• No results found

Experiments  with  precipitation  of  silica  from  waste  water  at  Hellisheiðarvirkjun

N/A
N/A
Protected

Academic year: 2021

Share "Experiments  with  precipitation  of  silica  from  waste  water  at  Hellisheiðarvirkjun"

Copied!
70
0
0

Loading.... (view fulltext now)

Full text

(1)

                   

Experiments  with  precipitation  of  silica  from  waste  water  at  

Hellisheiðarvirkjun  

 

      2014-­‐12-­‐15   Final  report                        Instructors:  

Vera  Sólveig  Ólafsdóttir               Ingvi  Gunnarsson  

Examiner  Per  Alvfors                 Orkuveita  Reykjavík  

       Kungliga  Tekniska  Högskolan           Einar  Jón  Ásjörnsson  

(2)

Abstract    

This  report  is  about  the  experiments  with  mixing  of  the  separated  water  and  the  vacuum  pump  seal   water   at   Hellisheiði   power   plant.   This   is   done   to   prevent   silica   scaling   and   clogging   in   pipes   and   reinjection   wells   as   well   as   eliminating   vacuum   pump   seal   water   from   the   plant.   The   experiments   were  done  in  four  stages:  the  first  stage  comprised  of  tests  with  different  flows  of  separated  water  at   70°C,   the   second   stage   was  carried   out   by   mixing   the   separated   water   at   70°C   and   the   seal   water   with   different   amounts   of   the   seal   water,   the   third   and   the   fourth   stages   were   like   the   first   and   second   but   with   the   separated   water   at   120°C.   The   results   show   that   this   method   is   good   if   the   mixture  is  around  50/50  separated  water  and  seal  water,  to  control  the  silica  scaling  in  the  separated   water  and  to  be  able  to  reinject  the  seal  water  with  the  separated  water.  This  does  not  eliminate  the   silica  scaling  in  all  of  the  separated  water  because  the  amount  of  separated  water  is  much  more  than   the  amount  of  seal  water  that  comes  from  the  plant.  

(3)

Table  of  Contents  

Abstract  ...  2  

Table  of  Equations  ...  4  

Table  of  Figures  ...  4  

Introduction  and  motivation  ...  5  

The  power  plant  ...  5  

Background  ...  7  

Other  work  done  in  the  field  ...  8  

Ageing  of  geothermal  waste  water  ...  9  

Environmental  aspects  ...  9   Surface  disturbance  ...  9   Noise  ...  10   Chemical  pollution  ...  10   Carbon  dioxide  ...  10   Sulphur  ...  10   Thermal  effects  ...  10  

Physical  effects  of  fluid  withdrawal  ...  11  

Materials  and  methods  ...  11  

Silicon  monomer  ...  12  

Hydrogen  sulphide  ...  12  

Total  carbonate  ...  13  

Total  silica  ...  13  

Total  iron  ...  13  

Ferrous  iron  Fe+2  ...  14  

Results  and  discussion  ...  14  

Results  with  the  separated  water  at  70°C  ...  14  

Results  with  separated  water  at  120°C  ...  17  

Conclusion  and  further  work  ...  19  

What  I  would  do  differently  if  I  did  this  experiment  again  ...  20  

Bibliography  ...  21  

Apendix  1  ...  22    

(4)

Table  of  Equations  

Equation  1  Dissolution  of  quartz  ...  7  

Equation  2  Formation  of  metal  silicate  no1  ...  7  

Equation  3  Formation  of  metal  silicate  no2  ...  7  

Equation  4  Polymerization  reaction  no1  (Gallup,  2011)  ...  8  

Equation  5  Polymerization  reaction  no2  (Gallup,  2011)  ...  8  

Equation  6  is  for  calculating  the  concentration  of  hydrogen  sulphide  ...  13  

Equation  7  is  for  calculating  the  concentration  of  carbon  dioxide  by  using  theory.  ...  13  

Equation  8  is  for  calculation  the  concentration  of  carbon  dioxide  by  using  acid  and  base.  ...  13  

Equation  9  Calculation  of  concentration  of  silica  by  using  the  chlorine  concentration.  ...  15  

 

Table  of  Figures  

Figure  1  production  process  of  Hellisheiðavirkjun  (or_ffrl_web2,  2014)  ...  6  

Figure  2  Shows  operation  line  for  Hellisheiði  power  plant  and  the  solubility  lines  for  amorphous  silica   and  quarts  (Gunnarsson,  2014).  ...  7  

Figure  3  the  effect  of  seal  water  on  the  saturation  levels  for  silicon  for  different  temperatures  for  the   separated  water.  (Gunnarsson,  2014)  ...  8  

Figure  4  experimental  setup.  The  separated  water  and  the  seal  water  are  mixed  and  lead  through  the   tank.  ...  12  

Figure  5  Amorphous  silica  scaling  and  polimerization  with  separated  water  at  70°C  ...  15  

Figure  6  Total  silica  in  the  separated  water  at  70°C  and  the  mixture  with  seal  water.  ...  16  

Figure  7  the  iron  in  the  separated  water  at  70°C  and  in  the  mixture  with  seal  water.  The  red  line  is  the   corrosion  threshold  for  the  pipes  ...  16  

Figure  8  the  pH  as  function  of  the  mixing  ratio  for  separated  water  at  70°C.  The  red  line  is  the   corrosion  threshold  for  the  pipes.  ...  17  

Figure  9  Amorphous  silica  scaling  with  separated  water  at  120°C  ...  18  

Figure  10  Total  silica  in  the  separated  water  at  120°C  and  the  mixture  with  seal  water.  ...  18  

Figure  11  the  iron  in  the  separated  water  at  120°C  and  in  the  mixture  with  seal  water.  The  red  line  is   the  corrosion  threshold  for  the  pipes.  ...  19  

Figure  12  The  pH  as  function  of  the  mixing  ratio  for  separated  water  at  120°C.  The  red  line  is  the   corrosion  threshold  for  the  pipes.  ...  19  

(5)

Introduction  and  motivation  

The  power  plant  

Orkuveita  Reykjavíkur  was  first  founded  in  1909  with  the  sole  purpose  of  distributing  clean  water  to   homes   in   Reykjavík.   In   1921,   power   production   was   started   in   the   river   Elliðará   in   Elliðarárdal   in   Reykjavík  and  in  1930  the  company  started  distributing  heat  in  the  form  of  warm  water  from  the  hot   pools  in  Laugardal.  Today  the  company  runs  the  largest  geothermal  system  in  the  world.  The  source   of  the  water  in  the  district  heating  system  comes  from,  among  other  places,  Nesjavellir  power  station   that   has   300   MW   thermal   input   and   Hellisheiði   power   station   that   has   133   MW   thermal   input   (Starfsemi:  Orkuveita  Reykjavíkur,  2014).  

