortracks. Electronsare identified using a discriminant that is the value of alikelihoodfunctionconstructedwithinformationfromtheshape of the electromagnetic showers in the calorimeter, track proper-tiesandtrack-to-clustermatchingquantitiesofthecandidate[18]. Electronsmustsatisfy a “medium”likelihood requirement, which provides an overall identification efficiency of 90%. The electron momentum is computed from the cluster energy andthe direc-tion of the track. The pT of the electron must be greater than 15 GeVandthepseudorapidityoftheclustermustbeintheranges |η|<1.37 or1.52<|η|<2.47.

Electronand muon candidates are required to originate from the primary vertex. Thus, the significance of the track’s trans-verseimpactparameter calculatedwithrespecttothe beamline, |d0/σd0|,mustbesmallerthanthreeformuonsandlessthanfive

forelectrons, andthelongitudinal impact parameter, z0 (the dif-ferencebetweenthevalueofz ofthepointonthetrackatwhich

d0 isdefinedandthelongitudinalpositionoftheprimaryvertex), isrequiredtosatisfy|z0·sin(θ )|<0.5 mm.

Electronsandmuonsarerequiredtobeisolatedfromother par-ticles.Theisolationrequirementisbasedonbothcalorimeterand trackinformationandistunedforanefficiencyofatleast95%for

pT>25 GeV andatleast99%for pT>60 GeV[20].

Jets are reconstructed from clusters of energy deposition in the calorimeter [40] using the anti-kt algorithm [12] with a ra-dius parameter R=0.4. Events with jets arising from detector noise or other non-collision sources are discarded [41]. All jets must have pT>25 GeV and be reconstructed in the pseudora-pidity range |η|<4.5. A multivariate combinationof track-based variables is usedto suppressjets originatingfrompile-up in the ID acceptance[42]. Theenergyofjetsiscalibrated andcorrected fordetectoreffectsusingacombinationofsimulatedeventsandin situ methodsin13 TeV data,similartotheproceduredescribedin Ref.[43].

The transverse momentum of the neutrino is estimated from the missingtransversemomentum inthe event, Emiss

T , calculated as the negative vector sum of the transverse momentum of all identified hardphysics objects(electrons,muons,jets),aswell as an additional soft term. A track-based measurement of the soft term[44],whichaccountsforlow-pTtracksnotassignedtoahard object,isusedintheanalysis.

Events are requiredtocontain exactlythree lepton candidates satisfyingtheselectioncriteriadescribedabove.Toensurethatthe triggerefficiencyiswelldetermined,atleastoneofthecandidate leptons is requiredto have pT>25 GeV and to be geometrically matchedtoaleptonthatwasselectedbythetrigger.

To suppress background processes with at least four prompt leptons, events with a fourth lepton candidate satisfying looser selection criteriaare rejected. Forthislooser selection,the pT of the leptons is lowered to pT>7 GeV and “loose” identification requirementsareusedforboththeelectronsandmuons.The iso-lationrequirementusesIDtrackinformationonlyandisless strin-gent.

Candidateeventsarerequiredtohaveatleastonepairof lep-tonsofthesameflavourandofoppositecharge,withaninvariant mass that is consistent with the nominal Z boson mass [11] to within 10 GeV. Thispair isconsidered to be the Z boson candi-date.Ifmorethanonepaircanbeformed,thepairwhoseinvariant massisclosesttothenominalZ bosonmassistakenasthe Z

bo-soncandidate.

Theremaining third leptonisassignedtothe W boson decay. The transverse mass of the W candidate, computed using EmissT

andthe pT oftheassociatedlepton,isrequiredtobegreaterthan 30 GeV.

Backgrounds originating from misidentified leptons are sup-pressed by requiring the lepton associatedwith the W boson to satisfy morestringent selectioncriteria. Thus, thetransverse mo-mentum of theseleptons is requiredto be greater than 20 GeV. Furthermore, electrons associated with the W boson decay are required to pass the “tight” likelihood identification require-ment [18], which has an overall efficiency of 85%. Finally, these electronsmustalsopassatighterisolationrequirement,tunedfor anefficiencyofatleast90% (99%)forpT>25(60)GeV.

6. Background estimation

The backgroundsources areclassifiedinto twogroups: events whereat leastoneof thecandidateleptons is nota prompt lep-ton (reducible background) and events where all candidates are prompt leptons or are produced inthe decayof a τ (irreducible background). Candidates that are not prompt leptons are called also“misidentified”or“fake”leptons.

The reduciblebackground, whichrepresents abouthalf ofthe total backgrounds, originates from Z+ j, , tt,¯ W t and W W

(4)

production processes, with Z + j and being the dominant component(83%).The reduciblebackgrounds areestimatedusing data-driventechniques.The backgroundfrom eventswithtwo or threefakeleptons,e.g.,fromW+j j andmultijetprocesses,is neg-ligible.

Backgroundsfromt¯t,W t andW W+j events(called“top-like” inthefollowing) areestimatedbyexploitingthedifferent-flavour decay channels of these processes. These events are categorised basedonwhetherthemisidentifiedleptonisanelectronormuon. Theformer areestimatedin acontrol regioncontaining e±μe±

eventsandthe latterina μ±eμ± control region.Events inthe controlregionssatisfytheselectioncriteriadescribedinSection5, exceptthatadifferent-flavour,opposite-chargeleptonpairis asso-ciatedwiththe Z boson,andthem requirementis removedto

increase the number of events.These requirements suppressthe contamination of events with a leptonically decaying Z/γ∗. The dominantcontributionisduetotop-like processes(75%).TheMC predictions forother processes are subtracted from theobserved yield.Theratiosofobservedtoexpectedtop-likeeventsinthe con-trolregionsare0.5±0.3 formisidentifiedelectronsand1.4±0.5 for misidentified muons, where the uncertainties are due to the statisticaluncertainties ofthe data andMC eventsinthe control regions. These ratios are applied to the estimated contributions fromthesimulatedtop-likebackgroundsinthefinal W±Z

selec-tion. The kinematic shapesof the top-like backgroundare taken fromMCsimulation forthepurposesofcontrol distributions and theexclusive jet multiplicity differential cross-sectioncalculation. The shapeofthe jet multiplicity distributionin thetop-like con-trolregionsiswellmodelledbytheMCsimulation.

Backgrounds from Z+ j and processes are estimated by defining a three-lepton Z control sample in data, where two of theleptons,referredtoastight(T),meetallidentificationand iso-lation criteria described in Section 5, and the remaining lepton, referred toas loose(L),failstheserequirements andinstead sat-isfies less restrictive ones. Events in the Z control sample must satisfy all other W±Z selectioncriteria. The Z controlsample is split into three categories of events, labelled as NLTT, NTLT and

NTTL, wherethe first indexrefers to the W lepton,andthe sec-ond andthird indexes refer to the higher- and lower-pT leptons

fromthe Z bosondecay.The observednumberof eventsineach

ofthesecategoriesis1535,61and204,respectively.The contribu-tionfromZ+j and eventsisgreaterthan75%.Processeswith atleastthreepromptleptonsaresubtractedusingtheMC predic-tion.Thisincludesthe subtractionofW±Z events,forwhichthe MC prediction is increased by 15% to agree with previous mea-surements[4].The subtractionof top-likeprocesses (18%)uses a procedurewithacontrolregioncontainingonelooselepton, anal-ogoustotheproceduredescribedabove.