Hellisheiði  power  plant  is  owned  by  Orkuveita  Reykjavíkur,  but  in  January  2014  its  daughter  company   Orka   náttúrunnar   took   over   the   running   of   the   plant.   This   was   done   to   accommodate   changes   in   Icelandic   law.   Orka   náttúrunnar   runs   one   hydroelectric   power   plant   and   two   geothermal   power   plants.  Both  of  the  geothermal  power  plants  are  situated  in  the  Hengill  area.  The  geothermal  area  for   the  Hellisheiði  power  plant  is  south  of  Hengill.  The  area  is  divided  up  into  two  production  areas.  The   first  one  is  the  upper  area  that  is  situated  above  Hellisskarð  and  the  second  one  is  the  lower  area   that  is  situated  below  Hellisskarð  and  Skarðsmýrafjall.  Hellisheiði  power  plant  can  produce  303  MW   of  electricity  and  133  MW  of  thermal  energy.  Hellisheiði  power  plant  can  expand  its  thermal  capacity   to  400  MW  in  the  future  if  there  is  a  need  for  hot  water  in  the  capital  (Virkjanir:  Orka  náttúrunnar,   2014).  

The  process  at  Hellisheiði  power  plants  (see  Figure  1)  starts  at  the  boreholes.  The  holes  are  about   3  km  deep  and  can  be  either  vertically  or  directionally  drilled.  Directional  drilling  is  environmentally   friendly  because  it  minimizes  the  impact  on  the  surface.  It  is  possible  to  drill  about  1200  m  from  the   drill   side   using   directional   drilling.   The   borehole   liquid   is   a   mixture   of   liquid   and   steam   at   a   temperature  of  around  300  °C.  Each  drill  hole  has  a  muffler  attached  to  it  to  dampen  sound  in  case  of   an  emergency  stop  in  the  production  line.  The  liquid  and  steam  mixture  is  then  directed  into  a  steam   separator.  There  the  steam  and  liquid  are  separated.  The  steam  is  used  for  electricity  production  and   the  liquid,  now  called  the  separated  water,  is  used  for  production  of  hot  water.  The  separated  water   is  heavier  then  the  steam,  and  will  fall  to  the  bottom  and  flow  out  of  there  while  the  steam  will  flow   out  at  the  top  of  the  separator.  The  pressure  of  the  steam  will  then  be  regulated  by  a  control  valve   that  can  let  out  a  part  of  the  steam  through  a  hood.  The  rest  of  the  steam  flows  toward  the  steam   dryer.  The  dryer  eliminates  any  liquid  that  might  still  be  present  in  the  steam  by  filtration.  After  that,   the   steam   flows   into   the   electricity-­‐generating   unit.   The   unit   is   composed   of   a   turbine   and   a   generator.  The  steam  will  flow  into  the  turbine.  When  the  pressure  is  lowered  the  thermal  energy   gets  released  and  that  is  what  is  producing  the  electricity  in  the  generator.  The  electric  energy  is  then   put  through  a  transformer  to  change  the  voltage  from  220  V  to  220000  V  to  prevent  energy  losses   along   the   way   to   consumers   in   Reykjavík.   Before   the   electric   energy   gets   to   users   the   voltage   is   changed  back  to  220  V  in  stages.  The  steam  from  the  turbine  flows  into  the  steam  condenser.  The   condenser  works  in  conjunction  with  the  cooling  towers.  The  condenser  uses  cold  water  to  cool  the   steam  down.  This  cold  water  comes  from  a  closed  circuit  with  the  cooling  towers.  The  cooling  towers   get   hot   water   from   the   condenser,   cool   it   down   and   give   the   condenser   the   cold   water   back.   The   cooling  towers  provide  the  condenser  with  constant  cool  water  so  that  the  condenser  can  condense   the  steam.  The  condenser  also  heats  fresh  ground  water  up  to  50°C  to  use  in  district  heating.  The   flow  of  condensate  that  comes  from  the  power  plant  is  ca  500  kg/s.  Part  of  the  condensate  is  used  in   the  operations  of  the  vacuum  pumps.  The  pumps  are  seven  and  the  vacuum  pump’s  seal  water  that   comes  from  them  is  ca  77  kg/s.  The  separated  water  from  the  separator  goes  through  a  control  valve   that  determines  how  much  the  pressure  fall  is.  With  less  pressure  the  separated  water  boils  again   and  makes  more  steam  that  can  be  used  for  electricity  production.  The  mixture  then  flows  into  a  low   pressure  separator  that  separates  the  steam  from  the  separated  water.  The  low-­‐pressure  steam  goes   through  the  same  process  as  the  high  pressure  steam  did.  The  description  of  the  process  is  in  the  text  

(6)

ground   water   for   district   heating.   The   separated   water   from   the   low-­‐pressure   separator   is   ca   600   kg/s.  It  flows  towards  the  heat  exchanger  and  on  the  way  there  is  a  control  valve  that  controls  how   much   of   the   separated   water   flow   can   get   into   the   heat   exchanger.   There   is   also   another   control   valve  that  can  make  the  separated  water  bypass  the  heat  exchangers  altogether  if  necessary.  In  the   heat  exchanger,  the  ground  water  that  has  already  been  heated  up  to  50°C  gets  heated  up  further.   The  separated  water  is  then  reinjected  into  the  ground  in  a  reinjection  well  that  is  2  km  deep.  The   separated  water  then  flows  down  into  the  earth  to  the  ground  water  reservoir  where  it  is  heated  up   again   and   reutilized   in   Hellisheiði   power   plant.   The   ground   water   that   is   coming   from   the   heat   exchanger  flows  into  a  gas  extractor  to  eliminate  any  corrosive  gases  in  the  water.  The  water  is  then   flowing  into  a  pump.  Most  of  the  time  the  water  flows  freely  without  help  but  if  the  load  is  heavy   then  the  pump  helps  the  water  move.  This  is  done  so  that  the  pipes  can  be  smaller  in  diameter  and   therefore  more  compact.  The  water  only  cools  1°C  as  it  flows  into  hot  water  utility  tanks  (they  are   similar  to  a  reservoir  for  hot  water)  at  Reynisvatnsheiði.  From  there  the  water  flows  to  the  consumer   (or_ffrl_web2,  2014;  Gunnarsson,  2014).  