TheZ+j andZγ backgroundinthefinalW±Z selectionis ob-tainedbyscalingtheobservednumberofeventsinthe Z control

samplebyanextrapolationfactorcalledthe“fakefactor”.Thefake factorismeasuredinadatasamplewithtwotightleptons associ-atedwiththe Z bosonandoneadditionalleptonthatcanbeloose ortight. To enrichthe sample in Z+j and events, themWT

requirementisreversedandthemissingtransversemomentumis requiredtobelessthan40 GeV.Thefakefactoriscalculatedasthe ratioofthenumberofeventswithatightthirdleptontothe num-berofeventswithaloosethirdlepton.Thedominantcontribution (>97%)tothedenominatorofthefake-factorratiooriginatesfrom

Z+j and events.Simulationshowsthattherelativefractions ofthesetwo processes are similar inthisregion andthe Z

con-trolsamplewherethefakefactorisapplied,justifyingtheuseofa singlefakefactortodescribeboth backgrounds.Processeswithat leastthreepromptleptonscontaminatetheeventsinthe numera-toroftheratio,particularlyathighlepton pT,andaresubtracted

as described for the Z control sample. The fake factor is com-putedinbinsofpT oftheleptonnotassociatedwiththe Z boson, separately formuonsandelectrons,andconsidering thedifferent selectioncriteriausedforleptonsintheanalysis.MCsimulationis usedtoverifythatthefakefactorsdonotdependonthejet mul-tiplicity of the event. The fake-factor values range between0.02 and 0.1.

Inbrief,the Z+j andZγ estimateineachleptonpTbinis ob-tainedbyextrapolatingfromeventsinthe Z controlsampleusing thefollowingformula:

NZ+j/Zγ =  NLTTNpromptLTTNLTTtop  FW +NTLT−NpromptTLT −N top TLT  FZ +NTTL−NpromptTTLNTTLtop  FZ, (1)

where FW and FZ denote the fake factors for W and Z lep-tons, NpromptLTT , NTLTprompt and NTTLprompt denote the MC prediction of processes withatleastthreeprompt leptons, andNLTTtop, NtopTLT and

NtopTTL denote the estimate of top-like events.Both the normalisa-tion and thekinematic shapesof the Z+ j and background are estimated from the data using this methodology. The esti-mateofthe Z+ j and backgroundis validatedina subsetof the signal region containing eventswith 30<mW

T <50 GeV and

EmissT <40 GeV,whichisenrichedinbackgroundprocesses. The reduciblebackground was also assessed with an alterna-tiveprocedure,thematrixmethod,usedintheprevious measure-ment of W±Z productionat √s=8 TeV fromthe ATLAS Collab-oration [4].The resultsagree withtheestimates described above within5%.

IrreduciblebackgroundeventsoriginatefromZ Z ,t¯t+V ,V V V

(where V =Z or W ),t Z and W±Z eventsinwhich atleastone ofthebosonsdecaysintoleptonsviaanintermediate τ decay.The amount ofirreducible backgroundisestimated usingMC simula-tions.TheestimateofthecontributionfromW±Z eventsdecaying via τ-leptonsisaddressedinSection8.

About70% oftheirreduciblebackgroundisdueto Z Z

produc-tion.Eventsfrom Z Z productionsurvivetheW±Z eventselection eitherbecauseone leptonfallsoutsidethe fiducialvolume or be-causeit fallsinthefiducialacceptance ofthedetectorbutisnot identified. The number ofqq¯→Z Z events predictedby Powheg is scaled by 1.08 to account for NNLO QCD and NLO EW cor-rections [45–47]. The number of ggZ Z events predicted by the Sherpa MC event sample is scaled by a factor of 1.52 to account for NLO QCD corrections [48]. These estimates are vali-dated by comparing theMC predictions withthe observedevent yield, and the distributions of several kinematic variables, in a four-lepton data sample enriched in Z Z events. The number of observed eventsin thisvalidation regionis 106,with89% purity forthe Z Z process. Overall agreementbetweenthe dataandthe predictions is within one standard deviation of theexperimental uncertainty.Theshapesofthedistributionsofthemainkinematic variables are alsofound to be well described by the MC predic-tions.

7. Detector-level results

Table 1 summarises the predicted and observed numbers of eventstogetherwiththeestimatedbackgroundcontributions.The total uncertainties affecting the predicted yields include statisti-caluncertainties,thetheoreticaluncertaintiesinthecrosssections asfurtherdiscussedinSection10,experimentaluncertainties dis-cussed in Section 9 anduncertainty inthe integrated luminosity forbackgroundsestimatedusingMC predictions. Fig. 1showsthe

(5)

Table 1

Observedand expectednumbersofeventsafterthe W±Z inclusiveselectiondescribedinSection5ineachoftheconsidered channelsandforthesumofallchannels.TheexpectednumberofW±Z eventsfrom Powheg+Pythia andtheestimatednumber ofbackgroundeventsfromotherprocessesaredetailed.The totaluncertaintiesquotedinclude thestatisticaluncertainties,the theoreticaluncertaintiesinthecrosssections,theexperimentaluncertaintiesandtheuncertaintyintheintegratedluminosity.

Channel eee μee eμμ μμμ All

Data 98 122 166 183 569 Total expected 102±10 118±9 126±11 160±12 506±38 W Z 74±6 96±8 97±8 129±10 396±32 Z+j, Zγ 16±7 7±5 14±7 9±5 45±17 Z Z 6.7±0.7 8.7±1.0 8.5±0.9 11.7±1.2 36±4 tt¯+V 2.7±0.4 3.2±0.4 2.9±0.4 3.4±0.5 12.1±1.6 tt, W t, W W¯ +j 1.2±0.8 2.0±0.9 2.4±0.9 3.6±1.5 9.2±3.1 t Z 1.28±0.20 1.65±0.26 1.63±0.26 2.12±0.34 6.7±1.1 V V V 0.24±0.04 0.29±0.05 0.27±0.04 0.34±0.05 1.14±0.18

Fig. 1. Thedistributionsforthesumofallchannelsofthekinematicvariables(a)thetransversemomentumofthereconstructedZ bosonpZ

T,(b)thereconstructedZ boson

massmZ,(c)thetransversemassofthereconstructedW bosonmTW and(d)thetransversemassvariablemW ZT fortheW Z system.Thepointscorrespondtothedata,

andthehistogramscorrespondtothepredictionsofthedifferentSMprocesses.AllMonteCarlopredictionsarescaledtotheintegratedluminosityofthedatausingthe predictedMCcrosssectionsofeachsample.Thesumofthebackgroundprocesseswithmisidentifiedleptonsislabelled“Misid.leptons”.The Powheg+Pythia MCprediction isusedfortheW±Z signalcontribution.Itisscaledbyaglobalfactorof1.18 tomatchthemeasuredinclusiveW±Z crosssection.Theopenredhistogramshowsthetotal prediction;theshadedvioletbandisthetotaluncertaintyofthisprediction.Thelastbincontainstheoverflow.Thelowerpanelsineachfigureshowtheratioofthedata pointstotheopenredhistogramwiththeirrespectiveuncertainties.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

(6)

Table 2

TheCW Z and Nτ/Nall factorsforeachoftheeee,μee,eμμ,andμμμinclusive

channels.The Powheg+Pythia MCeventsamplewiththe“resonantshape”lepton assignmentalgorithmatparticlelevelisused.Onlystatisticaluncertaintiesare re-ported. Channel CWZ CW+Z CW±Z Nτ/Nall eee 0.428±0.005 0.417±0.004 0.421±0.003 0.040±0.001 μee 0.556±0.006 0.550±0.005 0.553±0.004 0.038±0.001 eμμ 0.550±0.006 0.553±0.005 0.552±0.004 0.036±0.001 μμμ 0.729±0.007 0.734±0.006 0.732±0.005 0.040±0.001

measured distributions of the transversemomentum and the in-variant mass of the Z candidate, the transverse mass of the W

candidate,andforthe W Z systema variablemW ZT [4]similarto thetransversemass.The Powheg+Pythia MCpredictionisusedfor the W±Z signalcontribution.In Fig. 1 thiscontributionisscaled bya globalfactorof1.18 to matchthemeasuredinclusive W±Z

crosssectioninSection10.Thisscalingisonlyusedforan illustra-tivepurposeinthisfigureanddoesnotaffectthemeasurements. Fig. 1indicates thattheMC predictionsprovidea fairdescription oftheshapesofthedatadistributions.