 

 

Figure  1.  Production  process  of  Hellisheiðavirkjun  (or_ffrl_web2,  2014)  

There   are   three   types   of   wastewater   coming   from   Hellisheiði   power   plant.   One   is   the   separated     water,  the  second  is  seal  water  and  the  last  one  is  the  condensate  water.  The  amount  of  silica  in  the   separated  water  at  the  plant  is  around  15000  tonns  per  year.  The  separated  water  therefore  has  a  lot   of  potential  for  silica  scaling.  By  mixing  the  separated  water  and  the  seal  water  together  it  is  possible   to  influence  the  amorphous  silica  scaling.  The  silica  scaling  is  influenced  in  two  ways  by  the  mixing.   First  because  of  the  low  pH  of  the  seal  water  and  the  high  pH  of  the  separated  water  the  pH  of  the  

(7)

Background  

One   of   the   main   problems   in   geothermal   power   production   is   the   scaling   of   silica.   It   is   a   limiting   factor  of  how  much  heat  can  be  extracted  from  geothermal  water.  When  heat  is  extracted  from  high-­‐ temperature  geothermal  water  (>200  °C),  silica  moves  from  being  in  equilibrium  with  quartz  to  being   over  saturated  amorphous  silica.  This  is  what  happens  at  Hellisheiði  power  plant  as  can  be  seen  in   Figure  2.  The  green  line  is  the  solubility  line  for  quartz  and  the  blue  line  is  the  solubility  line  for  the   amorphous   silica   and   finally   the   red   line   is   the   operational   line   for   the   plant.   When   the   plant   separates  the  steam  from  the  water  then  the  chemicals  in  the  separated  water  get  concentrated.  The   solubility   of   the   chemicals   in   the   separated   water   decreases   with   decreasing   temperature.   At   the   beginning,  the  silica  is  in  equilibrium  with  quartz,  but  as  soon  as  the  heat  is  extracted  the  water  gets   oversaturated  with  quartz  and  under  saturated  with  amorphous  silica.  Then  the  plant  continues  to   use   the   heat   and   the   silica   begins   to   be   oversaturated   amorphous   silica.   When   quartz   dissolves   in   water  a  silicic  acid  is  formed  (see  Equation  1).  For  high  pH  like  in  the  separated  water  in  Hellisheiði   the  acid  has  a  tendency  to  disassociate  into  𝐻!  and  𝐻

!𝑆𝑖𝑂!!.  If  there  are  metal  ions  in  the  water  it  is  

possible  to  get  metal  silicate  complexes  (see  Equation  2  and  Equation  3(Gallup,  2011)).      

𝑆𝑖𝑂!+ 2𝐻!𝑂 ↔ 𝑆𝑖 𝑂𝐻 !!   Equation  1.  Dissolution  of  quartz  

𝐻!𝑆𝑖𝑂!!+ 𝑀!!↔ 𝑀𝐻!𝑆𝑖𝑂!!!  where  M=Aluminium  (Al)  and  iron  (Fe)   Equation  2.  Formation  of  metal  silicate  no1  

 

𝐻!𝑆𝑖𝑂!!+ 𝑀(𝑂𝐻)! ↔ 𝑀(𝑂𝐻)!𝐻!𝑆𝑖𝑂!!  where  M=Aluminium  (Al)  and  iron  (Fe)  

Equation  3.  Formation  of  metal  silicate  no2  

 

Figure  2.  Operation  line  for  Hellisheiði  power  plant  and  solubility  lines  for  amorphous  silica  and  quarts  (Gunnarsson,   2014).  

 

There  are  two  processes  that  can  occur  in  the  amorphous  silica  silicate  water.  The  first  process  is  that   the  water  will  precipitate  amorphous  silica  on  to  the  surface.  This  means  that  if  the  over  saturated   amorphous  silica  water  is  injected  straight  into  the  injection  well  the  probability  of  clogs  in  the  well   rises   considerably   and   therefore   shortens   the   lifespan   of   the   well.   The   second   process   is   that   the   silica   will   polymerize   and   form   colloids.   These   colloids   are   less   likely   to   precipitate   and   clog   the   injection  wells  (Gunnarsson  &  Arnórsson,  2005).  If  the  flow  in  the  pipes  is  turbulent  it  is  more  likely   that  silica  will  precipitate  onto  the  surface  but  if  the  flow  is  put  into  a  tank  where  it  is  quiet  then  it  is   more   likely   to   polymerize   (Gunnarsson,   Ívarsson,   Sigfússon,   Thrastarson,   &   Gíslason,   2010).   It   is   therefore  economical  to  make  the  wastewater  polymerize  to  get  as  much  as  possible  of  the  silica  as  

(8)

The  polymerisation  for  the  amorphous  silica  and  silicates  is  described  in  Equation  4  and  Equation  5.   The   mechanism   for   the   polymerisation   on   is   not   completely   known.   In   the   experiments   that   have   been  done,  reaction  orders  between  1  and  8  have  been  found.  The  problem  is  that  there  is  no  way  to   measure   the   silica,   instead   the   molybdate   active   silica   and   the   total   silica   are   measured   and   the   difference  is  considered  to  be  polymeric  silica  (Gunnarsson  &  Arnórsson,  2005).  

   

2𝑆𝑖 𝑂𝐻 !!↔ 𝑂𝐻 !𝑆𝑖𝑂𝑆𝑖 𝑂𝐻 !+ 𝐻!𝑂  

Equation  4.  Polymerization  reaction  no1(Gallup,  2011)  

2𝑀 𝑂𝐻 !!+ 𝑥𝑆𝑖 𝑂𝐻 ! ↔ 𝑀!𝑂!∙ 𝑥𝑆𝑖𝑂!+ 2𝑥 + 3 𝐻!𝑂  

Equation  5.  Polymerization  reaction  no2(Gallup,  2011)  

The  kinetics  of  these  two  processes  depend  on  a  few  factors  such  as  the  pH  of  the  solution,  ionic   strength,   temperature   and   amorphous   silica   oversaturation.   Therefore,   the   success   of   making   the   geothermal  waste  water  polymerize  and  reducing  the  risk  of  clogging  depends  on  the  rate  of  colloid   formation,   the   rate   of   colloid   precipitation   and   the   rate   of   amorphous   silica   precipitation.   It   is   possible  to  affect  the  polymerization  process  by  changing  the  pH  of  the  solution.  This  can  be  done  by   adding  acid  or  base  to  the  solution.  It  is  also  possible  to  affect  the  ionic  strength  of  the  solution  by   adding  salt.  Neither  of  these  solutions  is  good  economically  because  of  the  amount  of  waste  water   from  a  geothermal  power  plant  (Gunnarsson  &  Arnórsson,  2005).  

It  is  possible  to  theoretically  calculate  the  silica  saturation  levels  for  different  temperatures  for  the   separated   water   by   looking   at   Figure   3   where   the   silica   saturation   has   been   plotted   against   the   amount  of  seal  water  

 

Figure  3.  Effect  of  seal  water  on  the  saturation  levels  for  silicon  for  different  temperatures  for  the  separated   water.(Gunnarsson,  2014)  

Other  work  done  in  the  field  

As  mentioned  before,  there  are  many  ways  to  avoid  silica  scaling  and  therefore  there  are  different   ways  that  geothermal  power  plants  deal  with  their  silica  scaling  problem.  Some  of  them  use:  1)  hot   brine   injection   at   or   near   amorphous   silica   saturation,   2)   adjusting   the   brine   pH,   3)   aging   of   geothermal  waste  water,  4)  crystallization,  5)  Removing  the  silica  with  controlled  precipitation  with   metals,   6)   making   silica   precipitated   by   cationic   surfactants,   7)   diluting   the   separated   water   with   either   the   condensate   or   fresh   water,   8)   evaporation,   9)   using   a   reducing   agent,   10)   using   organic  

(9)