8. Corrections for detector effects and acceptance

ForagivenchannelW±Z→ ν+−,whereand are ei-theran electronor amuon, the integratedfiducial crosssection, whichincludestheleptonicbranchingfractionsoftheW and Z ,is calculatedas σfid. W±Z→ν= NdataNbkg L·CW Z ×  1− Nall  , (2)

where Ndata is the number of observed events, Nbkg is the esti-matednumberofbackgroundevents, L istheintegrated luminos-ityandCW Z,obtainedfromsimulation,istheratioofthenumber ofselectedsignaleventsatdetectorleveltothenumberofevents atparticlelevelinthefiducialphasespacedefinedafterQEDFSR. This factor corrects for detector efficiency and resolution effects andfor QEDFSR effects.The term inparentheses representsthe correctionappliedtothemeasurementtoaccountforthe τ-lepton contributiontotheanalysisphasespace. Thiscontributionis esti-matedusingthe simulation,fromtheratioof Nτ ,the numberof selectedeventsinwhichatleastoneofthebosons decaysintoa

τ lepton,andNall,thenumberofselectedW Z eventswithdecays intoanylepton.

TheCW Z factorsfortheWZ ,W+Z and W±Z inclusive pro-cesses,aswell asthe τ-leptoncontribution totheanalysisphase space,Nτ/Nall,arecomputedwith Powheg+Pythia foreachofthe fourleptonicchannelsandareshownin Table 2.

Thetotalcrosssectioniscalculatedas

σWtot±.Z=

σfid.

W±Z→ν BWBZ AW Z

, (3)

where BW =10.86±0.09% and BZ=3.3658±0.0023% are the

W and Z leptonicbranchingfractions[11],respectively,and AW Z istheacceptancefactorcalculatedatparticlelevelastheratioof thenumberofeventsinthefiducialphasespacetothenumberof eventsinthetotalphasespaceasdefinedinSection3.

A single acceptance factor of AW Z =0.343±0.002 (stat.) is obtained using the Powheg+Pythia simulation by averaging the acceptancefactors computed in the μee and eμμ channels. The use of thesechannels avoids the ambiguity arising from the as-signment atparticle level of final-stateleptons to the W and Z

bosons. Cross-section differences between and  channels causedbyinterferenceeffectsduetothethreeidenticalleptonsin thefinalstatesareshownbysimulationtobebelow1%.

The differential detector-level distribution of the exclusive jet multiplicity is corrected fordetector resolution and forQED FSR effectsusingan iterativeBayesianunfoldingmethod[49,50]. Sim-ulated signal events from Powheg+Pythia are used to obtain a responsematrixthataccountsforbin-to-bin migrationeffects be-tweenthereconstructedandparticle-leveldistribution.

9. Systematic uncertainties

Thesystematicuncertaintiesinthemeasuredcrosssectionsare due to experimental and theoretical uncertainties in the accep-tance,uncertaintiesinthecorrectionprocedurefordetectoreffects, uncertainties in the background estimation and uncertainties in theluminosity.

The theoretical systematicuncertainties inthe AW Z and CW Z factors are evaluatedby takinginto accountthe uncertainties re-latedtothechoiceofPDFset,totheQCDrenormalisation μRand factorisation μF scales and to the parton showering simulation. The uncertainties due to the choice of PDF are computed using theCT10eigenvectorsandtheenvelopeofthedifferencesbetween theCT10andCT14[51],MMHT2014[52]andNNPDF3.0[53]PDF sets, accordingto the PDF4LHC recommendations [54]. The QCD scale uncertainties are estimated by varying μR and μF by fac-tors oftwoaround thenominalscalemW Z/2 withtheconstraint 0.5≤μRF≤2,wheremW Z istheinvariantmassoftheW Z sys-tem.Uncertaintiesarisingfromthechoiceofpartonshowermodel are obtainedfrom Ref.[4].None ofthe three sources of theoret-ical uncertaintyhavea significant effectonthe CW Z factors. The uncertaintyintheacceptancefactorAW Z islessthan0.5% dueto PDFchoice,andlessthan0.7% duetoQCDscalechoice.

The uncertainty in the unfolded jet multiplicity distribution arising from the MC modelling of the response matrix in the unfolding procedure is estimated by reweighting the simulated events at particle level to match the unfolded results obtained as described in Section 8. An alternative response matrix is de-finedusingthesereweightedMCeventsandisusedtounfoldthe Powheg+Pythia reconstructed events.The systematic uncertainty isestimatedbycomparingthisunfoldeddistributiontotheoriginal particle-level Powheg+Pythia prediction. The size of this uncer-taintyisatmost15%.

The experimental systematic uncertainty in the CW Z factors andintheunfoldingprocedureincludesuncertaintiesinthescale and resolution ofthe electron energy, muon momentum, jet en-ergyandEmissT ,aswellasuncertaintiesinthescalefactorsapplied tothesimulationinordertoreproducethetrigger,reconstruction, identificationandisolation efficienciesmeasured indata.The un-certainties inthe jetenergyscaleare obtainedfrom√s=13 TeV simulations and in situ measurements, similar to the ones de-scribed in Ref. [43]. The uncertainty in the jet energy resolu-tion is derived by extrapolating measurements in Run-1 data to √

s=13 TeV.The uncertaintyinthe EmissT isestimatedby propa-gatingtheuncertaintiesinthetransversemomentaofhardphysics objects and by applying momentum scale and resolution uncer-tainties to the track-based soft term. The uncertainty associated withpile-upmodellingisoftheorderof1% and canreachup to 2.9% inthe0-jet binofthe unfoldedjet multiplicity distribution. Forthemeasurementsofthe W charge-dependentcrosssections, anuncertaintyarisingfromthechargemisidentificationofleptons isalsoconsidered.Itaffectsonlyelectrons andleads toan uncer-tainty oflessthan0.05% intheratioofW+Z toWZ integrated

crosssectionsdeterminedbycombiningthefourdecaychannels. Thedominantcontributionamongtheexperimentalsystematic uncertainties in the eee and μee channels is due to the uncer-taintyintheelectronidentificationefficiency,contributingatmost 1.4%uncertaintytotheintegratedcrosssection,whileintheeμμ

(7)

and μμμchannelsitoriginatesfromthemuonreconstruction ef-ficiencyandis at most1.1%. The systematicuncertainties in the measuredcrosssectionsaredeterminedby repeatingtheanalysis afterapplyingappropriatevariationsforeachsourceofsystematic uncertaintytothesimulatedsamples.

Thedominantuncertaintyinthereduciblet¯t,W t andW W+j

background arises from the number of data and MC events in the control regions used to estimate the top-like processes and amounts to 32% of the estimated yield. An uncertainty of 2% is assignedduetothe extrapolationfromthe controlregions tothe

W±Z signalregion.

The statisticalprecision of 3% in the reducible Z+ j and

backgroundestimate is determined by the size ofthe NLTT, NTLT and NTTL categories in the Z control sample. Uncertainties due to the size ofthe sample used to derive the fake factoramount to 21% of the estimated Z +j and yield. An uncertainty of 15% isassignedtothecontributions fromprocesseswithatleast threepromptleptons, whicharesubtractedfromthesampleused toderivethefakefactor.Thishasan18% impactonthe Z+j and estimate.Theuncertaintyduetothesubtractionoftt,¯ W t and W W processesissmallerthan2%. Toaccountfordifferences be-tweentheregioninwhichthefakefactoriscalculatedandthe Z

controlsamplewhereitisapplied,includingthedifferentrelative contributionsfromZ+j andZγ processesineachregion,thefake factoriscalculatedusing MC eventsinboth regions,andthe full difference betweenthe two is takenasa systematic uncertainty, representing26%oftheestimatedZ+j and yield.Overall,the

Z+j and backgroundisestimatedwithaprecisionof38%. Atheoreticaluncertaintyinthe Z Z crosssectionof8%[45–48] is assigned as a global uncertainty in the amount of Z Z

back-groundpredictedbytheMCsimulation.Anadditionaluncertainty of3% to 6% is assigneddue to thecorrection applied to Z Z MC

eventswithunidentifiedleptons.

Theuncertaintyduetoother irreduciblebackgroundsourcesis evaluated by propagating the uncertainty in their MC cross sec-tions.Theseare 13% (12%)fortt W (t¯ ¯t Z )[37],20% for V V V [55] and15% fort Z [4].

Anuncertaintyin theintegratedluminosity of2.1% isapplied tothesignalnormalisationaswellastoallbackground contribu-tionsthat are estimatedpurelyusing MCsimulations. The uncer-taintyisderived followingamethodologysimilar tothat detailed in Refs. [56,57], from a calibration of the luminosity scale using

x– y beam-separationscans performedin August 2015. It has an effectof2.4% onthemeasuredcrosssections.

ThetotalsystematicuncertaintyintheW±Z fiducialcross sec-tion,excluding theluminosityuncertainty,variesbetween4% and 10% for the four different measurement channels, and is domi-natedbytheuncertaintyinthereduciblebackgroundestimate.The statisticaluncertaintyinthefiducialcross-sectionmeasurementis slightlylarger thanthe systematicuncertainty. Table 3showsthe statisticaluncertaintyandmain sourcesofsystematicuncertainty inthe W±Z fiducialcross section foreach of the fourchannels andtheircombination.

10. Cross-section measurements

The measured fiducial crosssections in the fourchannels are combinedusinga χ2 minimisationmethodthataccountsfor cor-relations betweenthe sources ofsystematicuncertainty affecting eachchannel[58–60].ThecombinationoftheW±Z crosssections inthefiducialphasespaceyieldsatotal χ2 perdegreeoffreedom (ndof)of χ2/ndof =6.9/3.ThecombinationsoftheW+Z andthe

WZ crosssections separately yield χ2/n

dof =5.3/3 and 2.0/3, respectively.

Table 3

Summaryoftherelativeuncertaintiesinthemeasuredfiducialcrosssectionσfid.

W±Z

foreachchannelandfortheircombination.Theuncertaintiesarereportedas per-centages. The decomposition ofthe total systematic uncertainty into the main sourcescorrelatedbetweenchannelsandthesourceuncorrelatedbetween chan-nelsisindicatedinthefirstrows.

eee μee eμμ μμμ Combined Relative uncertainties [%] e energy scale 0.5 0.2 0.3 <0.1 0.2 e id. efficiency 1.4 1.1 0.6 — 0.7 μmomentum scale <0.1 <0.1 <0.1 0.1 <0.1 μid. efficiency — 0.6 1.0 1.4 0.7 Emiss T and jets 0.3 0.4 0.8 0.7 0.6 Trigger <0.1 0.1 0.1 0.2 0.1 Pile-up 0.7 1.1 1.0 0.7 0.9

Misid. lepton background 10 4.6 4.8 3.2 3.6

Z Z background 1.0 0.7 0.6 0.7 0.7

Other backgrounds 0.5 0.5 0.3 0.3 0.4

Uncorrelated 2.2 1.3 1.4 1.7 0.8

Total sys. uncertainty 11 5.1 5.3 4.1 4.1

Luminosity 2.4 2.4 2.3 2.3 2.4

Statistics 14 11 10 8.8 5.1

Total 18 12 11 10 7.0

Combiningthefourchannelstoobtainaweightedmeanvalue, the cross section of W±Z production anddecay toa single lep-tonic channel with muons or electrons in the detector fiducial regionis

σWfid±.Z→ν=63.2±3.2 (stat.)±2.6 (sys.)±1.5 (lumi.) fb. (4) The SM NLO QCD prediction from Powheg+Pythia is 53.4+11..62(PDF)+12..16(scale) fb. The theoretical predictions are esti-matedusingtheCT10PDFsetandsettingthedynamicQCDscales,

μR and μF, equal to mW Z/2. The uncertainty in the theoretical prediction dueto thePDF isestimated usingthe eigenvectors of theCT10PDF setscaledto 68%confidencelevel(CL)andthe en-velope of the differences between the results obtained with the CT14[51],MMHT2014[52]andNNPDF3.0[53]NLOPDF sets.The QCD scaleuncertainty isestimatedconventionally by varying the scales μR and μF by factors of two around the nominal value of mW Z/2 with the constraint 0.5≤μRF≤2. The measured

W±Z productioncrosssectionsarecomparedtotheSMNLO pre-diction from Powheg+Pythia in Fig. 2 and all results for W±Z , W+Z and WZ final states are reported in Table 4. The mea-suredcrosssection islargerthantheSM prediction,asalsowere thecorrespondingcross-sectionmeasurementsperformedatlower centre-of-massenergiesbytheATLASCollaboration[3,4].

Using theintegratedfiducialcrosssection measured forW±Z

production at √s=8 TeV from Ref. [4], the ratio σWfid.±,13 TeVZ /

σWfid.±,8 TeVZ oftheW±Z productioncrosssectionsatthetwo centre-of-massenergiesof8 and13 TeV iscalculatedandyields

σWfid.±,13 TeVZ

σWfid.±,8 TeVZ =1.80±0.10 (stat.)±0.08 (sys.)±0.06 (lumi.). (5)

Alluncertaintiesaretreatedasuncorrelatedbetweenthe mea-surementsatthetwobeamenergies.Themeasuredratioisingood agreementwiththeStandardModelpredictionof1.78±0.03 from Powheg+Pythia.

TheratioofW+Z to WZ productioncrosssectionsis

σfid. W+Z→ν

σfid. WZ→ν

=1.39±0.14 (stat.)±0.03 (sys.). (6)

Most of the systematic uncertainties, and especially the lu-minosity uncertainty, cancel in the ratio, and the measurement

(8)

Fig. 2. Ratioofthemeasured W±Z integratedcrosssectionsinthefiducialphase spacetotheNLOSMpredictionfrom Powheg+Pythia ineachofthefourchannels andfortheircombination.Theinnerandoutererrorbarsonthedatapoints repre-sentthestatisticalandtotaluncertainties,respectively.TheNLOSMpredictionfrom Powheg+PythiausingtheCT10PDFsetisrepresentedbytheredline;theshaded violetbandisthetotaluncertaintyinthisprediction.(Forinterpretationofthe ref-erencestocolourinthisfigurelegend,thereaderisreferredtothewebversionof thisarticle.)

Table 4

Fiducialintegratedcrosssectioninfb,forW±Z ,W+Z andWZ production, mea-suredineach oftheeee, μee, eμμ,and μμμ channelsand allfour channels combined.Thestatistical(δstat.),totalsystematic(δsys.),luminosity(δlumi.)andtotal (δtot.)uncertaintiesaregiveninpercent.