Ageing  of  geothermal  waste  water  

The  idea  is  to  allow  the  geothermal  wastewater  time  to  polymerize  the  over  saturated  monomeric   silica  in  a  retention  tank  or  in  a  pond.  This  reduces  the  amorphous  silica  oversaturation  that  is  known   to  scale  in  the  injection  wells.  The  polymeric  silica  with  low  ionic  strength  has  less  tendency  to  scale   in  the  injection  well  than  the  monomeric  silica.  For  this  process  to  work  an  understanding  of  the  rate   of  polymerization  is  necessary.  An  experiment  was  done  to  find  out  the  time  needed  to  lower  the   monomeric   silica   concentration   to   a   concentration   close   to   the   equilibrium   with   amorphous   silica.   Sufficient  polymerization  time  was  found  to  be  between  one  and  four  hours  depending  on  the  pH  of   the   water.   In   this   experiment   there   was   an   induction   period,   a   period   that   the   monomeric   silica   seemed  stable.  This  period  is  thought  to  be  the  result  of  a  measurement  error  when  the  monomeric   silica  is  starting  to  polymerize.  The  speed  of  polymerization  also  depends  on  the  ionic  strength.  If  the   ionic  strength  was  higher  the  polymerization  was  faster,  but  higher  ionic  strength  also  means  faster   deposition  of  silica.  Therefore,  this  is  not  considered  a  good  method  for  geothermal  wastewater  with   high  ionic  strength.    This  method  is  usable  for  high  temperature  geothermal  wastewater  if  the  pH  is   above   6.   If   the   pH   is   below   6   the   polymerization   time   will   be   too   long   for   this   method   to   be   considered  economical  (Gunnarsson  &  Arnórsson,  2005).  

Environmental  aspects  

Surface  disturbance  

Geothermal  fields  are  often  to  be  found  in  beautiful  unspoiled  nature,  even  in  or  near  national  parks   where  man  has  not  made  any  marks  yet.  National  parks  can  be  very  special,  with  unusual  and  special   vegetation.  It  is  possible  that  they  can  be  of  importance  for  the  tourist  industry  as  well  as  having  an   historical   importance.   In   other   cases   the   geothermal   area   can   be   in   a   rich   agricultural   area   or   in   forests.  This  is  the  case  in  for  example  Japan,  Indonesia,  USA,  New  Zealand  and  even  more  countries.   The   construction   of   a   power   plant   that   utilizes   geothermal   energy   will   disturb   the   surface   so   the   decision  to  start  such  a  power  plant  has  to  be  made  with  consideration  to  nature  and  it  has  to  take   into  consideration  what  the  land  is  used  for  today.  The  drill  site  is  usually  small,  up  to  2500  m2.    The  

site  is  often  kept  as  small  as  possible  by  directional  drilling  of  the  wells.  That  way  more  than  one  well   can  be  drilled  from  one  drill  site.  Sometimes  the  surface  will  change  because  ponds  are  drained  and   other  times  because  of  the  drill,  use  and  depletion  of  the  geothermal  reservoir  as  well  as  due  to  the   necessary   infrastructure   and   the   power   plant   buildings   changes   on   the   site.   Some   consider   the   buildings   to   disturb   the   scenery   that   was   there   before   the   construction.   It   is   possible   to   paint   the   buildings  and  the  pipelines  to  blend  into  the  landscape.  This  is  done  to  minimise  the  disturbance  they   have  on  the  scenery.  It  depends  on  how  far  the  power  plant  is  from  populated  areas  how  long  the   power   transmission   lines   have   to   be.   In   some   cases   where   the   power   would   be   transported   over   great   distances,   power   consuming   industries   can   be   built   close   to   the   geothermal   power   plant.   Iceland  has  done  this  with  its  aluminium  production.  The  extraction  of  fluids  can  cause  hot  springs  or   geysers  to  disappear  entirely,  change  them  to  fumaroles  or  shift  them  to  another  location.  The  land   used   in   geothermal   power   plants   can   therefore   be   a   lot   bigger   than   just   the   land   used   for   the   buildings   and   the   wells   (Kristmansdóttir   &   Ármannsson,   2003;   Bayer,   Rybach,   Blum,   &   Brauchler,   2013).  

Not  all  of  the  changes  are  bad  for  the  tourist  industry.  Everyone  can  for  example  use  the  roads  that   are  made.  In  the  Hengill  area,  where  Hellisheiði  and  Nesjavellir  power  plants  are  situated,  there  are   now  hiking  trails  that  Orkuveita  Reykjavíkur  has  been  instrumental  in  making  in  collaboration  with   local  authorities  (or.is,  14).  There  is  one  tourist  attraction  in  Iceland  that  came  to  be  because  of  the   Svartsengi   power   plant.   As   soon   as   they   activated   the   steam   holes   the   separated   sea   created   a   lagoon.  Today  this  lagoon  is  called  Bláa  lónið,  or  in  English  the  Blue  lagoon,  and  it  is  one  of  Iceland’s   most  popular  tourist  attraction  (hsorka.is,  2014).  

(10)

Noise  

There   is   almost   always   some   noise   when   the   construction   crew   is   working   and   then   there   is   the   drilling   noise,   though   these   are   temporary   until   the   buildings   are   up   and   the   drilling   is   done.   The   noise  coming  from  these  rarely  exceeds  the  90  dB  permissible  exposure  limit  given  by  the  national   institute  for  occupational  safety  and  health  in  the  USA.  Once  the  plant  is  operational,  there  will  be   noise  from  the  discharging  boreholes.  This  noise  can  exceed  120  dB  but  with  a  noise  muffler  installed   on  the  boreholes  this  is  kept  below  the  65  dB  limit  that  the  US  Geological  Survey  has  set  for  such  an   operation  (Kristmansdóttir  &  Ármannsson,  2003).  

Chemical  pollution  

There  are  two  ways  that  a  geothermal  power  plant  can  pollute  the  environment.  One  is  air  pollution   by  steam,  the  other  is  ground  pollution  by  liquid.  There  can  be  many  harmful  chemicals  in  both  the   steam  and  the  liquid.  In  the  steam,  the  polluting  chemicals  can  be  carbon  dioxide,  hydrogen  sulphide,   methane,   mercury,   radon,   ammonia   and   boron.   In   the   liquid,   they   can   be   hydrogen   sulphide,   mercury,   ammonia,   boron,   arsenic,   lead,   cadmium,   iron,   zinc,   manganese,   lithium   and   aluminium   (Bayer,  Rybach,  Blum,  &  Brauchler,  2013;  Kristmansdóttir  &  Ármannsson,  2003).  