Channel σfid. [fb] δstat. [%] δsys. [%] δlumi. [%] δtot. [%] σfid. W±Z→ν e±ee 50.5 14.2 10.6 2.4 17.8 μ±ee 55.1 11.1 5.1 2.4 12.4 e±μμ 75.2 9.5 5.3 2.3 11.1 μ±μμ 63.6 8.9 4.1 2.3 10.0 Combined 63.2 5.2 4.1 2.4 7.0 SM prediction 53.4 — — — 6.0 σfid. W+Z→ν e+ee 28.0 19.2 11.2 2.4 22.3 μ+ee 32.2 14.4 5.0 2.4 15.3 e+μμ 45.0 12.1 4.6 2.3 13.1 μ+μμ 36.5 11.6 4.1 2.3 12.5 Combined 36.7 6.7 3.9 2.3 8.1 SM prediction 31.8 — — — 5.8 σfid. WZ→ν eee 22.5 21.0 10.5 2.4 23.6 μee 22.9 17.5 5.8 2.4 18.5 eμμ 30.2 15.2 6.9 2.3 16.8 μμμ 27.1 13.7 5.0 2.4 14.7 Combined 26.1 8.1 4.7 2.4 9.6 SM prediction 21.6 — — — 7.9

is dominated by the statistical uncertainty. The measured cross-section ratios, for each channel and for their combination, are comparedin Fig. 3totheSMpredictionof1.47+00..0306,whichis cal-culatedwith Powheg+Pythia andtheCT10PDFset.

Thecombinedfiducialcrosssection isextrapolatedtothetotal phasespace.Theresultis

σWtot.±Z=50.6±2.6 (stat.)±2.0 (sys.)±0.9 (th.)±1.2 (lumi.) pb,

(7)

Fig. 3. Measuredratiosσfid. W+Z/σ

fid.

WZofW+Z andWZ integratedcrosssectionsin

thefiducialphasespaceineachofthefourchannelsandfortheircombination.The errorbarsonthedatapointsrepresentthetotaluncertainties,whicharedominated bythestatisticaluncertainties.TheNLOSMpredictionfrom Powheg+Pythia using theCT10PDFsetisrepresentedbytheredline;theshadedvioletbandisthetotal uncertaintyinthisprediction.(Forinterpretationofthereferencestocolourinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

where the theoretical uncertainty accounts for the uncertainties in the AW Z factor dueto the choice ofPDF set,QCD scales and parton shower model. The NLO SM prediction calculated with Powheg+Pythia is 42.4±0.8(PDF)±1.6(scale) pb.A recent cal-culation[7]oftheW±Z productioncrosssectionatNNLOinQCD withMATRIX,obtainedusingtheNNPDF3.0PDF setandwith μR and μF scales fixed to (mW +mZ)/2, yields 48.2+11..10(scale) pb, whichisinbetter agreementwiththemeasurement.Asthis pre-dictiondoesnotincludeeffectsofQEDfinal-stateradiation,a cor-rection factor of 0.972 asestimated from Powheg+Pythia is ap-plied.

Finally,theexclusive jetmultiplicity crosssection ispresented in Fig. 4 and compared to the predictions from Powheg+Pythia and Sherpa.Theshapeofthemeasuredcrosssectionasafunction of jet multiplicity is described well by Sherpa, but it is repro-duced poorly by Powheg+Pythia. The matrix-element calculation inthe Sherpa predictionincludesup tothreejetsatLO, whilein the Powheg+Pythia predictiononlytheleadingjetisincluded,and higherjetmultiplicitiesaredescribed bythepartonshower mod-els.

11. Conclusion

Measurements of W±Z production in √s=13 TeV pp col-lisions at the LHC are presented. The data were collected with the ATLAS detector in 2015 and correspond to an integrated luminosity of 3.2 fb−1. The measurements use leptonic decay modes of the gauge bosons to electrons or muons and are per-formed in a fiducial phase space closely matching the detector acceptance. The measured inclusive cross section in the fiducial region for one leptonic decay channel is σfid.

W±Z→ν=63.

3.2(stat.)±2.6(sys.)±1.5(lumi.) fb.TheNLOStandardModel pre-diction from Powheg+Pythia is 53.4+32..68 fb. The measured cross section is higher than the SM NLO prediction; a similar excess was foundinthecross-sectionmeasurementsperformedatlower centre-of-massenergiesbytheATLASCollaboration.

The ratioofthemeasuredcrosssectionsatthetwo centre-of-mass energies yields σWfid.±,13 TeVZ

fid.,8 TeV

W±Z =1.80±0.10(stat.)± 0.08(sys.)±0.06(lumi.), in good agreement with the SM NLO prediction of 1.78±0.03 from Powheg+Pythia. The W+Z and

(9)

Fig. 4. Themeasured W±Z differentialcrosssectioninthe fiducialphasespace asafunctionoftheexclusivejetmultiplicityofjetswithpT>25 GeV.Theinner

and outererror barson the data points representthe statisticaland total un-certainties,respectively. Themeasurementsarecomparedtothe predictionfrom Powheg+Pythia(redline)and Sherpa (dashedblueline).(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle.)

WZ production cross sections are measured separately in the fiducialphasespaceandare reported;their ratiois σfid.

W+Z→ν/ σfid.

WZ→ν =1.39±0.14(stat.)± 0.03(sys.). This result is in

agreement with the SM NLO expectation from Powheg+Pythia of 1.47+00..0306. The measured cross section extrapolated to the total phase space is 50.6±2.6(stat.)± 2.0(sys.)±0.9(th.) ± 1.2(lumi.) pb, in very good agreement with the SM NNLO pre-dictionfromMATRIXof48.2+11..10(scale) pb.

Finally, the W±Z production cross section is measured as a functionoftheexclusivejetmultiplicity andcomparedtotheSM predictionsof Powheg+Pythia and Sherpa.The Sherpa prediction is found to provide a better description of the data, at low and highjetmultiplicities.

Acknowledgements

We thankCERN for thevery successful operation ofthe LHC, aswell asthe support stafffromour institutions without whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia;ARC,Australia;BMWFW andFWF,Austria;ANAS, Azerbai-jan;SSTC,Belarus;CNPqandFAPESP,Brazil;NSERC,NRC andCFI, Canada;CERN;CONICYT,Chile;CAS,MOSTandNSFC,China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Re-public; DNRF andDNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Mo-rocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN,Poland;FCT,Portugal;MNE/IFA,Romania;MESofRussiaand NRCKI, RussianFederation;JINR;MESTD, Serbia;MSSR, Slovakia; ARRSandMIZŠ,Slovenia; DST/NRF, SouthAfrica; MINECO,Spain; SRC and Knut and Alice Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Tai-wan;TAEK, Turkey;STFC, United Kingdom;DOE andNSF, United

States of America. In addition, individual groups and members have received support fromBCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, andthe Ontario Innovation Trust, Canada;EPLANET,ERC,FP7, Horizon2020andMarie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex andIdex,ANR,RégionAuvergneandFondationPartagerleSavoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF andMinerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and LeverhulmeTrust,UnitedKingdom.

The crucial computingsupport from all WLCG partnersis ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresourcesare listedin Ref.[61].

References

[1]CDFCollaboration,T.Aaltonen,etal.,Measurementofthe W Z crosssection andtriplegaugecouplingsinpp collisionsat√s=1.96 TeV,Phys.Rev.D86 (2012)031104,arXiv:1202.6629[hep-ex].

[2]D0Collaboration,V.M.Abazov,etal.,AmeasurementoftheW Z andZ Z

pro-ductioncrosssectionsusingleptonicfinalstatesin8.6 fb−1 ofpp collisions,

Phys.Rev.D85(2012)112005,arXiv:1201.5652[hep-ex].

[3]ATLASCollaboration,MeasurementofW Z productioninproton–proton colli-sionsat√s=7 TeV withtheATLASdetector,Eur.Phys.J.C72(2012)2173, arXiv:1208.1390[hep-ex].

[4]ATLASCollaboration,MeasurementsofW±Z productioncrosssectionsinpp

collisions at √s=8 TeV withthe ATLAS detectorand limitson anomalous gaugebosonself-couplings,Phys.Rev.D93(2016)092004,arXiv:1603.02151 [hep-ex].

[5]J.Ohnemus,Order-αscalculationofhadronicW±Z production,Phys.Rev.D44

(1991)3477.

[6]S.Frixione,P.Nason,G.Ridolfi,StrongcorrectionstoW Z productionathadron colliders,Nucl.Phys.B383(1992)3.

[7]M.Grazzini,S.Kallweit,D.Rathlev,M.Wiesemann,W±Z productionathadron collidersinNNLOQCD,arXiv:1604.08576[hep-ph],2016(wethankM. Grazz-ini,S.Kallweit,D.RathlevandM.WiesemannforprovidingtheNNLO predic-tionsforthetotalW±Z crosssection).

[8]ATLASCollaboration,TheATLASexperimentattheCERNLargeHadronCollider, J.Instrum.3(2008)S08003.

[9] ATLASCollaboration,ATLAS insertableB-layertechnicaldesignreport, CERN-LHCC-2010-013.ATLAS-TDR-19,CERN,2010,http://cds.cern.ch/record/1291633. [10] ATLASCollaboration,ATLASinsertableB-layertechnicaldesignreport adden-dum,CERN-LHCC-2012-009.ATLAS-TDR-19-ADD-1,Addendumto CERN-LHCC-2010-013,ATLAS-TDR-019,CERN,2012,http://cds.cern.ch/record/1451888. [11]K.A.Olive,etal.,Reviewofparticlephysics,Chin.Phys.C38(2014)090001.

[12]M.Cacciari,G.P.Salam,G.Soyez,Theanti-k(t)jetclusteringalgorithm,J.High EnergyPhys.0804(2008)063,arXiv:0802.1189[hep-ph].

[13]ATLAS Collaboration,The ATLASsimulationinfrastructure,Eur.Phys. J.C70 (2010)823,arXiv:1005.4568[physics.ins-det].

[14]S.Agostinelli,etal.,GEANT4:asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250–303.

[15]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820[hep-ph].

[16]A.D.Martin,W.J.Stirling,R.S.Thorne,G.Watt,PartondistributionsfortheLHC, Eur.Phys.J.C63(2009)189,arXiv:0901.0002[hep-ph].

[17] ATLAS Collaboration, Summary of ATLAS Pythia 8 Tunes, ATL-PHYS-PUB-2012-003,CERN,2012,http://cds.cern.ch/record/1474107.

[18] ATLAS Collaboration, Electron identification measurements in ATLAS using s=13 TeV datawith50nsbunchspacing,ATL-PHYS-PUB-2015-041,http:// cdsweb.cern.ch/record/2048202,2015.

[19] ATLASCollaboration,ElectronefficiencymeasurementswiththeATLAS detec-torusingthe2012LHCproton–protoncollisiondata,ATLAS-CONF-2014-032, CERN,2014,http://cds.cern.ch/record/1706245.

[20] ATLASCollaboration,MuonreconstructionperformanceoftheATLASdetector inproton–protoncollisiondataat√s=13 TeV,Eur.Phys.J.C76(2016)292,

(10)

[21]ATLASCollaboration,Electronand photonenergycalibrationwiththeATLAS detectorusingLHCRun1data,Eur.Phys.J.C74(2014)3071,arXiv:1407.5063 [hep-ex].

[22]P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.0411(2004)040,arXiv:hep-ph/0409146.

[23]S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.0711(2007) 070,arXiv:0709.2092[hep-ph].

[24]S. Alioli, et al., Ageneral framework for implementingNLOcalculations in showerMonteCarloprograms:thePOWHEGBOX,J.HighEnergyPhys.1006 (2010)043,arXiv:1002.2581[hep-ph].

[25]T.Melia,etal.,W+W−,W Z andZ Z productioninthePOWHEGBOX,J.High EnergyPhys.1111(2011)078,arXiv:1107.5051[hep-ph].

[26]ATLASCollaboration,MeasurementoftheZ/y∗bosontransversemomentum distributioninpp collisionsat √s=7 TeV withtheATLAS detector,J.High EnergyPhys.1409(2014)145,arXiv:1406.3660[hep-ex].

[27]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241[hep-ph].

[28]J.Pumplin, etal.,Newgeneration ofpartondistributionswith uncertainties fromglobalQCDanalysis,J. HighEnergy Phys.0207(2002)012, arXiv:hep-ph/0201195.

[29]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.0902 (2009)007,arXiv:0811.4622[hep-ph].

[30]S.Schumann,F.Krauss,ApartonshoweralgorithmbasedonCatani–Seymour dipolefactorisation, J. HighEnergy Phys.0803 (2008)038, arXiv:0709.1027 [hep-ph].

[31]T.Sjöstrand,S.Mrenna,P.Z.Skands,PYTHIA6.4physicsandmanual,J.High EnergyPhys.0605(2006)026,arXiv:hep-ph/0603175.

[32]P.Z.Skands,TuningMonteCarlogenerators:theperugiatunes,Phys.Rev.D82 (2010)074018,arXiv:1005.3457[hep-ph].

[33]S.Höche,etal.,QCDmatrixelementsandtruncatedshowers,J.HighEnergy Phys.0905(2009)053,arXiv:0903.1219[hep-ph].

[34]T.Gleisberg,S.Höche,Comix,anewmatrixelementgenerator,J.HighEnergy Phys.0812(2008)039,arXiv:0808.3674[hep-ph].

[35]M.Schönherr,F.Krauss,Softphoton radiationinparticledecaysinSHERPA, J. HighEnergyPhys.0812(2008)018,arXiv:0810.5071[hep-ph].

[36]S.Höche,etal.,QCDmatrixelements+partonshowers.TheNLOcase,J.High EnergyPhys.1304(2013)027,arXiv:1207.5030[hep-ph].

[37]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.1407(2014)079,arXiv:1405.0301[hep-ph].

[38]R.D.Ball,etal.,PartondistributionswithLHCdata,Nucl.Phys.B867(2013) 244,arXiv:1207.1303[hep-ph].

[39] ATLASCollaboration,2015start-uptriggermenuandinitialperformance as-sessment of the ATLAS trigger using Run-2 data, ATL-DAQ-PUB-2016-001,

http://cds.cern.ch/record/2136007,2016.

[40]ATLASCollaboration,TopologicalcellclusteringintheATLAScalorimetersand itsperformanceinLHCRun1,Eur.Phys.J.C(2016),submittedforpublication, arXiv:1603.02934[hep-ex],CERN-PH-EP-2015-304.

[41] ATLASCollaboration,Selectionofjetsproducedin13TeVproton–proton col-lisionswiththeATLASdetector,ATLAS-C0NF-2015-029,http://cdsweb.cern.ch/ record/2037702,2015.

[42]ATLASCollaboration,Performanceofpile-upmitigationtechniquesforjetsin

pp collisionsat√s=8 TeV usingtheATLASdetector,Nucl.Instrum.Methods A824(2016)267–370.

[43] ATLASCollaboration, Jetcalibrationand systematicuncertaintiesfor jets re-constructedintheATLASdetectorat√s=13 TeV,ATL-PHYS-PUB-2015-015,

http://cds.cern.ch/record/2037613,2015.

[44] ATLAS Collaboration, Performance ofmissing transverse momentum recon-structionwith the ATLAS detector in the first proton–proton collisions at √

s=13 TeV,ATL-PHYS-PUB-2015-027,http://cdsweb.cern.ch/record/2037904, 2015.