Carbon  dioxide  

In  geothermal  power  production  the  carbon  dioxide  emissions  come  mostly  from  degassing  of  the   magma.   Reported   carbon   dioxide   emissions   can   wary   greatly,   from   4-­‐740   g/kWh   with   a   weighted   average  of  122  g/kWh.  At  Kizildere  geothermal  power  plant  in  Turkey,  the  carbon  dioxide  content  is   very  high,  or  more  than  1300  g/kWh  if  the  steam  consumption  of  the  plant  is  10.96  kg/kWh.  Instead   of  releasing  all  of  the  carbon  dioxide  into  the  atmosphere  they  make  industrial  grade  carbon  dioxide.   In  geothermal  regions,  carbon  dioxide  is  emitted  naturally  and  it  depends  on  the  geothermal  field   how   much   is   emitted.   It   is   therefore   interesting   to   look   at   the   changes   in   emissions   when   the   geothermal  energy  is  used.  The  Larderello  field  in  Italy  has  observed  a  decrease  of  carbon  dioxide   emissions.  The  Svartsengi  field  in  Iceland  has  however  around  six  times  higher  emissions  after  the   start   of   power   production   than   before.   At   the   Ohaaki   field   in   New   Zealand   no   change   in   carbon   dioxide   emissions   was   found.   At   Wairakei   in   New   Zealand,   a   doubling   of   carbon   dioxide   emissions   was  observed  (Bayer,  Rybach,  Blum,  &  Brauchler,  2013).  

Sulphur  

There  is  a  small  amount  of  sulphur  dioxide  in  the  gaseous  emissions,  but  the  main  source  of  sulphur   compounds  in  the  gaseous  emissions  is  hydrogen  sulphide.  Hydrogen  sulphide  is  the  compound  that   can  cause  local  environmental  concern  because  of  the  bad  odour  and  the  potential  toxicity  (Bayer,   Rybach,   Blum,   &   Brauchler,   2013).   The   faculty   of   civil   and   environmental   engineering   at   the   University  of  Iceland  did  a  study  of  the  hydrogen  sulphide  concentrations  inside  a  30km  radius  of  the   two   geothermal   power   plants   closest   to   Reykjavík,   the   capital   city   of   Iceland.   They   found   that   the   odour   exceeds   the   national   health   limit   of   hydrogen   sulphide,   which   is   50   µg/m3   for   a   24   hours  

running  average.  This  is  significantly  higher  than  the  11  µg/m3  limit  for  mean  odour  that  the  world  

health   organisation   has   set.   Research   has   shown   that   terrain   and   wind   contribute   to   how   the   hydrogen  sulphide  disperses  from  the  power  plant  (Olafsdottir,  Gardarsson,  &  Andradottir,  2014).  In   2011,   there   was   a   140%   increase   of   sulphur   pollution   in   Reykjavík   and   the   suspect   is   Hellisheiði   power  plant.  The  power  plant  emitted  6,96  g/kWh  of  hydrogen  sulphide  that  year.  Total  hydrogen   sulphide  emissions  have  been  decreasing  since  the  1970s  even  though  there  is  more  geothermal  use   (Bayer,  Rybach,  Blum,  &  Brauchler,  2013).  

(11)

If   the   wastewater   is   pumped   into   them   the   ecosystem   of   these   streams,   rivers   or   lakes   can   be   seriously  affected.  There  are  a  few  ways  to  reduce  the  effects  of  wastewater  on  the  ecosystem  of  the   streams,  rivers  or  lakes.  One  is  to  pump  the  wastewater  into  a  cooling  pond.  The  reason  why  this  is   not  used  much  is  that  the  pond  tends  to  get  bigger  with  time,  and  also  because  it  is  possible  that  the   pond  itself  will  pollute  the  environment.  Another  way  is  to  reinject  the  wastewater  into  the  holes.   This   will   conserve   a   large   amount   of   the   energy   that   otherwise   would   be   lost   (Kristmansdóttir   &   Ármannsson,   2003).   Orkuveita   Reykjavíkur   wants   to   reuse   the   wastewater.   In   cold   climates   like   Iceland,  the  wastewater  can  be  used  for  house  heating,  and  after  the  house  heating  it  can  still  be   warm   enough   for   snow   melting   and   ground   heating.   In   warm   climates   it   is   possible   to   use   heat   pumps  to  cool  the  air.  This  is  an  environmental  friendly  way  to  deal  with  the  heat;  by  using  the  heat   further,  the  heat  emissions  to  the  environment  from  the  power  plant  will  be  less  (Kristmansdóttir  &   Ármannsson,  2003;  Bayer,  Rybach,  Blum,  &  Brauchler,  2013).  

Physical  effects  of  fluid  withdrawal  

If  the  fluid  withdrawal  in  a  geothermal  power  plant  is  more  than  the  natural  inflow  of  water  then   there  will  be  subsidence.  This  phenomenon  is  recorded  in  most  geothermal  power  plants.  How  much   the   subsidence   is   varies   between   geothermal   power   plants.   At   the   Svartsengi   geothermal   power   plant   in   Iceland   it   is   10   mm/year,   but   at   the   Wairakei   power   plant   in   New   Zealand   it   is   400-­‐450   mm/year.  Over  the  next  years  there  is  going  to  be  a  very  noticeable  difference.  The  subsidence  can   cause   damages   on   the   infrastructure   of   the   geothermal   power   plant   itself.   There   can   be   some   positive   effects   from   subsidence,   for   example   it   can   lead   to   local   wetlands   and   therefore   new   habitats.   By   withdrawing   water   it   is   also   possible   to   draw   so   much   that   the   ground   water   table   lowers.  That  can  cause  contamination  of  the  aquifer  water  with  corrosive  water.  Another  possibility   is  that  springs  and/or  fumaroles  can  vanish.  But  the  most  dangerous  effect  of  subsidence  is  when  it   forms   a   steam   pillow   that   can   lead   to   a   major   explosion.   In   the   past   such   an   explosion   has   killed   people.  It  is  possible  to  compensate  at  least  to  some  extent  for  the  loss  of  water  by  reinjecting  the   spent  water  into  the  reservoir.  The  reinjection  can  cause  other  problems  though  (Kristmansdóttir  &   Ármannsson,  2003;  Bayer,  Rybach,  Blum,  &  Brauchler,  2013).  

Materials  and  methods  

The  separated  water  and  the  seal  water  from  the  plant  were  mixed  into  a  tank  that  mimics  pipelines.   There   were   4   different   sites   on   the   tank   that   were   connected   to   the   experimental   container   with   pipes  so  that  it  was  easier  to  get  to  the  water  from  the  tank  for  testing.  These  sites  where  placed   before  the  tank,  close  to  the  beginning  of  the  tank,  around  the  middle  and  close  to  the  end  of  the   tank.   The   water   is   then   tested   on-­‐site   for   silicon   monomer,   hydrogen   sulphide,   total   carbonate,   ferrous  iron  and  total  iron.  The  last  two  where  only  done  once.  This  is  done  on-­‐site  because  most  of   the  concentrations  change  with  time.    

(12)

 

Figure  4.  Experimental  setup.  The  separated  water  and  the  seal  water  are  mixed  and  lead  through  the  tank.  