[45]F.Cascioli,etal.,Z Z productionathadroncollidersinNNLOQCD,Phys.Lett.B 735(2014)311,arXiv:1405.2219[hep-ph].

[46]A.Bierweiler,T.Kasprzik,J.H.Kühn,Vector-bosonpairproductionattheLHCto

O(α3

)accuracy,J.HighEnergyPhys.1312(2013)071,arXiv:1305.5402 [hep-ph].

[47]J.Baglio,L.D.Ninh,M.M.Weber,Massivegaugebosonpairproductionatthe LHC: anext-to-leading order story, Phys. Rev.D 88 (2013) 113005, arXiv: 1307.4331.

[48]F.Caola,etal.,QCDcorrectionstoZZproductioningluonfusionattheLHC, Phys.Rev.D92(2015)094028,arXiv:1509.06734[hep-ph].

[49]G.D’Agostini,AmultidimensionalunfoldingmethodbasedonBayes’theorem, Nucl.Instrum.MethodsA362(1995)487.

[50]T.Adye,Unfoldingalgorithms andtestsusingRooUnfold,in:Proceedingsof thePHYSTAT2011Workshop,CERN,Geneva,Switzerland,2011,p. 313,arXiv: 1105.1160[physics.data-an].

[51]S.Dulat,et al.,New partondistributionfunctionsfroma globalanalysisof quantumchromodynamics,Phys.Rev.D93(2016)033006,arXiv:1506.07443 [hep-ph].

[52]L.A.Harland-Lang,etal.,PartondistributionsintheLHCera:MMHT2014PDFs, Eur.Phys.J.C75(2015)204,arXiv:1412.3989[hep-ph].

[53]R.D.Ball,etal.,PartondistributionsfortheLHCRunII,J.HighEnergyPhys. 1504(2015)040,arXiv:1410.8849[hep-ph].

[54]J.Butterworth,etal.,PDF4LHCrecommendationsforLHCRunII,J.Phys.G43 (2016)023001,arXiv:1510.03865[hep-ph].

[55] ATLASCollaboration,Multi-bosonsimulationfor13TeVATLASanalyses, ATL-PHYS-PUB-2016-002,http://cds.cern.ch/record/2119986,2016.

[56]ATLASCollaboration, Improved luminositydetermination inpp collisionsat

sqrt(s)=7 TeV usingtheATLASdetectorattheLHC,Eur.Phys.J.C73(2013) 2518,arXiv:1302.4393[hep-ex].

[57]ATLASCollaboration,Luminositydeterminationinpp collisionsat√s=8 TeV usingtheATLASdetectorattheLHC,Eur.Phys.J.C(2016),submittedfor pub-lication,arXiv:1608.03953[hep-ex],CERN-PH-EP-2016-117.

[58]A.Glazov,AveragingofDIScrosssectiondata,AIPConf.Proc.792(2005)237.

[59]H1Collaboration,F.D.Aaron,etal.,Measurementoftheinclusiveep scatter-ingcrosssectionat low Q2 and x atHERA, Eur.Phys. J.C63(2009)625,

arXiv:0904.0929[hep-ex].

[60]H1Collaboration, ZEUSCollaboration, F.D.Aaron, etal., Combined measure-mentandQCDanalysisoftheinclusiveepscatteringcrosssectionsatHERA, J. HighEnergyPhys.1001(2010)109,arXiv:0911.0884[hep-ex].

[61] ATLAS computing acknowledgements 2016–2017, Tech. rep. ATL-GEN-PUB-2016-002,CERN,2016,https://cds.cern.ch/record/2202407.

ATLAS Collaboration

M. Aaboud135d,G. Aad86,B. Abbott113,J. Abdallah64,O. Abdinov12,B. Abeloos117,R. Aben107, O.S. AbouZeid137,N.L. Abraham149, H. Abramowicz153,H. Abreu152,R. Abreu116,Y. Abulaiti146a,146b, B.S. Acharya163a,163b,a, L. Adamczyk40a,D.L. Adams27,J. Adelman108, S. Adomeit100, T. Adye131, A.A. Affolder75, T. Agatonovic-Jovin14,J. Agricola56, J.A. Aguilar-Saavedra126a,126f, S.P. Ahlen24, F. Ahmadov66,b,G. Aielli133a,133b,H. Akerstedt146a,146b,T.P.A. Åkesson82, A.V. Akimov96,

G.L. Alberghi22a,22b,J. Albert168, S. Albrand57,M.J. Alconada Verzini72, M. Aleksa32,I.N. Aleksandrov66, C. Alexa28b,G. Alexander153, T. Alexopoulos10,M. Alhroob113, B. Ali128,M. Aliev74a,74b, G. Alimonti92a, J. Alison33,S.P. Alkire37,B.M.M. Allbrooke149, B.W. Allen116,P.P. Allport19,A. Aloisio104a,104b,

A. Alonso38,F. Alonso72,C. Alpigiani138, M. Alstaty86,B. Alvarez Gonzalez32, D. Álvarez Piqueras166, M.G. Alviggi104a,104b, B.T. Amadio16,K. Amako67, Y. Amaral Coutinho26a,C. Amelung25,D. Amidei90, S.P. Amor Dos Santos126a,126c, A. Amorim126a,126b, S. Amoroso32, G. Amundsen25,C. Anastopoulos139, L.S. Ancu51, N. Andari108, T. Andeen11, C.F. Anders59b,G. Anders32,J.K. Anders75,K.J. Anderson33, A. Andreazza92a,92b,V. Andrei59a,S. Angelidakis9, I. Angelozzi107,P. Anger46,A. Angerami37, F. Anghinolfi32, A.V. Anisenkov109,c, N. Anjos13,A. Annovi124a,124b, C. Antel59a, M. Antonelli49, A. Antonov98,∗,F. Anulli132a, M. Aoki67, L. Aperio Bella19,G. Arabidze91,Y. Arai67,J.P. Araque126a,

(11)

A.T.H. Arce47, F.A. Arduh72,J-F. Arguin95, S. Argyropoulos64, M. Arik20a, A.J. Armbruster143, L.J. Armitage77, O. Arnaez32, H. Arnold50, M. Arratia30,O. Arslan23, A. Artamonov97, G. Artoni120, S. Artz84,S. Asai155, N. Asbah44,A. Ashkenazi153,B. Åsman146a,146b, L. Asquith149, K. Assamagan27, R. Astalos144a,M. Atkinson165, N.B. Atlay141,K. Augsten128,G. Avolio32,B. Axen16,M.K. Ayoub117, G. Azuelos95,d,M.A. Baak32,A.E. Baas59a,M.J. Baca19, H. Bachacou136,K. Bachas74a,74b, M. Backes32,

M. Backhaus32,P. Bagiacchi132a,132b,P. Bagnaia132a,132b,Y. Bai35a, J.T. Baines131, O.K. Baker175, E.M. Baldin109,c, P. Balek171,T. Balestri148, F. Balli136,W.K. Balunas122,E. Banas41,Sw. Banerjee172,e, A.A.E. Bannoura174,L. Barak32,E.L. Barberio89, D. Barberis52a,52b,M. Barbero86,T. Barillari101, M-S Barisits32, T. Barklow143,N. Barlow30,S.L. Barnes85,B.M. Barnett131, R.M. Barnett16, Z. Barnovska5,A. Baroncelli134a,G. Barone25,A.J. Barr120, L. Barranco Navarro166, F. Barreiro83, J. Barreiro Guimarães da Costa35a,R. Bartoldus143,A.E. Barton73, P. Bartos144a,A. Basalaev123,

A. Bassalat117, R.L. Bates55, S.J. Batista158, J.R. Batley30, M. Battaglia137,M. Bauce132a,132b,F. Bauer136, H.S. Bawa143,f,J.B. Beacham111,M.D. Beattie73, T. Beau81, P.H. Beauchemin161, P. Bechtle23,

H.P. Beck18,g,K. Becker120, M. Becker84, M. Beckingham169, C. Becot110, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov66,M. Bedognetti107, C.P. Bee148,L.J. Beemster107, T.A. Beermann32, M. Begel27,

J.K. Behr44,C. Belanger-Champagne88,A.S. Bell79,G. Bella153, L. Bellagamba22a, A. Bellerive31, M. Bellomo87, K. Belotskiy98,O. Beltramello32, N.L. Belyaev98,O. Benary153,D. Benchekroun135a, M. Bender100, K. Bendtz146a,146b, N. Benekos10,Y. Benhammou153, E. Benhar Noccioli175, J. Benitez64, D.P. Benjamin47,J.R. Bensinger25,S. Bentvelsen107,L. Beresford120,M. Beretta49, D. Berge107,

E. Bergeaas Kuutmann164,N. Berger5, J. Beringer16,S. Berlendis57,N.R. Bernard87, C. Bernius110, F.U. Bernlochner23, T. Berry78,P. Berta129,C. Bertella84, G. Bertoli146a,146b, F. Bertolucci124a,124b,

I.A. Bertram73,C. Bertsche44, D. Bertsche113,G.J. Besjes38,O. Bessidskaia Bylund146a,146b, M. Bessner44, N. Besson136,C. Betancourt50,S. Bethke101,A.J. Bevan77,R.M. Bianchi125,L. Bianchini25, M. Bianco32, O. Biebel100,D. Biedermann17, R. Bielski85, N.V. Biesuz124a,124b,M. Biglietti134a,

J. Bilbao De Mendizabal51, T.R.V. Billoud95, H. Bilokon49,M. Bindi56, S. Binet117, A. Bingul20b, C. Bini132a,132b, S. Biondi22a,22b,D.M. Bjergaard47, C.W. Black150, J.E. Black143,K.M. Black24,

D. Blackburn138, R.E. Blair6, J.-B. Blanchard136,J.E. Blanco78, T. Blazek144a,I. Bloch44, C. Blocker25, W. Blum84,∗, U. Blumenschein56,S. Blunier34a,G.J. Bobbink107, V.S. Bobrovnikov109,c,S.S. Bocchetta82, A. Bocci47,C. Bock100,M. Boehler50,D. Boerner174,J.A. Bogaerts32,D. Bogavac14,

A.G. Bogdanchikov109, C. Bohm146a,V. Boisvert78, P. Bokan14, T. Bold40a,A.S. Boldyrev163a,163c, M. Bomben81,M. Bona77,M. Boonekamp136,A. Borisov130,G. Borissov73,J. Bortfeldt32,

D. Bortoletto120, V. Bortolotto61a,61b,61c,K. Bos107, D. Boscherini22a,M. Bosman13, J.D. Bossio Sola29, J. Boudreau125, J. Bouffard2, E.V. Bouhova-Thacker73,D. Boumediene36,C. Bourdarios117,S.K. Boutle55, A. Boveia32, J. Boyd32, I.R. Boyko66,J. Bracinik19,A. Brandt8, G. Brandt56,O. Brandt59a, U. Bratzler156, B. Brau87,J.E. Brau116, H.M. Braun174,∗, W.D. Breaden Madden55,K. Brendlinger122, A.J. Brennan89, L. Brenner107,R. Brenner164, S. Bressler171,T.M. Bristow48,D. Britton55,D. Britzger44, F.M. Brochu30, I. Brock23,R. Brock91,G. Brooijmans37,T. Brooks78, W.K. Brooks34b, J. Brosamer16, E. Brost108, J.H Broughton19, P.A. Bruckman de Renstrom41, D. Bruncko144b, R. Bruneliere50,A. Bruni22a, G. Bruni22a,L.S. Bruni107, BH Brunt30,M. Bruschi22a,N. Bruscino23,P. Bryant33,L. Bryngemark82, T. Buanes15,Q. Buat142,P. Buchholz141, A.G. Buckley55, I.A. Budagov66,F. Buehrer50, M.K. Bugge119, O. Bulekov98, D. Bullock8,H. Burckhart32,S. Burdin75,C.D. Burgard50,B. Burghgrave108, K. Burka41, S. Burke131, I. Burmeister45,J.T.P. Burr120,E. Busato36,D. Büscher50,V. Büscher84,P. Bussey55, J.M. Butler24,C.M. Buttar55,J.M. Butterworth79,P. Butti107,W. Buttinger27, A. Buzatu55,

A.R. Buzykaev109,c, S. Cabrera Urbán166, D. Caforio128,V.M. Cairo39a,39b, O. Cakir4a, N. Calace51, P. Calafiura16,A. Calandri86,G. Calderini81,P. Calfayan100, G. Callea39a,39b, L.P. Caloba26a, S. Calvente Lopez83,D. Calvet36,S. Calvet36, T.P. Calvet86,R. Camacho Toro33, S. Camarda32, P. Camarri133a,133b, D. Cameron119,R. Caminal Armadans165,C. Camincher57, S. Campana32, M. Campanelli79,A. Camplani92a,92b,A. Campoverde141, V. Canale104a,104b, A. Canepa159a, M. Cano Bret35e,J. Cantero114,R. Cantrill126a, T. Cao42,M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, M. Capua39a,39b, R. Caputo84,R.M. Carbone37, R. Cardarelli133a, F. Cardillo50, I. Carli129, T. Carli32, G. Carlino104a, L. Carminati92a,92b, S. Caron106,E. Carquin34b,G.D. Carrillo-Montoya32, J.R. Carter30,J. Carvalho126a,126c,D. Casadei19, M.P. Casado13,h, M. Casolino13,D.W. Casper162,

Figure

Fig. 1. The distributions for the sum of all channels of the kinematic variables (a) the transverse momentum of the reconstructed Z boson p T Z , (b) the reconstructed Z boson mass m Z , (c) the transverse mass of the reconstructed W boson m T W and (d) th
Fig. 2. Ratio of the measured W ± Z integrated cross sections in the fiducial phase space to the NLO SM prediction from Powheg+Pythia in each of the four channels and for their combination
Fig. 4. The measured W ± Z differential cross section in the fiducial phase space as a function of the exclusive jet multiplicity of jets with p T &gt; 25 GeV

References

Related documents

Flertalet av studiens pedagoger nämner också att barnen även får ha inflytande när det ska lånas böcker från biblioteket eller bokbussen, dock inte på

Då är det viktigt att lärare har en bra kontakt med eleverna, det kan vara helt avgörande för hur en elev väljer en inriktning. Jag skrev innan att en bra lärare kan påverka elever

En viktig riskfaktor för psykisk ohälsa bland barn och ungdomar i särskilt utsatta-, utsatta- och riskområden, är den socioekonomiska utsattheten, vilket speglas i resultatet i

Kommunikation ansåg både sjuksköterskor och patienter vara viktigt för att uppnå patientdelaktighet (Ekdahl et al, 2010; Larsson et al, 2007; Sahlsten et al, 2005a)..

Cumulative survival of the analysed stepwise caries removal registrations in relation to time in months for tooth groups plotted as a function with the aid of Kaplan-Meier

Realizing the ECs vision requires enabling several processes including the automated interpretation of user goals, the dynamic dis- covery of available things, the automated

När bildandet av miljögruppen och företagets miljöledningssystem introducerades i början på 2000-talet i Skövdebostäder så marknadsförde företaget sitt miljöarbete på

Detta är inte bara ett tecken på att konsumtionen är en del i dagens ungdomskultur utan även ett sätt för ungdomar att skapa gemenskap i