Silicon  monomer  

The  silicon  monomer  has  a  tendency  to  form  polymeric  silicon  when  the  monomeric  silicon  is  above   the  concentration  limit  for  amorphous  silica.  The  polymeric  silicon  is  not  detected  by  this  method.   First  10ml  of  deionised  water  was  put  into  a  plastic  bottle  and  0,25  ml  of  20%  sulphuric  acid  (H2SO4)  

was   added   to   the   water   to   make   the   sample   acidic.   0,25   ml   of   the   sample   or   standard   was   then   added.  One  drop  of  0,1  N  iodine  (I)  was  added  to  react  with  the  hydrogen  sulphide  (H2S)  that  was  in  

the  sample.  This  was  done  so  that  the  hydrogen  sulphides  in  the  sample  did  not  interfere  with  the   measurements   of   the   silicon   monomer.   2-­‐3   drops   of   0,05   N   sodium   thiosulfate   pentahydrate   (Na2S2O3  ∙  5  H20)  were  added  to  react  with  the  rest  of  the  iodine  that  did  not  react  with  the  hydrogen  

sulphide.  1,25  ml  of  10%  ammonium  molybdate  ((NH4)6Mo7O24  ∙  4H2O)  was  added  to  react  with  the  

silicon   monomer.   After   preparation,   the   sample   needed   to   wait   for   10   minutes   before   it   was   measured  in  a  spectrophotometer  at  410nm.  The  results  for  the  standards  were  than  plotted  into  a   graf  that  showed  their  concentrations  against  the  absorbance  and  from  the  plot  it  was  possible  to   read  the  concentrations  for  the  samples  (Gunnarsson,  2013).  

Hydrogen  sulphide  

First  5  ml  of  5  M  sodium  hydroxide  solution  (NaOH)  was  put  into  an  Erlenmeyer  flask.  This  is  done  to   make  the  solution  strongly  alkaline.  There  are  at  least  three  reasons  why  the  solution  is  made  such.   Reason   number   one   is   the   colouring   for   the   titration   endpoint.   In   a   strong   alkaline   solution,   the   colour   with   dithizone   is   yellow   and   it   makes   a   sharp   pink   endpoint.   Reason   number   two   is   that   mercury   sulphite   (HgS)   precipitates   in   a   strongly   alkaline   solution.   The   third   reason   is   that   the   hydrogen  sulphide  will  not  evaporate  during  the  experiment.  5ml  of  acetone  ((CH3)2CO)  was  added;  

this  was  so  that  the  dithizone  would  dissolve.  Dithizone  is  not  a  water-­‐soluble  material  but  when  it   has  been  dissolved  in  acetone  the  acetone  is  water-­‐soluble.  The  sample  was  then  added.  The  sample   size  was  not  constant;  the  more  hydrogen  sulphide  there  was  in  the  sample  the  smaller  sample  size   was  taken.  When  there  was  a  large  amount  of  hydrogen  sulphate  in  the  sample  and  the  sample  size   was   too   big,   the   change   in   colour   was   more   gradual   without   a   sharp   endpoint   as   was   needed.   Deionised  water  was  then  added  to  around  50  ml.  This  is  to  make  it  easier  to  see  the  end  point.  The   dithizone  was  added  next.  This  gave  the  colour  change.  This  sample  was  than  titrated  with  0,001  M   mercury  acetate  (Hg(CH3COO)2)  to  a  pink  endpoint.  The  pink  endpoint  comes  from  the  fact  that  when  

(13)

𝐻!𝑆 𝑝𝑝𝑚 =

𝑚𝑙  0,001𝑀  𝐻𝑔 𝐶𝐻!𝐶𝑂𝑂 !∙ 34

𝑚𝑙  𝑠𝑎𝑚𝑝𝑙𝑒  

Equation  6.    For  calculating  the  concentration  of  hydrogen  sulphide  

Total  carbonate  

There  are  two  ways  that  were  done  to  some  extent  to  find  out  the  total  carbonate.  The  first  one  was   always  used,  but  the  second  one  was  also  used  to  some  extent.  In  the  first  method,  the  sample  was   weighted   and   the   pH   was   accurately   adjusted   to   8,30   with   hydrochloride   acid   (HCl)   or   sodium   hydroxide  (NaOH).  If  the  pH  was  higher  than  8,30  hydrochloride  acid  was  used  to  lower  the  pH  level   and  if  the  pH  was  lower  than  8,30  sodium  hydroxide  was  used  to  increase  the  pH  level.  The  next  step   was  to  use  hydrochloric  acid  to  lower  the  pH  level  to  3,80.  The  amount  of  hydrochloride  acid  was   documented  and  based  on  this  information  the  carbonate  was  calculated  with  equation  2.  

 

𝐶𝑂!=

𝑚𝑙  ℎ𝑦𝑑𝑟𝑜𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒  𝑎𝑐𝑖𝑑 ∙ 4400

𝑔  𝑠𝑎𝑚𝑝𝑙𝑒 − 6,97 + 1,182 ∙ 𝑝𝑝𝑚𝐻!𝑆 + 0,0088 ∙ 𝑝𝑝𝑚𝑆𝑖𝑂!+ 0,100 ∙ 𝑝𝑝𝑚𝐵  

Equation  7.  For  calculating  the  concentration  of  carbon  dioxide  by  using  theoretical  calculations.  

To  get  an  accurate  value  for  carbonate  the  equation  takes  into  account  that  the  hydrochloride  acid   reacts  with  the  hydrogen  sulphide,  the  total  silicon  dioxide,  the  boron  and  to  some  extent  the  water   in  the  sample.  The  second  method  starts  the  same  as  the  first,  the  sample  is  weighted  and  pH  was   adjusted  to  8,30.  The  hydrochloride  acid  was  then  used  to  lower  the  pH  to  3,80,  the  air  was  then   bubbled  through  the  sample  for  10  minutes.  By  doing  this  some  of  the  interfering  compounds  get   bubbled   away   with   the   air.   The   last   step   was   that   the   sample   is   titrated   from   3,80   to   8,30   with   sodium  hydroxide.  In  this  case  the  amount  for  both  hydrochloride  acid  and  sodium  hydroxide  was   documented.  It  is  then  possible  to  calculate  the  carbonate  with  equation  3  (Arnórsson,  2000).  

 

𝐶𝑂!=

𝑚𝑙  ℎ𝑦𝑑𝑟𝑜𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒  𝑎𝑐𝑖𝑑 − 𝑚𝑙  𝑠𝑜𝑑𝑖𝑢𝑚  ℎ𝑦𝑑𝑟𝑜𝑥𝑖𝑑𝑒 ∙ 4400

𝑔  𝑠𝑎𝑚𝑝𝑙𝑒 − 1,182 ∙ 𝑝𝑝𝑚𝐻!𝑆  

Equation  8.  For  calculation  the  concentration  of  carbon  dioxide  by  using  acid  and  base.  

Total  silica    

To  be  able  to  find  the  amount  of  silica  the  sample  size  of  0,5  ml  was  chosen  for  both  the  standard  or   the  sample.  The  sample  should  contain  ca  0,1  –  0,5  mg  of  silicon  dioxide  (SiO2).  Iodized  water  was  

added  so  that  the  total  volume  was  5ml.  To  make  the  sample  acidic,  0,5  ml  of  20%  sulphuric  acid  is   then  added.  To  that,  1  ml  of  1,5  M  Hydrofluoric  acid  (HF)  was  also  added.  This  mixture  was  heated  in   a   60°C   hot   water   bath   for   ca   40   minutes   so   that   the   hydrofluoric   acid   could   react   with   the   silicon   dioxide   to   form   silicon   tetrafluoride   (SiF4).   When   this   was   done   the   samples   were   cooled   down   to  

room  temperature.  Next  2,5  ml  of  0,25  M  aluminium  sulphate  (Al2(SO4)3)  was  added  and  the  samples  

were   then   heated   again   for   ca   20   minutes   and   cooled   again   to   room   temperature.   Next   15   ml   of   deionised   water   was   added   and   the   sample   was   shaken   to   mix   it   well.   2,5   ml   of   10%   ammonium   molybdate  solution  was  then  added  to  the  mixture.  After  preparation  of  a  sample,  it  needed  to  wait   for   15   minutes   before   it   was   measured   in   a   spectrophotometer   at   410   nm.   The   results   for   the   standards  were  than  plotted  into  a  graf  that  showed  their  concentrations  against  the  absorbance  and   from  the  plot  it  was  possible  to  read  the  concentrations  for  the  samples  (Gunnarsson,  2014).  

Total  iron  

The  standards  were  made  by  mixing  iron  (III)  chloride  (FeCl3)  in  hydrochloric  acid  (HCl)  and  diluting  it  

to   get   10-­‐500   ppb   of   iron   (Fe).   Standards   were   not   done   for   a   lower   concentration   because   the   spectrophotometer  was  not  accurate  for  such  a  low  concentration.      

The  procedure  was  to  start  with  about  45  ml  of  a  filtered  sample  or  standard  in  a  50ml  brown  glass   bottle.  0,06  ml  of  6M  hydrochloric  acid,  0,10  ml  2  M  Sodium  hydroxide  (NaOH)  and  1  ml  of  0,40  M   ascorbic   acid   (C H O)   solution   were   added   to   the   filtered   sample.   The   ascorbic   acid   solution   was  

(14)

least   30   s.   1   ml   of   TPTZ   (2,4,6-­‐tripyridyl-­‐1,3,4-­‐triazine)   solution   was   then   added;   this   was   done   to   allow  ferrous  ion  (Fe+2)  to  form  a  violet  complex  with  the  TPTZ.  The  ammonium  acetate  (NH

4C2H3O2)  

solution  was  added  to  the  mixture;  this  was  done  to  prevent  reduction  of  ferric  to  ferrous  iron  after   the  preparation.  The  mixture  was  then  mixed  well  and  the  bottle  filled  up  with  the  filtered  sample  or   the  standard  solution,  the  same  standard  of  sample  that  was  put  in  it  to  begin  with.  This  mixture  was   then   shaken   well.   The   last   thing   was   to   measure   the   samples   and   the   standards   in   the   spectrophotometer  at  595  nm.  The  results  for  the  standards  were  then  plotted  up  into  a  straight  line.   From  the  equation  of  the  line  it  was  possible  to  calculate  the  concentrations  in  the  unknown  samples   (Arnórsson,  2000).  

Ferrous  iron  Fe

+2

 

The  standards  that  are  used  are  the  same  as  for  the  total  iron.  The  procedure  starts  by  taking  about   45  ml  of  ether  standard  or  unknown  sample  and  putting  it  in  a  50  ml  brown  glass  bottle.  0,06  ml  of  6   M   hydrochloric   acid   solution,   0,10   ml   of   2   M   Sodium   hydroxide   solution   and   1ml   of   TPTZ   are   also   added  to  the  solution.  The  ferrous  iron  forms  a  violet  complex  with  the  TPTZ  if  the  pH  of  the  solution   is   somewhere   between   3,5   and   5,8.   Next,   1   ml   of   ammonium   acetate   solution   is   added   and   the   mixture  is  shaken  well.  The  bottle  is  then  filled  up  with  an  unknown  sample  or  a  standard  solution.   This  is  then  mixed  well  and  the  samples  are  measured  in  a  spectrophotometer  at  595  nm.  The  results   for   the   standard   were   then   plotted   into   a   straight   line.   By   finding   the   equation   of   the   line   it   is   possible  to  calculate  the  concentration  for  the  unknown  samples  (Arnórsson,  2000).  

Results  and  discussion  

Results  with  the  separated  water  at  70°C  

Table  1  shows  that  the  concentrations  of  the  minerals  that  are  in  the  seal  water  and  the  separated   water.  Silica  (Si)  and  chlorine  (Cl)  have  a  high  concentration  in  the  separated  water.  It  also  shows  that   there   is   almost   no   silica   (Si)   or   chlorine   (Cl)   in   the   seal   water.   The   fact   that   there   is   such   low   concentration  of  silica  (Si)  in  the  seal  water  is  why  it  works  as  a  diluter  and  that  the  seal  water  also   has  a  low  concentration  of  chlorine  (Cl).  Chlorine  is  used  because  it  has  shown  almost  no  tendency  to   precipitate  in  the  separated  water.  It  is  therefore  possible  to  say  that  the  chlorine  is  stable  and  use   the   concentrations   of   chlorine   when   checking   if   there   is   precipitation   of   amorphous   silica   onto   a   surface.  

Particles   Seal  water  

Separated   water   Si  [ppm]   0,21   682   Na  [ppm]   0,22   177   K  [ppm]   0,4   31,4   Ca  [ppm]   0,018   0,62   Mg  [ppm]   0,002   0,009   Fe  [ppm]   0,023   0,014   Al  [ppm]   0,013   1,8   Cl  [ppm]   0,55   152,4   B  [ppm]   0,025   1,06   Li  [ppm]   0,01   0,19  

(15)

respective   valves   at   the   tank.   When   the   total   Silica   gets   lower   through   the   tank   it   is   because   of   precipitation  of  amorphous  silica  onto  the  surface.  When  the  amorphous  silica  gets  lower,  is  because   of   both   of   the   processes,   the   precipitation   and   the   polymerization.     The   red   dots   show   the   precipitation   and   the   polymerisation   of   the   amorphous   silica   at   their   respective   valves.   The   amorphous  silica  falls  faster  than  the  total  silica,  therefore  it  is  known  that  the  amorphous  silica  is   polymerizing.  The  total  silica  drop  in  the  experiments  that  were  done  with  only  separated  water  at   70°C  with  different  flows  showed  a  drop  somewhere  between  8-­‐16  ppm.  This  means  that  the  silica   scaling   will   be   somewhere   between   150-­‐300   tons   per   year.   This   silica   could   then   be   clogging   the   injection  wells  as  well  as  clogging  the  pipes  in  Hellisheiði  power  plant.  

 

Figure  5.  Amorphous  silica  scaling  and  polymerization  with  separated  water  at  70°C  

When  the  seal  water  is  mixed  with  the  separated  water  it  is  diluting  the  separated  water.  Because   there   is   no   clorine   in   the   seal   water,   it   is   possible   to   compare   the   silica   consentrations   with   the   clorine  concentrations.  Through  this  comparison,  it  is  possible  to  see  if  the  silica  concentrations  for   valves  S1,  S2  and  S3  (see  Equation  9  )  are  being  diluted.  Based  on  this  information,  it  is  possible  to   construct  lines  like  those  in  Figure  6.  The  dots  are  the  concentration  of  total  silica  in  the  respective   valves.  The  concentrations  of  chlorine  and  silica  should  lower  after  the  mixing  but  only  as  much  as   the   dilution   allows   it   to   and   no   further.   If   the   concentrations   of   silica   are   lower   than   the   concentration  calculated  for  the  silica,  it  indicates  that  the  amorphous  silica  has  precipitated  on  to   the   surface.   As   can   be   seen   by   looking   at   Figure   6,   there   is   no   precipitation   when   mixing   the   seal   water  and  the  separated  water  together  at  70°C  for  the  separated  water.    

 

𝑆𝑖 != 𝐶𝑙𝐶𝑙! !! 𝑆𝑖 !!  

Equation  9.  Calculation  of  concentration  of  silica  by  using  the  chlorine  concentration.  

Where   [Si]   stands   for   silica   concentration,   [Cl]   stands   for   chlorine,   S0   stands   for   the   experimental   valve  before  the  tank  and  i  stands  for  S1,  S2  or  S3  which  indicate  the  experimental  valves.    

(16)

 

Figure  6  Total  silica  in  the  separated  water  at  70°C  and  the  mixture  with  seal  water.  

There  is  a  limit  on  how  much  it  is  possible  to  lower  the  pH  of  the  mixture.  If  pH  is  lowered  too  much   the  pipes  will  start  to  corrode.  The  corrosion  threshold  for  the  pipes  is  considered  to  be  at  pH  six.   When  the  pH  is  lower  than  six  the  iron  concentration  gets  exponentially  higher  according  to  Figure  7.      

 

Figure  7  the  iron  in  the  separated  water  at  70°C  and  in  the  mixture  with  seal  water.  The  red  line  is  the  corrosion   threshold  for  the  pipes  

By  plotting  the  pH  as  the  function  of  the  mixing  ratio  (Figure  8)  it  is  possible  to  see  that  mixing  the   seal  water  and  the  separated  water  at  70°C  to  around  50/50  would  be  without  too  much  corrosion  in   the  pipes.  

(17)

 

Figure  8  the  pH  as  function  of  the  mixing  ratio  for  separated  water  at  70°C.  The  red  line  is  the  corrosion  threshold  for  the   pipes.  

Results  with  separated  water  at  120°C  

The  mineral  composition  for  the  seal  water  and  the  separated  water  at  120°C  can  be  seen  in  Table  2.   The  Silica  and  the  chlorine  have  low  concentrations  in  the  seal  water  and  high  concentrations  in  the   separated  water  like  it  is  for  the  separated  water  at  70°C.  

Particles   Seal  water   Separated  water  

Si  [ppm]   1,21   710   Na  [ppm]   0,54   182   K  [ppm]   0,45   33,6   Ca  [ppm]   0,038   0,573   Mg  [ppm]   0,00719   0,00615   Fe  [ppm]   0,0562   0,0538   Al  [ppm]   0,01241   1,42   Cl  [ppm]   0,2   164   B  [ppm]   0,0042   1,04   Li  [ppm]   0,01   0,199  

Table  2.  The  mineral  composition  in  the  seal  water  and  the  separated  water,  with  the  separated  water  at  120°C  

When  looking  at  Figure  9,  the  amorphous  silica  concentration  gets  higher  than  the  concentration  for   the   total   silica.   The   total   silica   should   be   higher   or   at   the   same   level.   There   are   two   possible   explanations  for  this.  One  is  that  while  doing  the  experiments  at  different  velocities  for  the  separated   water,  there  was  some  boiling  in  the  tank.  That  is  why  there  is  only  one  experiment  done  with  high   heat  separated  water  only;  the  plan  was  to  experiment  with  few  velocities.  It  is  possible  that  the  heat   in   that   experiment   was   too   high   without   the   water   actually   being   partly   in   gas   form.   Another   explanation  is  that  there  was  some  mistake  done  when  doing  the  experiments  for  the  amorphous   silica.   If   that   is   the   case   then   it   should   be   safe   to   assume   that   the   total   silica   is   equal   to   the   amorphous  silica.  In  both  of  these  cases  it  should  be  safe  to  look  at  the  total  silica  concentration  and   see  that  the  total  silica  concentration  is  going  down,  which  indicates  that  there  is  amorphous  silica   scaling  in  the  tank.  

(18)

 

Figure  9  Amorphous  silica  scaling  with  separated  water  at  120°C  

Figure   10   is   done   the   same   way   as   Figure   6,   the   only   difference   is   that   the   separated   water   is   at   120°C.  The  total  silica  concentration  is  found  to  be  in  line  with  the  calculated  total  silica.  This  means   that  there  is  no  precipitation  onto  a  surface  when  the  separated  water  is  at  120°C.    

 

Figure  10  Total  silica  in  the  separated  water  at  120°C  and  the  mixture  with  seal  water.  

By  looking  at  Figure  11  it  is  possible  to  see  that  the  concentration  of  iron  gets  higher  the  closer  to  pH   six  it  gets.  It  is  not  as  obvious  that  it  is  an  exponential  curve  as  it  was  for  the  separated  water  at  70°C,   but  it  is  still  possible  to  see  the  increase  in  the  concentration  for  the  iron  the  closer  it  gets  to  pH  six.  

References

Related documents

Mera information om undervisningsskyldigheter och övriga anställningsförhållanden ges av rektor 

Om hela semesterpenningen tas ut i form av ledighet, betalas ingen semesterpenning. Om bara en del 

JS Förslag: Styrelsen föreslår för samkommunstämman att budget för år 2016 och ekonomiplan för åren 2016-2018 fastställs enligt bilaga.. Som en del av den

Eftersom nedan nämnda beslut endast gäller beredning eller verkställighet, kan enligt 91 § kommunallagen rättelseyrkande inte framställas eller kommunalbesvär anföras

JS 

Beslut: Styrelsen förelägger samkommunstämman bifogat förslag till budget för år 2017 och eko- nomiplan för åren 2017-2019 och konstaterar, att budgetförslaget för år 2017

Beslutet torde kunna tolkas så att ärendet sätts upp på kommande stämmors föredragningslistor utan ny beredning inom samkommunen i väntan på att ägarkommunerna skall komma

Samkommunen för yrkesutbildning i östra Nyland har för sin del varken medverkat till eller under- tecknat ett intentionsavtal i ärendet eftersom det upprepade gånger